Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The pharmaceutical sciences are gradually shielding mankind from a plethora of deadly but as-of-yet-undiscovered ailments. Many diseases, some of which can be fatal, have their initial line of defence on the skin. A significant challenge for scientists is the development of appropriate pharmacological formulations for transdermal drug administration. Low side effect risk reduces first-pass impact, and good patient compliance makes transdermal distribution superior to oral delivery. This is why transdermal medication delivery is so important. Thanks to advancements in pharmaceutical delivery systems, the skin can now absorb medications more effectively. Researchers from different parts of the globe have investigated many different kinds of medications as possible transdermal delivery routes using electrospinning nanofibres. The skin can more easily absorb therapeutic compounds thanks to the nanofibres' ability to concentrate them. It is possible to load hydrophilic and lipophilic medications onto polymeric nanofibres. Another option is the transdermal distribution of biopolymer nanofibres. Over long periods of time, they control the release of medicinal substances. Nanofibres and nanoparticles allow for the controlled release of both hydrophobic and hydrophilic drugs. Transdermal and topical medication delivery using polymeric electrospinning nanofibres laden with nanoparticles and medicines is the subject of this research review. After that, we'll look at some practical instances of engineers using electrospinning fibres to control the release of drugs in reaction to environmental and internal factors. Afterwards, we will quickly go over the latest developments in tissue engineering, hard tissue engineering (which includes repairing musculoskeletal systems, bones, and cartilage), and cancer therapy that uses electrospin nanofiber scaffolds to control the distribution of drugs. Thanks to recent advancements in medicine and pharmaceuticals, nanofibres may soon be able to transport a wide variety of drugs, allowing for more targeted methods of cellular regeneration and topical medication delivery.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137311390240630120055
2024-07-15
2025-11-14
Loading full text...

Full text loading...

References

  1. BaroniA. BuomminoE. De GregorioV. RuoccoE. RuoccoV. WolfR. Structure and function of the epidermis related to barrier properties.Clin. Dermatol.201230325726210.1016/j.clindermatol.2011.08.00722507037
    [Google Scholar]
  2. AlonsoC. CarrerV. EspinosaS. ZanuyM. CórdobaM. VidalB. DomínguezM. GodessartN. CoderchL. PontM. Prediction of the skin permeability of topical drugs using in silico and in vitro models.Eur. J. Pharm. Sci.201913610494510.1016/j.ejps.2019.05.02331163216
    [Google Scholar]
  3. NeupaneR. BodduS.H.S. Abou-DahechM.S. BachuR.D. TerreroD. BabuR.J. TiwariA.K. Transdermal delivery of chemotherapeutics: Strategies, requirements, and opportunities.Pharmaceutics202113796010.3390/pharmaceutics1307096034206728
    [Google Scholar]
  4. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics1209085532916782
    [Google Scholar]
  5. RamadonD. McCruddenM.T.C. CourtenayA.J. DonnellyR.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications.Drug Deliv. Transl. Res.202212475879110.1007/s13346‑021‑00909‑633474709
    [Google Scholar]
