Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Polymers are supermolecules or huge molecules that have a central role as an excipient in any dosage formulation. Currently, the usage of polymers in drug formulation is often associated with numerous problems connected with drug release, side effects, and carcinogenic effects. Therefore, the utilization of water-soluble polymers and polymeric nanoparticles has been favoured to minimize these types of problems. Polymers can be found in natural and synthetic resources and they are manipulated according to their chemical and biological activity in cells and tissues. Their major advantages include improving therapeutic efficacy, reduced toxicity, loading capacity, drug release rate, greater efficacy, targeted delivery, prolonged circulation time, and physical and chemical stability. Thus, this review focuses on the classifications of polymers such as HPMC, HEC, CMC, PVP, Pectin, chitosan, alginate polyacetylene, polythiophene, polypyrrole, polyphenylene, polyaniline, ., the needs and drawbacks of herbal polymers, factors affecting biodegradation polymers, key properties of water-soluble polymers as well as their properties. This review also deals with various commercial biopolymers and the associated challenges. The properties of polymeric nanoparticles (PNP) as drug carriers and their diverse applications are discussed. PNPs such as polymeric micelles, niosome, dendrimers, liposomes and colloidal carriers composed of biodegradable polymers are widely used drug carriers. PNPs are produced to decrease toxicity, improve therapeutic efficacy, and increase drug permeation due to good compatibility with lipophilic and oil-soluble drugs. The performance of polymers is an important factor in current biomedical and pharmaceutical applications. Furthermore, the formulation of PNP focuses on improving applications in nanotechnology.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137294889240314032718
2024-06-06
2025-09-30
Loading full text...

Full text loading...

References

  1. DikshaS. DhruvD. MansiH. Sustained release drug delivery system with the role of natural polymers: A review.J. Drug Deliv. Ther.20199391392310.22270/jddt.v9i3
    [Google Scholar]
  2. KulkarniA. DasariH. Current status of methods used in degradation of polymers: A review.MATEC Web Conf.20181440202310.1051/matecconf/201814402023
    [Google Scholar]
  3. AminiS. SalehiH. SetayeshmehrM. GhorbaniM. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages.Polym. Adv. Technol.20213262267228910.1002/pat.5263
    [Google Scholar]
  4. AliA. AhmedS. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers.J. Agric. Food Chem.201866276940696710.1021/acs.jafc.8b0105229878765
    [Google Scholar]
  5. RajputI.B. TareenF.K. KhanA.U. AhmedN. KhanM.F.A. ShahK.U. RahdarA. Díez-PascualA.M. Fabrication and in vitro evaluation of chitosan-gelatin based aceclofenac loaded scaffold.Int. J. Biol. Macromol.202322422323210.1016/j.ijbiomac.2022.10.11836265543
    [Google Scholar]
  6. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.01130851391
    [Google Scholar]
  7. GargA. GargS. KumarM. KumarS. ShuklaA.K. KaushikS.P.C. Applications of natural polymers in mucoadhesive drug delivery: An overview.Adv. Pharm. J.201832384210.31024/apj.2018.3.2.1
    [Google Scholar]
  8. RaoS.H. HariniB. ShadamarshanR.P.K. BalagangadharanK. SelvamuruganN. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering.Int. J. Biol. Macromol.2018110889610.1016/j.ijbiomac.2017.09.02928917940
