Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

A novel attempt to degrade alizarine yellow R (AYR) by lead dioxide (PbO)/ neodymium (Nd) coated Ti anode was investigated.

Methods

Ti/Zr-SnO/PbO-Nd electrode showed high oxygen evolution potential, high current density, and neutral conditions, which favored the degradation of AYR. The PbO-Nd layer on Ti/Zr-SnO was further characterized by scanning electron microscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The electrochemical properties of Ti/Zr-SnO/PbO-Nd electrode were evaluated by cyclic voltammetry, AC impedance spectroscopy, and accelerated life test.

Results

The relatively higher oxygen evolution overpotential (~1.80 V) of the developed electrode can effectively suppress the occurrence of surface side reactions and oxygen evolution. A relatively lower charge transfer resistance (, 18.0 Ω) of Ti/Zr-SnO/PbO-Nd electrode could be found. The Ti/Zr-SnO/PbO-Nd electrode exhibited an accelerated lifetime of 110 min under a very high current density of 10,000 A/m2. The doping of Nd could produce loosely-stacked sheet-like structures, thus, the number of active sites on the electrode surface increases.

Conclusion

Moreover, an outstanding conductivity of Ti/Zr-SnO/PbO-Nd electrode was obtained, which favored the electron transfer and catalytic activity of the modified electrode. The Ti/Zr-SnO/PbO-Nd electrode exhibited improved electrochemical performances and higher oxygen evolution potential, and the highest oxygen evolution potential is 1.80 V. Under the current density of 30 mA/cm2, the electrocatalytic degradation efficiency of 92.3% could be achieved in 180 min. The electrochemical oxidation of AYR at the Ti/Zr-SnO/PbO-Nd electrode proved to be feasible and effective, indicating that it might be used for the elimination of AYR from wastewater.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137325822240819050628
2024-08-30
2025-11-03
Loading full text...

Full text loading...

