Skip to content
2000
Volume 6, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Cholesterol-modified pullulan (CHSP) conjugate with succinyl linkages was synthesized and characterized by fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD). The degree of substitution (DS) of cholesterol moiety determined by 1H NMR ranged from 3.87 to 5.70 cholesterol groups per hundred glucose units. CHSP self-aggregated nanoparticles were prepared by probe sonication in aqueous media and analyzed by dynamic laser light-scattering (DLS), zeta potential, transmission electron microscopy (TEM) and the fluorescence probe technologies. These novel nanoparticles were almost spherical in shape, and their size, ranging from 73.0 to 51.8 nm, could be controlled by DS. The zeta potentials of CHSP self-aggregated nanoparticles were near zero in aqueous media. The value of critical aggregation concentration (cac) was dependent on the DS of cholesterol moiety. Mitoxantrone (MTO), as a model anticancer drug, was loaded into the CHSP nanoparticles by dialysis method. MTO-loaded CHSP self-aggregated nanoparticles were almost spherical in shape and their size increased from 153.1 to 174.2 nm with the MTO-loading capacity increasing from 4.35% to 14.29%. The encapsulation efficiency (EE) of the process and loading capacity (LC) of the nanoparticles increased with increasing cholesterol DS. XRD powder patterns showed that crystal peaks of MTO disappeared when MTO was entrapped into CHSP nanoparticles. The release behavior of MTO from CHSP self-aggregated nanoparticles was studied in vitro. The results showed that the release behavior of MTO from CHSP nanoparticles exhibited a sustained release, and MTO release rate decreased with increasing the pH value of media.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341310791171153
2010-06-01
2025-09-21
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341310791171153
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test