Skip to content
2000
Volume 3, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

This paper presents a concise review of synthetic strategies for nanoparticle-cored dendrimers from metal nanoparticles, with an emphasis on their current applications. The synthesis of nanoparticle-cored dendrimers represents an important advance to the control and preparation of new organized nanostructures. The most popular way for the synthesis of nanoparticle-cored dendrimers is a direct method using a modified Schiffrin reaction with dendrons containing thiol or disulfide groups. The second method is an indirect method involving two-step reactions, the synthesis of monolayer-stabilized nanoparticles followed by the ligand-place exchange with thiolateddendrons. Thirdly, a new synthetic strategy to build dendritic architectures around a monolayer-protected nanoparticle using single or multi-step organic reactions is described. Two different approaches for this new synthetic method are attempted. Convergent approach is based on a strategy in which the synthesis of monolayer-protected nanoparticles is followed by adding dendrons on nanoparticles by a single coupling reaction. Divergent approach uses multi-step reactions to build dendritic architectures around a nanoparticle core. Incorporation of a redox molecule on the surface of core nanoparticle in nanoparticle-cored dendrimers results in the formation of redox-active nanoparticle-cored dendrimers.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341307781422997
2007-08-01
2025-12-14
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341307781422997
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test