References

  1. LongY. WangY. ZhangD. JuP. SunY. Facile synthesis of BiOI in hierarchical nanostructure preparation and its photocatalytic application to organic dye removal and biocidal effect of bacteria.J. Colloid Interface Sci.2016481475610.1016/j.jcis.2016.07.04127451034
    [Google Scholar]
  2. ZhaoC. ZhouY. RidderD.J. ZhaiJ. WeiY. DengH. Advantages of TiO2/5A composite catalyst for photocatalytic degradation of antibiotic oxytetracycline in aqueous solution: Comparison between TiO2 and TiO2/5A composite system.Chem. Eng. J.201424828028910.1016/j.cej.2014.03.050
    [Google Scholar]
  3. BoS. LuoJ. AnQ. XiaoZ. WangH. CaiW. ZhaiS. LiZ. Efficiently selective adsorption of Pb(II) with functionalized alginate-based adsorbent in batch/column systems: Mechanism and application simulation.J. Clean. Prod.202025011958510.1016/j.jclepro.2019.119585
    [Google Scholar]
  4. Nezamzadeh-EjhiehA. ShahriariE. Heterogeneous photodecolorization of methyl green catalyzed by Fe(II)-o-phenanthroline/zeolite Y nanocluster.Int. J. Photoenergy2011201111010.1155/2011/518153
    [Google Scholar]
  5. ZhangX. WangY. LiuC. YuY. LuS. ZhangB. Recent advances in non-noble metal electrocatalysts for nitrate reduction.Chem. Eng. J.202140312626910.1016/j.cej.2020.126269
    [Google Scholar]
  6. DengY. ZhuX. ChenN. FengC. WangH. KuangP. HuW. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme.Sci. Total Environ.202074514076810.1016/j.scitotenv.2020.14076832726696
    [Google Scholar]
  7. Nezamzadeh-EjhiehA. MoazzeniN. Sunlight photodecolorization of a mixture of Methyl Orange and Bromocresol Green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst.J. Ind. Eng. Chem.20131951433144210.1016/j.jiec.2013.01.006
    [Google Scholar]
  8. NosuhiM. Nezamzadeh-EjhiehA. Voltammetric determination of trace amounts of permanganate at a zeolite modified carbon paste electrode.New J. Chem.20174124155081551610.1039/C7NJ03076B
    [Google Scholar]
  9. SharifianS. Nezamzadeh-EjhiehA. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid.Mater. Sci. Eng. C20165851052010.1016/j.msec.2015.08.07126478339
    [Google Scholar]
  10. TamijiT. Nezamzadeh-EjhiehA. Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study.J. Taiwan Inst. Chem. Eng.201910413013810.1016/j.jtice.2019.08.021
    [Google Scholar]
  11. TamijiT. Nezamzadeh-EjhiehA. Electrocatalytic determination of Hg (II) by the modified carbon paste electrode with Sn (IV)-clinoptilolite nanoparticles.Electrocatalysis201910546647610.1007/s12678‑019‑00528‑3
    [Google Scholar]
  12. Raeisi-KheirabadiN. Nezamzadeh-EjhiehA. AghaeiH. Electrochemical amperometric sensing of loratadine using NiO modified paste electrode as an amplified sensor.Iranian Journal of Catalysis202111181189
    [Google Scholar]
  13. XuM. GaoC. ZhangX. LiangX. HuY. WangF. Development of SDS-modified PbO2 anode material based on Ti3+ self-doping black TiO2NTs substrate as a conductive interlayer for enhanced electrocatalytic oxidation of methylene blue.Molecules20232819699310.3390/molecules2819699337836836
    [Google Scholar]
  14. ŚwięchD. PalumboG. PiergiesN. KollbekK. MarzecM. SzkudlarekA. PaluszkiewiczC. Surface modification of Cu nanoparticles coated commercial titanium in the presence of tryptophan: Comprehensive electrochemical and spectroscopic investigations.Appl. Surf. Sci.202360815513810.1016/j.apsusc.2022.155138
    [Google Scholar]
  15. ShiY. LiuR. XinH. JinY. FengB. Preparation of doped PbO 2 electrode and its application for aromatic aldehydes.J. Chem. Technol. Biotechnol.20239871651165710.1002/jctb.7383
    [Google Scholar]
  16. DerikvandiH. Nezamzadeh-EjhiehA. A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles.J. Mol. Catal. Chem.201742615816910.1016/j.molcata.2016.11.011
    [Google Scholar]
  17. MengJ. GengC. WuY. GuanY. GaoW. JiangW. LiangJ. LiuS. WangX. Comparing the electrochemical degradation of levofloxacin using the modified Ti/SnO2 electrode in different electrolytes.J. Electroanal. Chem.202394411763310.1016/j.jelechem.2023.117633
    [Google Scholar]
  18. LiX.Y. XuJ. ChengJ.P. FengL. ShiY.F. JiJ. TiO2-SiO2/GAC particles for enhanced electrocatalytic removal of acid orange 7 (AO7) dyeing wastewater in a three-dimensional electrochemical reactor.Separ. Purif. Tech.201718730331010.1016/j.seppur.2017.06.058