  6. AlkilaniA. McCruddenM.T. DonnellyR. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum.Pharmaceutics20157443847010.3390/pharmaceutics704043826506371
    [Google Scholar]
  7. BlankI.H. Transport across the stratum corneum.Toxicol. Appl. Pharmacol.196914232910.1016/S0041‑008X(69)80006‑2
    [Google Scholar]
  8. YuY.Q. YangX. WuX.F. FanY.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications.Front. Bioeng. Biotechnol.2021964655410.3389/fbioe.2021.64655433855015
    [Google Scholar]
  9. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  10. ZoabiA. TouitouE. MargulisK. Recent advances in nanomaterials for dermal and transdermal applications.Colloids and Interfaces2021511810.3390/colloids5010018
    [Google Scholar]
  11. KumarL. VermaS. JoshiK. UtrejaP. SharmaS. Nanofiber as a novel vehicle for transdermal delivery of therapeutic agents: Challenges and opportunities.Future J. Pharm. Sci.20217117510.1186/s43094‑021‑00324‑1
    [Google Scholar]
  12. RahmaniM. Arbabi BidgoliS. RezayatS.M. Electrospun polymeric nanofibers for transdermal drug delivery.Nanomed. J.201742617010.22038/nmj.2017.8407
    [Google Scholar]
  13. GugulothuD. BarhoumA. NerellaR. AjmerR. BechelanyM. Fabrication of nanofibers: Electrospinning and non-electrospinning techniques.Handbook of NanofibersSpringer, Cham.2019457710.1007/978‑3‑319‑53655‑2_6
    [Google Scholar]
  14. MustfaS.A. MauriziE. McGrathJ. ChiappiniC. Nanomedicine approaches to negotiate local biobarriers for topical drug delivery.Adv. Ther.202141200016010.1002/adtp.202000160
    [Google Scholar]
  15. PrausnitzM.R. LangerR. Transdermal drug delivery.Nat. Biotechnol.200826111261126810.1038/nbt.150418997767
    [Google Scholar]
  16. NakielskiP. KowalczykT. KowalewskiT.A. Modeling drug release from materials based on electrospun nanofibers.2013Available from: https://www.comsol.com/paper/modeling-drug-release-from-materials-based-on-electrospun-nanofibers-15298
  17. GoyalR MacriLK KaplanHM KohnJ Nanoparticles and nanofibers for topical drug delivery.J. Control. Release2016240779210.1016/j.jconrel.2015.10.049
    [Google Scholar]
  18. YangR WeiT GoldbergH WangW CullionK KohaneDS Getting drugs across biological barriers.Adv. Mater.2017293710.1002/adma.201606596
    [Google Scholar]
  19. LuraghiA. PeriF. MoroniL. Electrospinning for drug delivery applications: A review.J. Control. Release202133446348410.1016/j.jconrel.2021.03.03333781809
    [Google Scholar]
  20. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers 2023157159610.3390/polym1507159637050210
    [Google Scholar]
  21. HsuC.Y. RheimaA.M. KadhimM.M. AhmedN.N. MohammedS.H. AbbasF.H. AbedZ.T. MahdiZ.M. AbbasZ.S. HachimS.K. AliF.K. MahmoudZ.H. KianfarE. An overview of nanoparticles in drug delivery: Properties and applications.S. Afr. J. Chem. Eng.20234623327010.1016/j.sajce.2023.08.009
    [Google Scholar]
  22. AlghoraibiI. AlomariS. Different methods for nanofiber design and fabrication.Handbook of NanofibersSpringer, Cham. 201814610.1007/978‑3‑319‑42789‑8_11‑2
    [Google Scholar]
  23. KeshvardoostchokamiM. MajidiS.S. HuoP. RamachandranR. ChenM. LiuB. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering.Nanomaterials 20201112110.3390/nano1101002133374248
    [Google Scholar]
  24. AgarwalS. WendorffJ.H. GreinerA. Use of electrospinning technique for biomedical applications.Polymer200849265603562110.1016/j.polymer.2008.09.014
    [Google Scholar]