    [Google Scholar]
  9. MaitzM.F. Applications of synthetic polymers in clinical medicine.Biosurf. Biotribol.20151316117610.1016/j.bsbt.2015.08.002
    [Google Scholar]
  10. GajreV. Natural polymers-A comprehensive review.Int. J. Res. Pharm. Biomed. Sci.20123415971613
    [Google Scholar]
  11. HassanT. ZhouC. SaeedS. Polymers, an infrangible part of our life.J Islamabad Med Dent College202110313113210.35787/jimdc.v10i3.747
    [Google Scholar]
  12. DonnalojaF. JacchettiE. SonciniM. RaimondiM.T. Natural and synthetic polymers for bone scaffolds optimization.Polymers202012490510.3390/polym1204090532295115
    [Google Scholar]
  13. ZhangQ. SongM. XuY. WangW. WangZ. ZhangL. Bio-based polyesters: Recent progress and future prospects.Prog. Polym. Sci.202112010143010.1016/j.progpolymsci.2021.101430
    [Google Scholar]
  14. OgajiI.J. NepE.I. Audu-PeterJ.D. Advances in natural polymers as pharmaceutical excipients.Pharm. Anal. Acta20123114610.4172/2153‑2435.1000146
    [Google Scholar]
  15. LimaS.A.C. ReisS. Polymeric carriers for biomedical and nanomedicine application.Polymers2021138126110.3390/polym1308126133924580
    [Google Scholar]
  16. SurS. RathoreA. DaveV. ReddyK.R. ChouhanR.S. SadhuV. Recent Developments in Functionalized Polymer Nanoparticles for Efficient Drug Delivery System.Nano-Structures and Nano-Objects201920100397
    [Google Scholar]
  17. AmoabedinyG. HaghiralsadatF. NaderinezhadS. HelderM.N. KharanaghiE. AroughJ. Zandieh-DoulabiB. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review.Int. J. Polym. Mater.201867638340010.1080/00914037.2017.1332623
    [Google Scholar]
  18. KarlssonJ. TzengS.Y. HemmatiS. LulyK.M. ChoiO. RuiY. WilsonD.R. KozielskiK.L. Quiñones-HinojosaA. GreenJ.J. Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA delivery as cancer therapy.Adv. Funct. Mater.20213117200976810.1002/adfm.20200976834650390
    [Google Scholar]
  19. ReddyM.S.B. PonnammaD. ChoudharyR. SadasivuniK.K. A comparative review of natural and synthetic biopolymer composite scaffolds.Polymers2021137110510.3390/polym1307110533808492
    [Google Scholar]
  20. PrabhuT. PrashanthaK. A review on present status and future challenges of starch based polymer films and their composites in food packaging applications.Polym. Compos.20183972499252210.1002/pc.24236
    [Google Scholar]
  21. KolheA. ChauhanA. DongreA. A review on various methods for the cross-linking of polymers.Res. J. Pharm. Dos. Forms Technol.2022172210.52711/0975‑4377.2022.00003
    [Google Scholar]
  22. TerrynS. LangenbachJ. RoelsE. BrancartJ. Bakkali-HassaniC. PoutrelQ.A. GeorgopoulouA. George ThuruthelT. SafaeiA. FerrentinoP. SebastianT. NorvezS. IidaF. BosmanA.W. TournilhacF. ClemensF. Van AsscheG. VanderborghtB. A review on self-healing polymers for soft robotics.Mater. Today20214718720510.1016/j.mattod.2021.01.009
    [Google Scholar]
  23. WuF. MisraM. MohantyA.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging.Prog. Polym. Sci.202111710139510.1016/j.progpolymsci.2021.101395
    [Google Scholar]
  24. NurazziN.M. AsyrafM.R.M. Fatimah AthiyahS. ShazleenS.S. RafiqahS.A. HarussaniM.M. KamarudinS.H. RazmanM.R. RahmahM. ZainudinE.S. IlyasR.A. AisyahH.A. NorrrahimM.N.F. AbdullahN. SapuanS.M. KhalinaA. A review on mechanical performance of hybrid natural fiber polymer composites for structural applications.Polymers20211313217010.3390/polym1313217034209030
    [Google Scholar]