    [Google Scholar]
  19. ZhouQ. ZhouX. ZhengR. LiuZ. WangJ. Application of lead oxide electrodes in wastewater treatment: A review.Sci. Total Environ.2022806Pt 115008810.1016/j.scitotenv.2021.15008834563906
    [Google Scholar]
  20. Babaahamdi-MilaniM. Nezamzadeh-EjhiehA. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles.J. Hazard. Mater.201631829130110.1016/j.jhazmat.2016.07.01227427895
    [Google Scholar]
  21. ZhouJ. HuangS. HeZ. SongS. Enhanced activity and stability of PbO2 electrodes by modification with octadecyl phosphonic acid.J. Electrochem. Soc.20211681111650310.1149/1945‑7111/ac3275
    [Google Scholar]
  22. WangQ. TuS. WangW. ChenW. DuanX. ChangL. Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions.Colloids Surf. A Physicochem. Eng. Asp.202162812724410.1016/j.colsurfa.2021.127244
    [Google Scholar]
  23. ZhangZ. XiaoQ. DuX. XueT. YanZ. LiuZ. ZhangH. QiT. The fabrication of Ti4O7 particle composite modified PbO2 coating electrode and its application in the electrochemical oxidation degradation of organic wastewater.J. Alloys Compd.202289716274210.1016/j.jallcom.2021.162742
    [Google Scholar]
  24. WangZ. SuR. ZhaoM. ZhangL. YangL. XiaoF. TangW. ChenL. HeP. YangD. B4C/Ce co-modified Ti/PbO2 dimensionally stable anode: Facile one-step electrodeposition preparation and highly efficient electrocatalytic degradation of tetracycline.Chemosphere202334314014214014210.1016/j.chemosphere.2023.14014237716565
    [Google Scholar]
  25. ZhangR. HuaS. DangY. ZhangB. SunX. YuS. HeY. ChenS. ZhouY. Strategy for enhancing the electrocatalytic performance of Ti/β-PbO2 anode: Optimizing SnO2 intermediate layer by Cs doping and application for the efficient removal of mixed fluoroquinolones.J. Alloys Compd.202289516252810.1016/j.jallcom.2021.162528
    [Google Scholar]
  26. YanagiG. FurukawaM. TateishiI. KatsumataH. KanecoS. Electrochemical decolorization of methylene blue in solution with metal doped Ti/α,β-PbO₂ mesh electrode.Sep. Sci. Technol.202257232533710.1080/01496395.2021.1896550
    [Google Scholar]
  27. KangX. WuJ. WeiZ. JiaB. FengQ. XuS. WangY. Modification of Ti/Sb-SnO2/PbO2 electrode by active granules and its application in wastewater containing copper ions.Catalysts202313351510.3390/catal13030515
    [Google Scholar]
  28. MamedaN. ParkH. ShahS.S.A. LeeK. LiC.W. NaddeoV. ChooK.H. Highly robust and efficient Ti-based Sb-SnO2 anode with a mixed carbon and nitrogen interlayer for electrochemical 1,4-dioxane removal from water.Chem. Eng. J.202039312479410.1016/j.cej.2020.124794
    [Google Scholar]
  29. MeiY. ChenJ. PanH. HaoF. YaoJ. Electrochemical oxidation of triclosan using Ti/TiO2 NTs/Al–PbO2 electrode: reaction mechanism and toxicity evaluation.Environ. Sci. Pollut. Res. Int.20212821264792648710.1007/s11356‑021‑12486‑933486682
    [Google Scholar]
  30. qizhouD. HongS. YijingX. JianmengC. Typical rare earth doped lead dioxide electrode: Preparation and application.Int. J. Electrochem. Sci.2012710100541006210.1016/S1452‑3981(23)16258‑4
    [Google Scholar]
  31. KharelP.L. CuillierP.M. FernandoK. ZamboriniF.P. AlphenaarB.W. Effect of rare-earth metal oxide nanoparticles on the conductivity of nanocrystalline titanium dioxide: An electrical and electrochemical approach.J. Phys. Chem. C201812227150901509610.1021/acs.jpcc.8b02971
    [Google Scholar]
  32. MingF. ZhuY. HuangG. EmwasA.H. LiangH. CuiY. AlshareefH.N. Co-solvent electrolyte engineering for stable anode-free zinc metal batteries.J. Am. Chem. Soc.2022144167160717010.1021/jacs.1c1276435436108
    [Google Scholar]
  33. SinghalA. TothL.M. LinJ.S. AffholterK. Zirconium(IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution.J. Am. Chem. Soc.199611846115291153410.1021/ja9602399
    [Google Scholar]
  34. ChenS. ChuX. WuL. FoordJ.S. HuJ. HouH. YangJ. Three-dimensional PbO2-modified carbon felt electrode for efficient electrocatalytic oxidation of phenol characterized with in situ ATR-FTIR.J. Phys. Chem. C2022126291292110.1021/acs.jpcc.1c07444
    [Google Scholar]
  35. WangZ. XuM. WangF. LiangX. WeiY. HuY. ZhuC.G. FangW. Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater.Electrochim. Acta201724753554710.1016/j.electacta.2017.07.057
    [Google Scholar]