  25. RoginaA. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery.Appl. Surf. Sci.201429622123010.1016/j.apsusc.2014.01.098
    [Google Scholar]
  26. Al-AbduljabbarA. FarooqI. Electrospun polymer nanofibers: Processing, properties, and applications.Polymers 20221516510.3390/polym1501006536616414
    [Google Scholar]
  27. LiZ. WangC. One-dimensional nanostructures: Electrospinning technique and unique nanofibers.Springer201310.1007/978‑3‑642‑36427‑3
    [Google Scholar]
  28. Karimi AfsharS. AbdorashidiM. DorkooshF.A. Akbari JavarH. Electrospun fibers: Versatile approaches for controlled release applications.Int. J. Polym. Sci.2022202211710.1155/2022/9116168
    [Google Scholar]
  29. MuthukrishnanL. An overview on electrospinning and its advancement toward hard and soft tissue engineering applications.Colloid Polym. Sci.2022300887590110.1007/s00396‑022‑04997‑935765603
    [Google Scholar]
  30. XueJ. WuT. DaiY. XiaY. Electrospinning and electrospun nanofibers: Methods, materials, and applications.Chem. Rev.201911985298541510.1021/acs.chemrev.8b0059330916938
    [Google Scholar]
  31. YadavS. SharmaA.K. KumarP. Nanoscale self-assembly for therapeutic delivery.Front. Bioeng. Biotechnol.2020812710.3389/fbioe.2020.0012732158749
    [Google Scholar]
  32. HuczkoA. Template-based synthesis of nanomaterials.Appl. Phys., A Mater. Sci. Process.200070436537610.1007/s003390051050
    [Google Scholar]
  33. RashidA.B. HaqueM. IslamS.M.M. Uddin LabibK.M.R. Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications.Heliyon2024102e2469210.1016/j.heliyon.2024.e2469238298690
    [Google Scholar]
  34. ZuoF. TanD.H. WangZ. JeungS. MacoskoC.W. BatesF.S. Nanofibers from melt blown fiber-in-fiber polymer blends.ACS Macro Lett.20132430130510.1021/mz400053n35581755
    [Google Scholar]
  35. ShneiderM. SuiX.M. GreenfeldI. WagnerH.D. Electrospinning of epoxy fibers.Polymer202123512430710.1016/j.polymer.2021.124307
    [Google Scholar]
  36. SudaY. Chemical Vapor Deposition of Helical Carbon Nanofibers.Chemical Vapor Deposition for Nanotechnology201810.5772/intechopen.81676
    [Google Scholar]
  37. Contreras-CáceresR. CabezaL. PerazzoliG. DíazA. López-RomeroJ.M. MelguizoC. PradosJ. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy.Nanomaterials 20199465610.3390/nano904065631022935
    [Google Scholar]
  38. PetlinD.G. TverdokhlebovS.I. AnissimovY.G. Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review.J. Control. Release2017266577410.1016/j.jconrel.2017.09.02328935595
    [Google Scholar]
  39. DuanX. ChenH. GuoC. Polymeric nanofibers for drug delivery applications: A recent review.J. Mater. Sci. Mater. Med.202233127810.1007/s10856‑022‑06700‑436462118
    [Google Scholar]
  40. ZhengG. JiangJ. WangX. LiW. LiuJ. FuG. LinL. Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications.Mater. Des.202018910850410.1016/j.matdes.2020.108504
    [Google Scholar]
  41. FarhajS. ConwayB.R. GhoriM.U. Nanofibres in drug delivery applications.Fibers 20231122110.3390/fib11020021
    [Google Scholar]
  42. HiwraleA. BharatiS. PingaleP. RajputA. Nanofibers: A current era in drug delivery system.Heliyon202399e1891710.1016/j.heliyon.2023.e1891737674834
    [Google Scholar]
  43. ShahriarS. MondalJ. HasanM. RevuriV. LeeD. LeeY.K. Electrospinning nanofibers for therapeutics delivery.Nanomaterials 20199453210.3390/nano904053230987129
    [Google Scholar]
