Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Aims

The aim of this study was to synthesize two positively charged surfactants Stearoylcholine and Oleoylcholine from choline or vitamin B, saturated and mono-unsaturated fatty acids to modify solid lipid nanoparticles (SLNs) in order to enhance cancer cell uptake.

Methods

These surfactants were synthesized by using the esterification method and then SLN formulations of unmodified and modified SLNs containing docetaxel were prepared by emulsification technique. Cytotoxicity of the SLNs was investigated in A549 and MCF7 cancer cells and their cell uptake was assessed by using fluorescent microscope and flow cytometry.

Results

The results of our study revealed that SLNs pose a mean particle size range of 69-133 nm with spherical morphology. release study demonstrated a slow-release pattern for all three kinds of DTX-loaded SLNs. Stearoylcholine-containing SLNs showed the highest cytotoxic effect on both cells while cytotoxicity of Oleoylcholine SLNs exhibited a dose-dependent manner which may be due to the effect of saturated and mono-unsaturated parts of surfactants. According to flow cytometric analysis, OC and SC containing SLNs showed the highest uptake into A549 and MCF7 cells, respectively.

Conclusion

In conclusion, choline-based surfactants could effectively increase the A549 and MCF7 uptake of modified SLNs, which may be due to cationic surface, choline transporters, and special receptors and mediators.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137308989240520053704
2024-05-30
2025-09-10
Loading full text...

Full text loading...

References

  1. WallaceT.C. BlusztajnJ.K. CaudillM.A. KlattK.C. NatkerE. ZeiselS.H. ZelmanK.M. Choline.Nutr. Today201853624025310.1097/NT.000000000000030230853718
    [Google Scholar]
  2. ZeiselS.H. Choline: an essential nutrient for humans.Nutrition2000167-866967110.1016/S0899‑9007(00)00349‑X10906592
    [Google Scholar]
  3. InazuM. Choline transporter‐like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy.Biopharm. Drug Dispos.201435843144910.1002/bdd.189224532461
    [Google Scholar]
  4. Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference IDietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press.Washington (DC).1998
    [Google Scholar]
  5. ErdmanJ.W.Jr MacdonaldI.A. ZeiselS.H. Present knowledge in nutrition.John Wiley Sons201210.1002/9781119946045
    [Google Scholar]
  6. RichmanE.L. KenfieldS.A. StampferM.J. GiovannucciE.L. ZeiselS.H. WillettW.C. ChanJ.M. Choline intake and risk of lethal prostate cancer: incidence and survival.Am. J. Clin. Nutr.201296485586310.3945/ajcn.112.03978422952174
    [Google Scholar]
  7. GlundeK. SerkovaN.J. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism.Pharmacogenomics2006771109112310.2217/14622416.7.7.110917054420
    [Google Scholar]
  8. Katz-BrullR. DeganiH. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method.Anticancer Res.1996163B137513808694504
    [Google Scholar]
  9. GlundeK. JacobsM.A. BhujwallaZ.M. Choline metabolism in cancer: implications for diagnosis and therapy.Expert Rev. Mol. Diagn.20066682182910.1586/14737159.6.6.82117140369
    [Google Scholar]
  10. MoriN. WildesF. TakagiT. GlundeK. BhujwallaZ.M. The tumor microenvironment modulates choline and lipid metabolism.Front. Oncol.2016626210.3389/fonc.2016.0026228066718
    [Google Scholar]
  11. GlundeK. PenetM.F. JiangL. JacobsM.A. BhujwallaZ.M. Choline metabolism-based molecular diagnosis of cancer: an update.Expert Rev. Mol. Diagn.201515673574710.1586/14737159.2015.103951525921026
    [Google Scholar]
  12. RidgwayN.D. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival.Crit. Rev. Biochem. Mol. Biol.2013481203810.3109/10409238.2012.73564323350810
    [Google Scholar]
  13. IorioE. RicciA. BagnoliM. PisanuM.E. CastellanoG. Di VitoM. VenturiniE. GlundeK. BhujwallaZ.M. MezzanzanicaD. CanevariS. PodoF. Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells.Cancer Res.20107052126213510.1158/0008‑5472.CAN‑09‑383320179205
    [Google Scholar]
  14. GlundeK. BhujwallaZ.M. RonenS.M. Choline metabolism in malignant transformation.Nat. Rev. Cancer2011111283584810.1038/nrc316222089420
    [Google Scholar]
  15. GribbestadI.S. SingstadT.E. NilsenG. FjøsneH.E. EnganT. HaugenO.A. RinckP.A. In vivo 1 H MRS of normal breast and breast tumors using a dedicated double breast coil.J. Magn. Reson. Imaging1998861191119710.1002/jmri.18800806029848727
    [Google Scholar]
