Skip to content
2000
Volume 7, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

We synthesize multifunctional nanofluids by incorporating fluorescent dyes into magnetite nanoparticles. The synthesis is carried out in two different routes, in which nanoparticles with two sizes are coated by two different kinds of stabilizers. The structures of coating layers of the as-synthesized nanoparticles are characterized by the analysis of Fourier transform infrared spectra. Magneticinteraction- induced aggregation still exits and is traced by the DLS. Thermal conductivities of the synthesized nanofluids are measured under day-light, in the dark and under the UV irradiation. The fluid thermal conductivity varies in a wave-like shape as a function of particle concentration due to the existence of aggregation. Furthermore, the measured thermal conductivity under UV light is higher than those with the other conditions. The collapse of aggregates under UV irradiation due to the unidirectional non-radiative energy transfer increases the number of single magnetite particles and is thus assumed to be responsible for the increase of fluid thermal conductivity.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341311795542354
2011-06-01
2025-10-05
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341311795542354
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test