  44. BhattaraiR. BachuR. BodduS. BhaduriS. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery.Pharmaceutics2018111510.3390/pharmaceutics1101000530586852
    [Google Scholar]
  45. BorandehS. van BochoveB. TeotiaA. SeppäläJ. Polymeric drug delivery systems by additive manufacturing.Adv. Drug Deliv. Rev.202117334937310.1016/j.addr.2021.03.02233831477
    [Google Scholar]
  46. HanD. StecklA.J. Coaxial electrospinning formation of complex polymer fibers and their applications.ChemPlusChem201984101453149710.1002/cplu.20190028131943926
    [Google Scholar]
  47. TajabadiM. Goran OrimiH. RamzgouyanM.R. NematiA. DeraviN. BeheshtizadehN. AzamiM. Regenerative strategies for the consequences of myocardial infarction: Chronological indication and upcoming visions.Biomed. Pharmacother.202214611258410.1016/j.biopha.2021.11258434968921
    [Google Scholar]
  48. DengM. KumbarS.G. NairL.S. WeikelA.L. AllcockH.R. LaurencinC.T. Biomimetic structures: Biological implications of dipeptide‐substituted polyphosphazene–polyester blend nanofiber matrices for load‐bearing bone regeneration.Adv. Funct. Mater.201121142641265110.1002/adfm.201100275
    [Google Scholar]
  49. RoselliniE. BarbaniN. LazzeriL. CasconeM.G. Biomimetic and bioactive small diameter tubular scaffolds for vascular tissue engineering.Biomimetics 20227419910.3390/biomimetics704019936412727
    [Google Scholar]
  50. HasanA. MemicA. AnnabiN. HossainM. PaulA. DokmeciM.R. DehghaniF. KhademhosseiniA. Electrospun scaffolds for tissue engineering of vascular grafts.Acta Biomater.2014101112510.1016/j.actbio.2013.08.02223973391
    [Google Scholar]
  51. LiechtyW.B. KryscioD.R. SlaughterB.V. PeppasN.A. Polymers for drug delivery systems.Annu. Rev. Chem. Biomol. Eng.20101114917310.1146/annurev‑chembioeng‑073009‑10084722432577
    [Google Scholar]
  52. StewartS. Domínguez-RoblesJ. DonnellyR. LarrañetaE. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications.Polymers 20181012137910.3390/polym1012137930961303
    [Google Scholar]
  53. LiJ. MooneyD.J. Designing hydrogels for controlled drug delivery.Nat. Rev. Mater.20161121607110.1038/natrevmats.2016.7129657852
    [Google Scholar]
  54. FuY. KaoW.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems.Expert Opin. Drug Deliv.20107442944410.1517/1742524100360225920331353
    [Google Scholar]
  55. BaggiR.B. KilaruN.B. Calculation of predominant drug release mechanism using Peppas-Sahlin model, Part-I (substitution method): A linear regression approach.Asian J. Pharm. Technol.20166422323010.5958/2231‑5713.2016.00033.7
    [Google Scholar]
  56. SerraL. DoménechJ. PeppasN.A. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels.Biomaterials200627315440545110.1016/j.biomaterials.2006.06.01116828864
    [Google Scholar]
  57. García-CouceJ. VernhesM. BadaN. AgüeroL. ValdésO. Alvarez-BarretoJ. Synthesis and evaluation of AlgNa-g-poly (QCL-co-HEMA) hydrogels for cartilage tissue engineering and controlled release of betamethasone.Int. J. Mol. Sci.20212211573010.3390/ijms2211573034072090
    [Google Scholar]
  58. DashS. MurthyP.N. NathL. ChowdhuryP. Kinetic modeling on drug release from controlled drug delivery systems.Acta Pol. Pharm.201067321722320524422
    [Google Scholar]
  59. YeK. KuangH. YouZ. MorsiY. MoX. Electrospun nanofibers for tissue engineering with drug loading and release.Pharmaceutics201911418210.3390/pharmaceutics1104018230991742
    [Google Scholar]