  16. van AstenJ.J.A. VettukattilR. BuckleT. RottenbergS. van LeeuwenF. BathenT.F. HeerschapA. Increased levels of choline metabolites are an early marker of docetaxel treatment response in BRCA1-mutated mouse mammary tumors: an assessment by ex vivo proton magnetic resonance spectroscopy.J. Transl. Med.201513111410.1186/s12967‑015‑0458‑425890200
    [Google Scholar]
  17. AoyamaC. LiaoH. IshidateK. Structure and function of choline kinase isoforms in mammalian cells.Prog. Lipid Res.200443326628110.1016/j.plipres.2003.12.00115003397
    [Google Scholar]
  18. LacalJC. Choline kinase: a novel target for antitumor drugs.Invest. Drugs J.200144419426
    [Google Scholar]
  19. PenetM.F. ShahT. BhartiS. KrishnamacharyB. ArtemovD. MironchikY. WildesF. MaitraA. BhujwallaZ.M. Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism.Clin. Cancer Res.201521238639510.1158/1078‑0432.CCR‑14‑096425370468
    [Google Scholar]
  20. Ramírez de MolinaA. GutiérrezR. RamosM.A. SilvaJ.M. SilvaJ. BonillaF. SánchezJ.J. LacalJ.C. Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy.Oncogene200221274317432210.1038/sj.onc.120555612082619
    [Google Scholar]
  21. WardC.S. ErikssonP. Izquierdo-GarciaJ.L. BrandesA.H. RonenS.M. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells.PLoS One201384e6261010.1371/journal.pone.006261023626839
    [Google Scholar]
  22. ShahT. WildesF. PenetM.F. WinnardP.T.Jr GlundeK. ArtemovD. AckerstaffE. GimiB. KakkadS. RamanV. BhujwallaZ.M. Choline kinase overexpression increases invasiveness and drug resistance of human breast cancer cells.NMR Biomed.201023663364210.1002/nbm.151020623626
    [Google Scholar]
  23. LingC.S. YinK.B. CunS.T.W. LingF.L. Expression profiling of choline and ethanolamine kinases in MCF7, HCT116 and HepG2 cells, and the transcriptional regulation by epigenetic modification.Mol. Med. Rep.201511161161810.3892/mmr.2014.270725333818
    [Google Scholar]
  24. SmithT WelchA. (Methyl-<sup>3</sup>H)-choline Incorporation into MCF-7 Cells: Correlation with Proliferation, Choline Kinase and Phospholipase D Assay.Anticancer Res.200727290190617465218
    [Google Scholar]
  25. Ramírez de MolinaA. Rodríguez-GonzálezA. GutiérrezR. Martínez-PiñeiroL. SánchezJ.J. BonillaF. RosellR. LacalJ.C. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers.Biochem. Biophys. Res. Commun.2002296358058310.1016/S0006‑291X(02)00920‑812176020
    [Google Scholar]
  26. TrousilS. LeeP. PinatoD.J. EllisJ.K. DinaR. AboagyeE.O. KeunH.C. SharmaR. Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway.Cancer Res.201474236867687710.1158/0008‑5472.CAN‑13‑240925267063
    [Google Scholar]
  27. IorioE. MezzanzanicaD. AlbertiP. SpadaroF. RamoniC. D’AscenzoS. MillimaggiD. PavanA. DoloV. CanevariS. PodoF. Alterations of choline phospholipid metabolism in ovarian tumor progression.Cancer Res.200565209369937610.1158/0008‑5472.CAN‑05‑114616230400
    [Google Scholar]
  28. MiyakeT. ParsonsS.J. Functional interactions between Choline kinase α, epidermal growth factor receptor and c-Src in breast cancer cell proliferation.Oncogene201231111431144110.1038/onc.2011.33221822308
    [Google Scholar]
  29. WangW. JiangS. LiS. YanX. LiuS. MaoX. YuX. Functional choline phosphate lipids for enhanced drug delivery in cancer therapy.Chem. Mater.202133277478110.1021/acs.chemmater.0c04443
    [Google Scholar]
  30. Katz-BrullR. SegerD. Rivenson-SegalD. RushkinE. DeganiH. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis.Cancer Res.20026271966197011929812
    [Google Scholar]
  31. MichelV. YuanZ. RamsubirS. BakovicM. Choline transport for phospholipid synthesis.Exp. Biol. Med. (Maywood)2006231549050410.1177/15353702062310050316636297
    [Google Scholar]
  32. HagaT. Molecular properties of the high-affinity choline transporter CHT1.J. Biochem.2014156418119410.1093/jb/mvu04725073461
    [Google Scholar]
  33. KoepsellH. LipsK. VolkC. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications.Pharm. Res.20072471227125110.1007/s11095‑007‑9254‑z17473959
    [Google Scholar]
  34. BurckhardtG. WolffN.A. Structure of renal organic anion and cation transporters.Am. J. Physiol. Renal Physiol.20002786F853F86610.1152/ajprenal.2000.278.6.F85310836973
    [Google Scholar]
  35. García-MolinaP. Sola-LeyvaA. Luque-NavarroP.M. LasoA. Ríos-MarcoP. RíosA. LanariD. TorrettaA. ParisiniE. López-CaraL.C. MarcoC. Carrasco-JiménezM.P. Anticancer activity of the choline kinase inhibitor PL48 is due to selective disruption of choline metabolism and transport systems in cancer cell lines.Pharmaceutics202214242610.3390/pharmaceutics1402042635214160
    [Google Scholar]
  36. InazuM. Functional expression of choline transporters in the blood–brain barrier.Nutrients20191110226510.3390/nu1110226531547050
    [Google Scholar]