  36. ShenT. WangP. HuL. HuQ. WangX. ZhangG. Adsorption of 4-chlorophenol by wheat straw biochar and its regeneration with persulfate under microwave irradiation.J. Environ. Chem. Eng.20219410535310.1016/j.jece.2021.105353
    [Google Scholar]
  37. WuY. WangN. LiuH. CuiR. GuJ. SunR. ZhuY. GouL. FanX. LiD. WangD. Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases.J. Colloid Interface Sci.2023629Pt A91692510.1016/j.jcis.2022.09.02236150269
    [Google Scholar]
  38. NosuhiM. Nezamzadeh-EjhiehA. An indirect application aspect of zeolite modified electrodes for voltammetric determination of iodate.J. Electroanal. Chem. (Lausanne)201881011912810.1016/j.jelechem.2017.12.075
    [Google Scholar]
  39. Ahmadpour-MobarakehL. Nezamzadeh-EjhiehA. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen.Mater. Sci. Eng. C20154949349910.1016/j.msec.2015.01.02825686976
    [Google Scholar]
  40. DerikvandiH. Nezamzadeh-EjhiehA. A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: Response Surface Methodology (RSM), n-n heterojunction, supporting and nanoparticles study.J. Photochem. Photobiol. Chem.2017348687810.1016/j.jphotochem.2017.08.007
    [Google Scholar]
  41. FengC. OuyangX. DengY. WangJ. TangL. A novel g-C3N4/g-C3N4−x homojunction with efficient interfacial charge transfer for photocatalytic degradation of atrazine and tetracycline.J. Hazard. Mater.202344112984510.1016/j.jhazmat.2022.12984536067556
    [Google Scholar]
  42. Amani-BeniZ. Nezamzadeh-EjhiehA. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor.Anal. Chim. Acta20181031475910.1016/j.aca.2018.06.00230119743
    [Google Scholar]
  43. ZhangZ. LiuJ. AiH. ChenA. XuL. LabiadhL. FuM.L. YuanB. Construction of the multi-layer TiO2-NTs/Sb-SnO2/PbO2 electrode for the highly efficient and selective oxidation of ammonia in aqueous solution: Characterization, performance and mechanism.J. Environ. Chem. Eng.202311310983410.1016/j.jece.2023.109834
    [Google Scholar]
  44. WuJ. ZhuK. XuH. YanW. Electrochemical oxidation of rhodamine B by PbO2/Sb-SnO2/TiO2 nanotube arrays electrode.Chin. J. Catal.201940691792710.1016/S1872‑2067(19)63342‑5
    [Google Scholar]
  45. WeiZ. KangX. XuS. ZhouX. JiaB. FengQ. Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/PbO2 electrodes: Preparation, characterization, optimization, application.Chin. J. Chem. Eng.20213219120210.1016/j.cjche.2020.09.044
    [Google Scholar]
  46. JinY. LvY. YangC. CaiW. ZhangZ. TongH. ZhouX. Fabrication of superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE electrode and application in wastewater treatment.J. Electron. Mater.20204942411241810.1007/s11664‑019‑07936‑7
    [Google Scholar]
  47. DuanX. WangW. WangQ. SuiX. LiN. ChangL. Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: Electrode characterization, degradation mechanism and toxicity.Chemosphere202026012758710.1016/j.chemosphere.2020.127587
    [Google Scholar]
  48. Raeisi-KheirabadiN. Nezamzadeh-EjhiehA. AghaeiH. Cyclic and linear sweep voltammetric studies of a modified carbon paste electrode with nickel oxide nanoparticles toward tamoxifen: Effects of surface modification on electrode response kinetics.ACS Omega2022735314133142310.1021/acsomega.2c0344136092618
    [Google Scholar]
  49. SongS. FanJ. HeZ. ZhanL. LiuZ. ChenJ. XuX. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes.Electrochim. Acta201055113606361310.1016/j.electacta.2010.01.101
    [Google Scholar]
  50. NorouziA. Nezamzadeh-EjhiehA. α-Fe2O3/Cu2O heterostructure: Brief characterization and kinetic aspect of degradation of methylene blue.Physica B202059941242210.1016/j.physb.2020.412422
    [Google Scholar]
  51. LiuY. FanX. QuanX. FanY. ChenS. ZhaoX. Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond.Environ. Sci. Technol.20195395195520110.1021/acs.est.8b0613030957993
    [Google Scholar]
  52. GhattaviS. Nezamzadeh-EjhiehA. A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers.Compos., Part B Eng.202018310771210.1016/j.compositesb.2019.107712
    [Google Scholar]
  53. ZhangY. HeP. JiaL. LiC. LiuH. WangS. ZhouS. DongF. Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R.J. Colloid Interface Sci.201953375076110.1016/j.jcis.2018.09.00330199831
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137325822240819050628
Loading
/content/journals/cnano/10.2174/0115734137325822240819050628
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test