  60. BuzgoM. MickovaA. RampichovaM. DoupnikM. 11 - Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques.Core-Shell Nanostructures for Drug Delivery and Theranostics. FocareteM.L. TampieriA. Woodhead Publishing201832534710.1016/B978‑0‑08‑102198‑9.00011‑9
    [Google Scholar]
  61. MogheA.K. GuptaB.S. Co‐axial electrospinning for nanofiber structures: Preparation and applications.Polym. Rev.200848235337710.1080/15583720802022257
    [Google Scholar]
  62. GhosalK. AugustineR. ZaszczynskaA. BarmanM. JainA. HasanA. KalarikkalN. SajkiewiczP. ThomasS. Novel drug delivery systems based on triaxial electrospinning based nanofibers.React. Funct. Polym.202116310489510.1016/j.reactfunctpolym.2021.104895
    [Google Scholar]
  63. ZhangC. FengF. ZhangH. Emulsion electrospinning: Fundamentals, food applications and prospects.Trends Food Sci. Technol.20188017518610.1016/j.tifs.2018.08.005
    [Google Scholar]
  64. LiuR. XuX. ZhuangX. ChengB. Solution blowing of chitosan/PVA hydrogel nanofiber mats.Carbohydr. Polym.20141011116112110.1016/j.carbpol.2013.10.05624299882
    [Google Scholar]
  65. PreemL. MahmoudzadehM. PutrinšM. MeosA. LaidmäeI. RomannT. AruväliJ. HärmasR. KoivuniemiA. BunkerA. TensonT. KogermannK. Interactions between chloramphenicol, carrier polymers, and bacteria–implications for designing electrospun drug delivery systems countering wound infection.Mol. Pharm.201714124417443010.1021/acs.molpharmaceut.7b0052429099601
    [Google Scholar]
  66. NyamweyaN.N. Applications of polymer blends in drug delivery.Future J. Pharm. Sci.2021711810.1186/s43094‑020‑00167‑2
    [Google Scholar]
  67. SridharR. LakshminarayananR. MadhaiyanK. Amutha BarathiV. LimK.H.C. RamakrishnaS. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals.Chem. Soc. Rev.201544379081410.1039/C4CS00226A25408245
    [Google Scholar]
  68. Sokolsky-PapkovM. AgashiK. OlayeA. ShakesheffK. DombA.J. Polymer carriers for drug delivery in tissue engineering.Adv. Drug Deliv. Rev.2007594-518720610.1016/j.addr.2007.04.00117540473
    [Google Scholar]
  69. PandeV. KhardeA. BhawarP. AbhaleV. Scaffolds: Porous scaffold for modulated drug delivery.Austin201631027
    [Google Scholar]
  70. RihaS.M. MaarofM. FauziM.B. Synergistic effect of biomaterial and stem cell for skin tissue engineering in cutaneous wound healing: A concise review.Polymers 20211310154610.3390/polym1310154634065898
    [Google Scholar]
  71. ShpichkaA. ButnaruD. BezrukovE.A. SukhanovR.B. AtalaA. BurdukovskiiV. ZhangY. TimashevP. Skin tissue regeneration for burn injury.Stem Cell Res. Ther.20191019410.1186/s13287‑019‑1203‑330876456
    [Google Scholar]
  72. MokhenaT.C. MochaneM.J. MtibeA. JohnM.J. SadikuE.R. SefadiJ.S. Electrospun alginate nanofibers toward various applications: A review.Materials 202013493410.3390/ma1304093432093142
    [Google Scholar]
  73. ChenS. LiuB. CarlsonM.A. GombartA.F. ReillyD.A. XieJ. Recent advances in electrospun nanofibers for wound healing.Nanomedicine201712111335135210.2217/nnm‑2017‑001728520509
    [Google Scholar]
  74. TsengY.Y. KaoY.C. LiaoJ.Y. ChenW.A. LiuS.J. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: In vitro and in vivo studies.ACS Chem. Neurosci.2013491314132110.1021/cn400108q23815098
    [Google Scholar]
  75. LukievI.V. AntipinaL.S. GoreninskiiS.I. TverdokhlebovaT.S. VasilchenkoD.V. NemoykinaA.L. GoncharovaD.A. SvetlichnyiV.A. DambaevG.T. BouznikV.M. BolbasovE.N. Antibacterial ferroelectric hybrid membranes fabricated via electrospinning for wound healing.Membranes 2021111298610.3390/membranes1112098634940487