  37. O’ReganS. MeunierF.M. Selection and characterization of the choline transport mutation suppressor from Torpedo electric lobe, CTL1.Neurochem. Res.2003283/455155510.1023/A:102287752446912675144
    [Google Scholar]
  38. O’ReganS. TraiffortE. RuatM. ChaN. CompaoréD. MeunierF.M. An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins.Proc. Natl. Acad. Sci. USA20009741835184010.1073/pnas.03033969710677542
    [Google Scholar]
  39. UchidaY. InazuM. TakedaH. YamadaT. TajimaH. MatsumiyaT. Expression and functional characterization of choline transporter in human keratinocytes.J. Pharmacol. Sci.2009109110210910.1254/jphs.08291FP19122366
    [Google Scholar]
  40. KoujiH. InazuM. YamadaT. TajimaH. AokiT. MatsumiyaT. Molecular and functional characterization of choline transporter in human colon carcinoma HT-29 cells.Arch. Biochem. Biophys.20094831909810.1016/j.abb.2008.12.00819135976
    [Google Scholar]
  41. InazuM. TakedaH. MatsumiyaT. Molecular and functional characterization of an Na + ‐independent choline transporter in rat astrocytes.J. Neurochem.20059451427143710.1111/j.1471‑4159.2005.03299.x16000150
    [Google Scholar]
  42. HedtkeV. BakovicM. Choline transport for phospholipid synthesis: An emerging role of choline transporter-like protein 1.Exp. Biol. Med. (Maywood)2019244865566210.1177/153537021983099730776907
    [Google Scholar]
  43. SaikiI. YaraM. YamanakaT. UchinoH. InazuM. Functional expression of choline transporter-like protein 1 in LNCaP prostate cancer cells: A novel molecular target.Biomol. Ther. (Seoul)202028219520110.4062/biomolther.2019.09731693854
    [Google Scholar]
  44. ArlauckasS.P. PopovA.V. DelikatnyE.J. Choline kinase alpha—Putting the ChoK-hold on tumor metabolism.Prog. Lipid Res.201663284010.1016/j.plipres.2016.03.00527073147
    [Google Scholar]
  45. WatanabeS. NishijimaN. HiraiK. ShibataK. HaseA. YamanakaT. InazuM. Anticancer activity of Amb4269951, a choline transporter-like protein 1 inhibitor, in human glioma cells.Pharmaceuticals (Basel)202013510410.3390/ph1305010432466342
    [Google Scholar]
  46. YuanZ. TieA. TarnopolskyM. BakovicM. Genomic organization, promoter activity, and expression of the human choline transporter-like protein 1.Physiol. Genomics2006261769010.1152/physiolgenomics.00107.200516609143
    [Google Scholar]
  47. WeinholdP.A. RounsiferM.E. CharlesL. FeldmanD.A. Characterization of cytosolic forms of CTP: choline-phosphate cytidylyltransferase in lung, isolated alveolar type II cells, A549 cell and Hep G2 cells.Biochim. Biophys. Acta Lipids Lipid Metab.19891006329931010.1016/0005‑2760(89)90017‑92557076
    [Google Scholar]
  48. MatsumuraY. SakaiH. SasakiM. BanN. InagakiN. ABCA3‐mediated choline‐phospholipids uptake into intracellular vesicles in A549 cells.FEBS Lett.2007581173139314410.1016/j.febslet.2007.05.07817574245
    [Google Scholar]
  49. NakamuraT. FujiwaraR. IshiguroN. OyabuM. NakanishiT. ShirasakaY. MaedaT. TamaiI. Involvement of choline transporter-like proteins, CTL1 and CTL2, in glucocorticoid-induced acceleration of phosphatidylcholine synthesis via increased choline uptake.Biol. Pharm. Bull.201033469169610.1248/bpb.33.69120410607
    [Google Scholar]
  50. WangT. LiJ. ChenF. ZhaoY. HeX. WanD. GuJ. Choline transporters in human lung adenocarcinoma: expression and functional implications.Acta Biochim. Biophys. Sin. (Shanghai)200739966867410.1111/j.1745‑7270.2007.00323.x17805461
    [Google Scholar]
  51. IshiguroN. OyabuM. SatoT. MaedaT. MinamiH. TamaiI. Decreased biosynthesis of lung surfactant constituent phosphatidylcholine due to inhibition of choline transporter by gefitinib in lung alveolar cells.Pharm. Res.200825241742710.1007/s11095‑007‑9362‑917624579
    [Google Scholar]
  52. JaswalA.P. HazariP.P. PrakashS. SethiP. KaushikA. RoyB.G. KathaitS. SinghB. MishraA.K. [ 99m Tc]Tc-DTPA-bis(cholineethylamine) as an oncologic tracer for the detection of choline transporter (ChT) and choline kinase (ChK) expression in cancer.ACS Omega2022715125091252310.1021/acsomega.1c0425635474820
    [Google Scholar]
  53. KleinzellerA. DodiaC. ChanderA. FisherA.B. Na(+)-dependent and Na(+)-independent systems of choline transport by plasma membrane vesicles of A549 cell line.Am. J. Physiol. Cell Physiol.19942675C1279C128710.1152/ajpcell.1994.267.5.C12797977691
    [Google Scholar]
  54. FisherA.B. DodiaC. ChanderA. KleinzellerA. Transport of choline by plasma membrane vesicles from lung-derived epithelial cells.Am. J. Physiol. Cell Physiol.19922636C1250C125710.1152/ajpcell.1992.263.6.C12501476166
    [Google Scholar]
  55. ScagliaN. IgalR.A. Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis.Int. J. Oncol.200833483985018813799
