Skip to content
2000
Volume 7, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Nanostructured mesoporous silica thin film has been deposited on silicon substrate by the spin-coating technique using CTAB as a template under acidic conditions. TGA, SEM, HRTEM, N2 adsorption-desorption isotherm, FTIR and synchrotron high flux beamline were used to characterize the microstructure and photoluminescence properties of the resulting film. After being calcined at 400 °C for 12 h, the thin film exhibited a very smooth surface and interconnected pores, with a pore size of about 1-2 nm. The synchrotron photoluminescence spectra show that the samples after calcination have three obvious luminescence peaks around 322, 387 and 410 nm arising from nonbridging oxygen hole centers (NBOHCs) and Si-OH surface complexes. The UV emission (322 nm) due to NBOHCs is inhibited by H2 plasma treatment, indicating that the nonbridging oxygen was saturated by the hydrogen atoms.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341311794653569
2011-04-01
2025-11-01
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341311794653569
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test