    [Google Scholar]
  76. HeT. WangJ. HuangP. ZengB. LiH. CaoQ. ZhangS. LuoZ. DengD.Y.B. ZhangH. ZhouW. Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing.Colloids Surf. B Biointerfaces201513027828610.1016/j.colsurfb.2015.04.02625936562
    [Google Scholar]
  77. MeiL. FanR. LiX. WangY. HanB. GuY. ZhouL. ZhengY. TongA. GuoG. Nanofibers for improving the wound repair process: the combination of a grafted chitosan and an antioxidant agent.Polym. Chem.20178101664167110.1039/C7PY00038C
    [Google Scholar]
  78. CuiC. SunS. WuS. ChenS. MaJ. ZhouF. Electrospun chitosan nanofibers for wound healing application.Engineered Regeneration20212829010.1016/j.engreg.2021.08.001
    [Google Scholar]
  79. WengL. XieJ. Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives.Curr. Pharm. Des.201521151944195910.2174/138161282166615030215195925732665
    [Google Scholar]
  80. SaidingQ. CuiW. Functional nanoparticles in electrospun fibers for biomedical applications.Nano Select202236999101110.1002/nano.202100335
    [Google Scholar]
  81. SchneiderA. WangX.Y. KaplanD.L. GarlickJ.A. EglesC. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing.Acta Biomater.2009572570257810.1016/j.actbio.2008.12.01319162575
    [Google Scholar]
  82. YangY. XiaT. ZhiW. WeiL. WengJ. ZhangC. LiX. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor.Biomaterials201132184243425410.1016/j.biomaterials.2011.02.04221402405
    [Google Scholar]
  83. HomaeigoharS. LiM. BoccacciniA.R. Bioactive glass-based fibrous wound dressings.Burns Trauma202210tkac03810.1093/burnst/tkac03836196303
    [Google Scholar]
  84. ChoiJ.S. LeongK.W. YooH.S. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF).Biomaterials200829558759610.1016/j.biomaterials.2007.10.01217997153
    [Google Scholar]
  85. KołodziejskaB. KaflakA. KolmasJ. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration—a review.Materials 2020137174810.3390/ma1307174832283608
    [Google Scholar]
  86. RajzerI. MenaszekE. CastanoO. Electrospun polymer scaffolds modified with drugs for tissue engineering.Mater. Sci. Eng. C20177749349910.1016/j.msec.2017.03.30628532057
    [Google Scholar]
  87. LimD.J. Bone mineralization in electrospun-based bone tissue engineering.Polymers 20221410212310.3390/polym1410212335632005
    [Google Scholar]
  88. TurnbullG. ClarkeJ. PicardF. RichesP. JiaL. HanF. LiB. ShuW. 3D bioactive composite scaffolds for bone tissue engineering.Bioact. Mater.20183327831410.1016/j.bioactmat.2017.10.00129744467
    [Google Scholar]
  89. SundelacruzS. KaplanD.L. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine.Semin. Cell Dev. Biol.200920664665510.1016/j.semcdb.2009.03.01719508851
    [Google Scholar]
  90. Godoy-GallardoM. Portolés-GilN. López-PeriagoA.M. DomingoC. Hosta-RigauL. Immobilization of BMP-2 and VEGF within multilayered polydopamine-coated scaffolds and the resulting osteogenic and angiogenic synergy of co-cultured human mesenchymal stem cells and human endothelial progenitor cells.Int. J. Mol. Sci.20202117641810.3390/ijms2117641832899269
    [Google Scholar]
  91. AnG. ZhangW.B. MaD.K. LuB. WeiG.J. GuangY. RuC.H. WangY.S. Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold.Eur. Rev. Med. Pharmacol. Sci.201721102316232828617560
    [Google Scholar]