    [Google Scholar]
  56. MuY.M. YanaseT. NishiY. TanakaA. SaitoM. JinC.H. MukasaC. OkabeT. NomuraM. GotoK. NawataH. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells.Endocrinology200114283590359710.1210/endo.142.8.829311459807
    [Google Scholar]
  57. ZhangY. XueR. ZhangZ. YangX. ShiH. Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells.Lipids Health Dis.2012111110.1186/1476‑511X‑11‑122221411
    [Google Scholar]
  58. ToN.B. NguyenY.T.K. MoonJ.Y. EdiriweeraM.K. ChoS.K. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling.Nutrients2020126166310.3390/nu1206166332503225
    [Google Scholar]
  59. IsbilenO. VolkanE. Allium willeanum Holmboe exerts anticancer activities on metastatic breast cancer cells MCF-7 and MDA-MB-231.Heliyon202178e0773010.1016/j.heliyon.2021.e0773034401594
    [Google Scholar]
  60. JóźwiakM. FilipowskaA. FiorinoF. StrugaM. Anticancer activities of fatty acids and their heterocyclic derivatives.Eur. J. Pharmacol.202087117293710.1016/j.ejphar.2020.17293731958454
    [Google Scholar]
  61. KhanA.A. AlanaziA.M. JabeenM. ChauhanA. AbdelhameedA.S. Design, synthesis and in vitro anticancer evaluation of a stearic acid-based ester conjugate.Anticancer Res.20133362517252423749903
    [Google Scholar]
  62. SenyilmazD. VirtueS. XuX. TanC.Y. GriffinJ.L. MillerA.K. Vidal-PuigA. TelemanA.A. Regulation of mitochondrial morphology and function by stearoylation of TFR1.Nature2015525756712412810.1038/nature1460126214738
    [Google Scholar]
  63. FangQ. NaiduK.A. NaiduK.A. ZhaoH. SunM. DanH.C. NasirA. KaiserH.E. ChengJ.Q. NicosiaS.V. CoppolaD. Ascorbyl stearate inhibits cell proliferation and tumor growth in human ovarian carcinoma cells by targeting the PI3K/AKT pathway.Anticancer Res.2006261A20320916475700
    [Google Scholar]
  64. WickramasingheN.S. JoH. McDonaldJ.M. HardyR.W. Stearate inhibition of breast cancer cell proliferation. A mechanism involving epidermal growth factor receptor and G-proteins.Am. J. Pathol.199614839879958774153
    [Google Scholar]
  65. NůskováH. SerebryakovaM.V. Ferrer-CaellesA. SachsenheimerT. LüchtenborgC. MillerA.K. BrüggerB. KordyukovaL.V. TelemanA.A. Stearic acid blunts growth-factor signaling via oleoylation of GNAI proteins.Nat. Commun.2021121459010.1038/s41467‑021‑24844‑934321466
    [Google Scholar]
  66. TinsleyI.J. SchmitzJ.A. PierceD.A. Influence of dietary fatty acids on the incidence of mammary tumors in the C3H mouse.Cancer Res.1981414146014657214328
    [Google Scholar]
  67. BennettA.S. Effect of dietary stearic acid on the genesis of spontaneous mammary adenocarcinomas in strain A/ST mice.Int. J. Cancer198434452953310.1002/ijc.29103404166490204
    [Google Scholar]
  68. KhooD.E. FlaksB. OztasH. WilliamsonR.C. HabibN.A. Effects of dietary fatty acids on the early stages of neoplastic induction in the rat pancreas. Changes in fatty acid composition and development of atypical acinar cell nodules.Int. J. Exp. Pathol.19917255715801742210
    [Google Scholar]
  69. HabibN.A. WoodC.B. ApostolovK. BarkerW. HershmanM.J. AslamM. HeinemannD. FermorB. WilliamsonR.C.N. JenkinsW.E. Stearic acid and carcinogenesis.Br. J. Cancer198756445545810.1038/bjc.1987.2233689663
    [Google Scholar]
  70. SinghR.K. HardyR.W. WangM.H. WillifordJ. GladsonC.L. McDonaldJ.M. SiegalG.P. Stearate inhibits human tumor cell invasion.Invasion Metastasis1995153-41441558621270
    [Google Scholar]
  71. EvansL.M. CoweyS.L. SiegalG.P. HardyR.W. Stearate preferentially induces apoptosis in human breast cancer cells.Nutr. Cancer200961574675310.1080/0163558090282559719838949
    [Google Scholar]
  72. HardyS. St-OngeG.G. JolyÉ. LangelierY. PrentkiM. Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40.J. Biol. Chem.200528014132851329110.1074/jbc.M41092220015695516
    [Google Scholar]
  73. LiS. ZhouT. LiC. DaiZ. CheD. YaoY. LiL. MaJ. YangX. GaoG. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner.PLoS One201495e9733010.1371/journal.pone.009733024823908
    [Google Scholar]
  74. LeamyA.K. EgnatchikR.A. ShiotaM. IvanovaP.T. MyersD.S. BrownH.A. YoungJ.D. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells.J. Lipid Res.20145571478148810.1194/jlr.M05023724859739
    [Google Scholar]
  75. HolzerR.G. ParkE.J. LiN. TranH. ChenM. ChoiC. SolinasG. KarinM. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation.Cell2011147117318410.1016/j.cell.2011.08.03421962514
    [Google Scholar]
  76. FayM.P. FreedmanL.S. CliffordC.K. MidthuneD.N. Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review.Cancer Res.19975718397939889307282
    [Google Scholar]
  77. YonezawaT. HagaS. KobayashiY. KatohK. ObaraY. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells.Biochem. Biophys. Res. Commun.2008367472973510.1016/j.bbrc.2007.12.19018191634
    [Google Scholar]
  78. Soto-GuzmanA. RobledoT. Lopez-PerezM. SalazarE.P. Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving Src kinase and EGFR transactivation in breast cancer cells.Mol. Cell. Endocrinol.20082941-2819110.1016/j.mce.2008.08.00318775472
    [Google Scholar]
  79. MenendezJ.A. VellonL. ColomerR. LupuR. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin™) in breast cancer cells with Her-2/neu oncogene amplification.Ann. Oncol.200516335937110.1093/annonc/mdi09015642702
    [Google Scholar]
  80. YamagataK. UzuE. YoshigaiY. KatoC. TagamiM. Oleic acid and oleoylethanolamide decrease interferon-γ-induced expression of PD-L1 and induce apoptosis in human lung carcinoma cells.Eur. J. Pharmacol.202190317411610.1016/j.ejphar.2021.17411633957086
    [Google Scholar]
  81. MoralR. SolanasM. GarcíaG. ColomerR. EscrichE. Modulation of EGFR and neu expression by n-6 and n-9 high-fat diets in experimental mammary adenocarcinomas.Oncol. Rep.20031051417142410.3892/or.10.5.141712883717
    [Google Scholar]
  82. MenendezJ.A. RoperoS. LupuR. ColomerR. Dietary fatty acids regulate the activation status of Her-2/neu (c-erbB-2) oncogene in breast cancer cells.Ann. Oncol.200415111719172110.1093/annonc/mdh44215520077
    [Google Scholar]
  83. NelsonR. Oleic acid suppresses overexpression of ERBB2 oncogene.Lancet Oncol.2005626910.1016/S1470‑2045(05)01722‑515704291
    [Google Scholar]
  84. MenendezJ. LupuR. Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil’s monounsaturated fatty acid oleic acid (18:1n-9).Curr. Pharm. Biotechnol.20067649550210.2174/13892010677911690017168666
    [Google Scholar]
  85. MenendezJ.A. PapadimitropoulouA. VellonL. LupuR. A genomic explanation connecting “Mediterranean diet”, olive oil and cancer: Oleic acid, the main monounsaturated Fatty acid of olive oil, induces formation of inhibitory “PEA3 transcription factor-PEA3 DNA binding site” complexes at the Her-2/neu (erbB-2) oncogene promoter in breast, ovarian and stomach cancer cells.Eur. J. Cancer200642152425243210.1016/j.ejca.2005.10.01616406575
    [Google Scholar]
  86. Chella PerumalP. PratibhaP. SowmyaS. EnockK.O. AnusooriyaP. VidyaB. Discovery of novel inhibitors for HER2 from natural compounds present in Cayratia trifolia (l.): an In silico analysis.International Journal of Current Pharmaceutical Review and Research.201563164168
    [Google Scholar]
  87. SantM. AllemaniC. SieriS. KroghV. MenardS. TagliabueE. NardiniE. MicheliA. CrosignaniP. MutiP. BerrinoF. Salad vegetables dietary pattern protects against HER‐2‐positive breast cancer: A prospective Italian study.Int. J. Cancer2007121491191410.1002/ijc.2271417455245
    [Google Scholar]
  88. KostrhunovaH. ZajacJ. MarkovaL. BrabecV. KasparkovaJ. A multi‐action Pt IV conjugate with oleate and cinnamate ligands targets human epithelial growth factor receptor HER2 in aggressive breast cancer cells.Angew. Chem. Int. Ed.20205947211572116210.1002/anie.20200949132750194
    [Google Scholar]
  89. ZhangP. TaoH. YuL. ZhouL. ZhuC. Developing protein arginine methyltransferase 1 (PRMT1) inhibitor TC-E-5003 as an antitumor drug using INEI drug delivery systems.Drug Deliv.202027149150110.1080/10717544.2020.174532732212935
    [Google Scholar]
  90. AkhtartavanS. KarimiM. KarimianK. AzarpiraN. KhatamiM. HeliH. Evaluation of a self-nanoemulsifying docetaxel delivery system.Biomed. Pharmacother.20191092427243310.1016/j.biopha.2018.11.11030551502
    [Google Scholar]
  91. AlkhatibM.H. AlBishiH.M. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells.J. Nanopart. Res.2013153148910.1007/s11051‑013‑1489‑5
    [Google Scholar]
  92. RajaM. LiuC. HuangZ. Nanoparticles based on oleate alginate ester as curcumin delivery system.Curr. Drug Deliv.201512561362710.2174/156720181266615051109502925963307
    [Google Scholar]
  93. RajanA. SahuN.K. Hydrophobic-to-hydrophilic transition of Fe 3 O 4 nanorods for magnetically induced hyperthermia.ACS Appl. Nano Mater.2021454642465310.1021/acsanm.1c00274
    [Google Scholar]
  94. AbdolmohammadiM.H. FallahianF. FakhroueianZ. KamalianM. KeyhanvarP. M HarsiniF. ShafiekhaniA. Application of new ZnO nanoformulation and Ag/Fe/ZnO nanocomposites as water-based nanofluids to consider in vitro cytotoxic effects against MCF-7 breast cancer cells.Artif. Cells Nanomed. Biotechnol.20174581769177710.1080/21691401.2017.129064328278581
    [Google Scholar]
  95. KarimiM. KarimianK. HeliH. A nanoemulsion-based delivery system for imatinib and in vitro anticancer efficacy.Braz. J. Pharm. Sci.202156
    [Google Scholar]