  92. KangM. LeeS. SeoJ. LeeE. AhnD. ShinJ. PaikY.K. JoD. Cell-permeable bone morphogenetic protein 2 facilitates bone regeneration by promoting osteogenesis.Mater. Today Bio20242510098310.1016/j.mtbio.2024.10098338327977
    [Google Scholar]
  93. GolchinA. HosseinzadehS. JouybarA. StajiM. SoleimaniM. ArdeshirylajimiA. KhojastehA. Wound healing improvement by curcumin‐loaded electrospun nanofibers and BFP‐MSCs as a bioactive dressing.Polym. Adv. Technol.20203171519153110.1002/pat.4881
    [Google Scholar]
  94. Flores-RojasG.G. Gómez-LazaroB. López-SaucedoF. Vera-GrazianoR. BucioE. MendizábalE. Electrospun scaffolds for tissue engineering: A review.Macromol20233352455310.3390/macromol3030031
    [Google Scholar]
  95. WangZ. WangY. YanJ. ZhangK. LinF. XiangL. DengL. GuanZ. CuiW. ZhangH. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.Adv. Drug Deliv. Rev.202117450453410.1016/j.addr.2021.05.00733991588
    [Google Scholar]
  96. AnjumS. RahmanF. PandeyP. AryaD.K. AlamM. RajinikanthP.S. AoQ. Electrospun biomimetic nanofibrous scaffolds: A promising prospect for bone tissue engineering and regenerative medicine.Int. J. Mol. Sci.20222316920610.3390/ijms2316920636012473
    [Google Scholar]
  97. AminiA.R. LaurencinC.T. NukavarapuS.P. Bone tissue engineering: Recent advances and challenges.Crit. Rev. Biomed. Eng.201240536340810.1615/CritRevBiomedEng.v40.i5.1023339648
    [Google Scholar]
  98. Szwed-GeorgiouA. PłocińskiP. Kupikowska-StobbaB. UrbaniakM.M. Rusek-WalaP. SzustakiewiczK. PiszkoP. KrupaA. BiernatM. GazińskaM. KasprzakM. NawrotekK. MiraN.P. RudnickaK. Bioactive materials for bone regeneration: Biomolecules and delivery systems.ACS Biomater. Sci. Eng.2023995222525410.1021/acsbiomaterials.3c0060937585562
    [Google Scholar]
  99. Vunjak-NovakovicG. LuiK.O. TandonN. ChienK.R. Bioengineering heart muscle: A paradigm for regenerative medicine.Annu. Rev. Biomed. Eng.201113124526710.1146/annurev‑bioeng‑071910‑12470121568715
    [Google Scholar]
  100. AbdollahiyanP OroojalianF MokhtarzadehA The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering.J. Control. Release.202133246049210.1016/j.jconrel.2021.02.036
    [Google Scholar]
  101. LiuS WuF GuS WuT ChenS ChenS Gene silencing via PDA/ERK2-siRNA-mediated electrospun fibers for peritendinous antiadhesion.Adv. Sci.201962180121710.1002/advs.201801217
    [Google Scholar]
  102. HenkeA.M. BillingtonZ.J. GaterD.R.Jr Autonomic dysfunction and management after spinal cord injury: A narrative review.J. Pers. Med.2022127111010.3390/jpm1207111035887607
    [Google Scholar]
  103. MottaghitalabF. RastegariA. FarokhiM. DinarvandR. HosseinkhaniH. OuK.L. PackD.W. MaoC. DinarvandM. FatahiY. AtyabiF. Prospects of siRNA applications in regenerative medicine.Int. J. Pharm.20175241-231232910.1016/j.ijpharm.2017.03.09228385649
    [Google Scholar]
  104. MaY. JinJ. DongC. ChengE.C. LinH. HuangY. QiuC. High-efficiency siRNA-based gene knockdown in human embryonic stem cells.RNA201016122564256910.1261/rna.235071020978109
    [Google Scholar]
  105. NagarajanS. BechelanyM. KalkuraN.S. MieleP. BohatierC.P. BalmeS. Electrospun nanofibers for drug delivery in regenerative medicine.Applications of targeted nano drugs and delivery systems.Elsevier201959562510.1016/B978‑0‑12‑814029‑1.00020‑X
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137311390240630120055
Loading
/content/journals/cnano/10.2174/0115734137311390240630120055
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test