  96. NaH.B. LeeJ.H. AnK. ParkY.I. ParkM. LeeI.S. NamD.H. KimS.T. KimS.H. KimS.W. LimK.H. KimK.S. KimS.O. HyeonT. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles.Angew. Chem. Int. Ed.200746285397540110.1002/anie.20060477517357103
    [Google Scholar]
  97. WANGX CHENF HUANGG. Anticancer activity of branched-chain derivatives of oleic acid.Anticancer Res.201131103165316921965723
    [Google Scholar]
  98. BhatiaN.M. KulkarniP.K. AshtekarS.S. MahuliD.V. BhatiaM.S. Synthesis, characterization, pharmacokinetics and evaluation of cytotoxicity for docetaxel-oleate conjugate targeting MCF-7 breast cancer cells.Pharm. Chem. J.201851111005101310.1007/s11094‑018‑1730‑8
    [Google Scholar]
  99. FengL. MumperR.J. A critical review of lipid-based nanoparticles for taxane delivery.Cancer Lett.2013334215717510.1016/j.canlet.2012.07.00622796606
    [Google Scholar]
  100. TarrB.D. SambandanT.G. YalkowskyS.H. A new parenteral emulsion for the administration of taxol.Pharm. Res.19874216216510.1023/A:10164834065112908138
    [Google Scholar]
  101. MaranhãoR.C. GaricocheaB. SilvaE.L. Dorlhiac-LlacerP. CadenaS.M. CoelhoI.J. MeneghettiJ.C. PileggiF.J. ChamoneD.A. Plasma kinetics and biodistribution of a lipid emulsion resembling low-density lipoprotein in patients with acute leukemia.Cancer Res.19945417466046668062260
    [Google Scholar]
  102. RodriguesD.G. MariaD.A. FernandesD.C. ValdugaC.J. CoutoR.D. IbañezO.C.M. MaranhãoR.C. Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: in vitro and in vivo studies.Cancer Chemother. Pharmacol.200555656557610.1007/s00280‑004‑0930‑y15726368
    [Google Scholar]
  103. DiasM.L.N. CarvalhoJ.P. RodriguesD.G. GrazianiS.R. MaranhãoR.C. Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers.Cancer Chemother. Pharmacol.200659110511110.1007/s00280‑006‑0252‑316699792
    [Google Scholar]
  104. NikanjamM GibbsAR HuntCA BudingerTF ForteTM Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme.Journal of controlled release.2007124316317110.1016/j.jconrel.2007.09.007
    [Google Scholar]
  105. ZhouD.J. ChenY. ZhangX.J. MaC. QiuJ. ZhouJ.H. Effects of oleic acid on SP-B expression and release in A549 cells.Eur. Rev. Med. Pharmacol. Sci.201519183438344326439040
    [Google Scholar]
  106. KitauraY. InoueK. KatoN. MatsushitaN. ShimomuraY. Enhanced oleate uptake and lipotoxicity associated with laurate.FEBS Open Bio20155148549110.1016/j.fob.2015.05.00826106523
    [Google Scholar]
  107. LiJ. ZhaoS. ZhouX. ZhangT. ZhaoL. MiaoP. SongS. SunX. LiuJ. ZhaoX. HuangG. Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel.PLoS One201389e7462310.1371/journal.pone.007462324040298
    [Google Scholar]
  108. RumseyS.C. GaleanoN.F. LipschitzL. DeckelbaumR.J. Oleate and other long chain fatty acids stimulate low density lipoprotein receptor activity by enhancing acyl coenzyme A:cholesterol acyltransferase activity and altering intracellular regulatory cholesterol pools in cultured cells.J. Biol. Chem.199527017100081001610.1074/jbc.270.17.100087730302
    [Google Scholar]
  109. ShenY. XiaY. YangE. YeZ. DingY. TuJ. ZhangY. XuP. A polyoxyethylene sorbitan oleate modified hollow gold nanoparticle system to escape macrophage phagocytosis designed for triple combination lung cancer therapy via LDL-R mediated endocytosis.Drug Deliv.20202711342135910.1080/10717544.2020.182245932964732
    [Google Scholar]
  110. TianM.D. Cytotoxicity of superparamagnetic iron oxide nanoparticles modified by chitosan or sodium oleate.Acad J Second Military Med Uni.2014:366-71. 2014366371
    [Google Scholar]
  111. KhalediS. JafariS. HamidiS. MolaviO. DavaranS. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin.J. Biomater. Sci. Polym. Ed.20203191107112610.1080/09205063.2020.174394632249693
    [Google Scholar]
  112. AkbariA. AkbarzadehA. TehraniM. CohanR. ChianiM. MehrabiM.R. Development and characterization of nanoliposomal hydroxyurea against BT-474 breast cancer cells.Adv. Pharm. Bull.2019101394510.15171/apb.2020.00532002360
    [Google Scholar]
  113. AbbasianM. MahmoodzadehF. khaliliA. SalehiR. Chemotherapy of breast cancer cells using novel ph-responsivecellulose-based nanocomposites.Adv. Pharm. Bull.20199112213110.15171/apb.2019.01531011566
    [Google Scholar]
  114. SaadatM. MostafaeiF. MahdinlooS. AbdiM. ZahednezhadF. Zakeri-MilaniP. ValizadehH. Drug delivery of pH-Sensitive nanoparticles into the liver cancer cells.J. Drug Deliv. Sci. Technol.20216310255710.1016/j.jddst.2021.102557
    [Google Scholar]
  115. KiaieS.H. Mojarad-JabaliS. KhalesehF. AllahyariS. TaheriE. Zakeri-MilaniP. ValizadehH. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives.Int. J. Pharm.202058111926910.1016/j.ijpharm.2020.11926932234427
    [Google Scholar]
  116. Zakeri-MilaniP. ShiraniA. NokhodchiA. Mussa FarkhaniS. MohammadiS. Shahbazi MojarradJ. MahmoudianM. GholikhaniT. FarshbafM. ValizadehH. Self-assembled peptide nanoparticles for efficient delivery of methotrexate into cancer cells.Drug Dev. Ind. Pharm.202046452153010.1080/03639045.2020.173401732116040
    [Google Scholar]
  117. MohammadiS. Zakeri-MilaniP. GolkarN. FarkhaniS.M. ShiraniA. Shahbazi MojarradJ. NokhodchiA. ValizadehH. Synthesis and cellular characterization of various nano-assemblies of cell penetrating peptide-epirubicin-polyglutamate conjugates for the enhancement of antitumor activity.Artif. Cells Nanomed. Biotechnol.20184681572158528933182
    [Google Scholar]
  118. Zakeri-MilaniP. Mussa FarkhaniS. ShiraniA. MohammadiS. Shahbazi MojarradJ. AkbariJ. ValizadehH. Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides.EXCLI J.20171665066228694765
    [Google Scholar]
  119. NiaziM. Zakeri-MilaniP. Najafi HajivarS. Soleymani GoloujehM. GhobakhlouN. Shahbazi MojarradJ. ValizadehH. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance.Expert Opin. Drug Metab. Toxicol.20161291021103310.1080/17425255.2016.119618627267126
    [Google Scholar]
  120. SaadatM ZahednezhadF Zakeri-MilaniP Reza HeidariH Shahbazi-MojarradJ ValizadehH. Drug targeting strategies based on charge dependent uptake of nanoparticles into cancer cells. J. Pharm. Pharmaceut. Sci.201922119122010.18433/jpps30318
    [Google Scholar]
  121. GolombekS.K. MayJ.N. TheekB. AppoldL. DrudeN. KiesslingF. LammersT. Tumor targeting via EPR: Strategies to enhance patient responses.Adv. Drug Deliv. Rev.2018130173810.1016/j.addr.2018.07.00730009886
    [Google Scholar]
  122. ZahednezhadF. Shahbazi MojarradJ. Zakeri-MilaniP. BaradaranB. MahmoudianM. SarfrazM. ValizadehH. Surface modification with cholesteryl acetyl carnitine, a novel cationic agent, elevates cancer cell uptake of the PEGylated liposomes.Int. J. Pharm.202160912114810.1016/j.ijpharm.2021.12114834600054
    [Google Scholar]
  123. SeyyedniaE. OroojalianF. BaradaranB. MojarradJ.S. MokhtarzadehA. ValizadehH. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging.J. Control. Release202133836739310.1016/j.jconrel.2021.08.04434461174
    [Google Scholar]
  124. Hassankhani RadA. AsiaeeF. JafariS. ShayanfarA. LavasanifarA. MolaviO. Poly(ethylene glycol)-poly(ε-caprolactone)-based micelles for solubilization and tumor-targeted delivery of silibinin.Bioimpacts2019102879510.34172/bi.2020.1132363152
    [Google Scholar]
  125. MahmoudianM. Maleki DizajS. SalatinS. LöbenbergR. SaadatM. IslambulchilarZ. ValizadehH. Zakeri-MilaniP. Oral delivery of solid lipid nanoparticles: underlining the physicochemical characteristics and physiological condition affecting the lipolysis rate.Expert Opin. Drug Deliv.202118111707172210.1080/17425247.2021.198289134553650
    [Google Scholar]
  126. MasoumzadehH HoseinzadN JafariS ShayanfarA MolaviO VaezH Development of polymeric micelles loaded with STAT3 inhibitory, Stattic, for cancer treatment. Med. J. Tabriz Uni. Med. Sci. Health Services.2021434
    [Google Scholar]
  127. YuanQ. HanJ. CongW. GeY. MaD. DaiZ. LiY. BiX. Docetaxel-loaded solid lipid nanoparticles suppress breast cancer cells growth with reduced myelosuppression toxicity.Int. J. Nanomedicine201494829484625378924
    [Google Scholar]
  128. MosallaeiN. JaafariM.R. Hanafi-BojdM.Y. GolmohammadzadehS. Malaekeh-NikoueiB. Docetaxel-loaded solid lipid nanoparticles: preparation, characterization, in vitro, and in vivo evaluations.J. Pharm. Sci.201310261994200410.1002/jps.2352223558514
    [Google Scholar]
  129. BoskabadiM. SaeediM. AkbariJ. Morteza-SemnaniK. HashemiS.M.H. BabaeiA. Topical gel of vitamin a solid lipid nanoparticles: A hopeful promise as a dermal delivery system.Adv. Pharm. Bull.202011466367410.34172/apb.2021.07534888213
    [Google Scholar]
  130. TaherzadehS. NaeimifarA. Mehrabani YeganehE. EsmailiZ. MahjoubR. Akbari JavarH. Preparation, statistical optimization and characterization of propolis-loaded solid lipid nanoparticles using box-behnken design.Adv. Pharm. Bull.202111230131033880352
    [Google Scholar]
  131. BayatP. PakravanP. SaloutiM. DolatabadiJ. Lysine decorated solid lipid nanoparticles of epirubicin for cancer targeting and therapy.Adv. Pharm. Bull.20201119610310.34172/apb.2021.01033747856
    [Google Scholar]
  132. GhaffariS. AlihosseiniF. SorkhabadiS.M. Arbabi BidgoliS. MousaviS.E. HaghighatS. Erratum to “nanotechnology in wound healing; semisolid dosage forms containing curcumin-ampicillin solid lipid nanoparticles.Adv. Pharm. Bull.202111120410.34172/apb.2021.08833747868
    [Google Scholar]
  133. SaadatM. JafariS. Zakeri-MilaniP. Shahbazi-MojarradJ. ValizadehH. Stearoylcholine and oleoylcholine: Synthesis, physico-chemical characterization, nanoparticle formation, and toxicity studies.J. Drug Deliv. Sci. Technol.20205910187210.1016/j.jddst.2020.101872
    [Google Scholar]
  134. MohtarN. KhanN.A. DarwisY. Solid lipid nanoparticles of atovaquone based on 24 full-factorial design. Iranian journal of pharmaceutical research.IJPR201514498926664366
    [Google Scholar]
  135. NaguibY.W. RodriguezB.L. LiX. HurstingS.D. WilliamsR.O.III CuiZ. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation.Mol. Pharm.20141141239124910.1021/mp400696824621456
    [Google Scholar]
  136. MahmoudianM. ValizadehH. LöbenbergR. Zakeri-MilaniP. Enhancement of the intestinal absorption of bortezomib by self-nanoemulsifying drug delivery system.Pharm. Dev. Technol.202025335135810.1080/10837450.2019.169910931810410
    [Google Scholar]
  137. BaekJ.S. ChoC.W. Comparison of solid lipid nanoparticles for encapsulating paclitaxel or docetaxel.J. Pharm. Investig.201545762563110.1007/s40005‑015‑0182‑3
    [Google Scholar]
  138. MiY ZhaoJ FengSS Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer.J. controlled rel.20131693185192
    [Google Scholar]
  139. SongS. QiH. XuJ. GuoP. ChenF. LiF. YangX. ShengN. WuY. PanW. Hyaluronan-based nanocarriers with CD44-overexpressed cancer cell targeting.Pharm. Res.201431112988300510.1007/s11095‑014‑1393‑424842660
    [Google Scholar]
  140. SinghR.P. SharmaG. Sonali SinghS. BhartiS. PandeyB.L. KochB. MuthuM.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.Mater. Sci. Eng. C20177744645810.1016/j.msec.2017.03.22528532051
    [Google Scholar]
  141. SonG.H. LeeB.J. ChoC.W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles.J. Pharm. Investig.201747428729610.1007/s40005‑017‑0320‑1
    [Google Scholar]
  142. KhowdairyM.M. BadawiA.M. MohamedM. MohamedM.Z. Surface and antitumor activity of some novel metal-based cationic surfactants.J. Cancer Res. Ther.20073419820610.4103/0973‑1482.3899418270394
    [Google Scholar]
  143. XiaoJ. DuanX. YinQ. ChenL. ZhangZ. LiY. Low molecular weight polyethylenimine-graft-Tween 85 for effective gene delivery: synthesis and in vitro characteristics.Bioconjug. Chem.201223222223110.1021/bc200504v22168476
    [Google Scholar]
  144. Steve HaltiwangerM. The electrical properties of cancer cells.ResearchGate2014201462
    [Google Scholar]
  145. BortnerC.D. CidlowskiJ.A. Ion channels and apoptosis in cancer.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916382013010410.1098/rstb.2013.010424493752
    [Google Scholar]
  146. SeilerM.W. VenkatachalamM.A. CotranR.S. Glomerular epithelium: structural alterations induced by polycations.Science1975189420039039310.1126/science.11452091145209
    [Google Scholar]
  147. MutsaersS.E. PapadimitriouJ.M. Surface charge of macrophages and their interaction with charged particles.J. Leukoc. Biol.1988441172610.1002/jlb.44.1.173164749
    [Google Scholar]
  148. ThorekD.L.J. TsourkasA. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells.Biomaterials200829263583359010.1016/j.biomaterials.2008.05.01518533252
    [Google Scholar]
  149. SoukosN.S. HamblinM.R. HasanT. The effect of charge on cellular uptake and phototoxicity of polylysine chlorin(e6) conjugates.Photochem. Photobiol.199765472372910.1111/j.1751‑1097.1997.tb01916.x9114750
    [Google Scholar]
  150. NunamakerE.A. PurcellE.K. KipkeD.R. In vivo stability and biocompatibility of implanted calcium alginate disks.J. Biomed. Mater. Res. A200783A41128113710.1002/jbm.a.3127517595019
    [Google Scholar]
  151. RutkowskiS. MuL. SiT. GaiM. SunM. FruehJ. HeQ. Magnetically-propelled hydrogel particle motors produced by ultrasound assisted hydrodynamic electrospray ionization jetting.Colloids Surf. B Biointerfaces2019175445510.1016/j.colsurfb.2018.11.06830517904
    [Google Scholar]
  152. MozarF.S. ChowdhuryE.H. Impact of PEGylated nanoparticles on tumor targeted drug delivery.Curr. Pharm. Des.201824283283329610.2174/138161282466618073016172130062957
    [Google Scholar]
  153. DasanayakeG.S. HamadaniC.M. SinghG. Kumar MisraS. VashisthP. SharpJ.S. AdhikariL. BakerG.A. TannerE.E.L. Imidazolium-based zwitterionic liquid-modified PEG–PLGA nanoparticles as a potential intravenous drug delivery carrier.Nanoscale202416115584560010.1039/D3NR06349F38410026
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137308989240520053704
Loading
/content/journals/cnano/10.2174/0115734137308989240520053704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test