  25. ZhaoD. ZhuT. LiJ. CuiL. ZhangZ. ZhuangX. DingJ. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials.Bioact. Mater.20216234636010.1016/j.bioactmat.2020.08.01632954053
    [Google Scholar]
  26. KeK. YueL. ShaoH. YangM.B. YangW. Manas-ZloczowerI. Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: A review.Carbon20211731020104010.1016/j.carbon.2020.11.070
    [Google Scholar]
  27. IdumahC.I. Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications.Int. J. Polym. Mater.202271751353010.1080/00914037.2020.1857384
    [Google Scholar]
  28. StanfieldD.A. WuY. TolbertS.H. SchwartzB.J. Controlling the formation of charge transfer complexes in chemically doped semiconducting polymers.Chem. Mater.20213372343235610.1021/acs.chemmater.0c04471
    [Google Scholar]
  29. LiuH. WangY. QinZ. LiuD. XuH. DongH. HuW. Electrically conductive coordination polymers for electronic and optoelectronic device applications.J. Phys. Chem. Lett.20211261612163010.1021/acs.jpclett.0c0298833555195
    [Google Scholar]
  30. WagnerM. KriegerA. MinameyerM. HämischB. HuberK. DrewelloT. GröhnF. Multiresponsive polymer nanoparticles based on disulfide bonds.Macromolecules20215462899291110.1021/acs.macromol.1c00299
    [Google Scholar]
  31. NajibN.I.A.M. OthmanS.A. Conjugated polymer of biosensor using langmuir-blodgett technique- A review.J. Phys.: Conf. Ser.20222169012030
    [Google Scholar]
  32. WangX.X. YuG.F. ZhangJ. YuM. RamakrishnaS. LongY.Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications.Prog. Mater. Sci.202111510070410.1016/j.pmatsci.2020.100704
    [Google Scholar]
  33. NezakatiT. SeifalianA. TanA. SeifalianA.M. Conductive polymers: Opportunities and challenges in biomedical applications.Chem. Rev.2018118146766684310.1021/acs.chemrev.6b0027529969244
    [Google Scholar]
  34. FalsafiS.R. TopuzF. BajerD. MohebiZ. ShafieiuonM. HeydariH. RawalS. SathiyaseelanA. WangM.H. KhursheedR. EnayatiM.H. RostamabadiH. Metal nanoparticles and carbohydrate polymers team up to improve biomedical outcomes.Biomed. Pharmacother.202316811569510.1016/j.biopha.2023.11569537839113
    [Google Scholar]
  35. MohantaY.K. ChakrabarttyI. MishraA.K. ChopraH. MahantaS. AvulaS.K. PatowaryK. AhmedR. MishraB. MohantaT.K. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy.Front. Microbiol.202213102808636938129
    [Google Scholar]
  36. BhardwajH. JoshiR. KhuteS. JangdeR.K. Recent advances in the impact of antibiotic and antioxidant multifunctional hydrogel on diabetic wounds healing.Appl. Mater. Today202321e20072321894210.2174/2666731202666230720142646
    [Google Scholar]
  37. SaiA. AeilaS. AlluriR. KumarA.R. Sustained release matrix type drug delivery system: An overview.World J. Pharm. Pharm. Sci.2019847010.20959/wjpps20201‑15241
    [Google Scholar]
  38. BoseI. Nousheen RoyS. Unveiling the potential of marine biopolymers: Sources, classification, and diverse food applications.Materials202316134840
    [Google Scholar]
  39. Crystal ThewX.E. LoS.C. RamananR.N. TeyB.T. HuyN.D. Chien WeiO. Enhancing Plastic Biodegradation ProcessO. Enhancing plastic biodegradation process: Strategies and opportunities.Crit. Rev. Biotechnol.202311810.1080/07388551.2023.217086136788704
    [Google Scholar]
  40. SutkarP.R. GadewarR.D. DhulapV.P. Recent trends in degradation of microplastics in the environment: A state-of-the-art review.JHM Advances202311100343
    [Google Scholar]
  41. KadajjiV.G. BetageriG.V. Water soluble polymers for pharmaceutical applications.Polymers2011341972200910.3390/polym3041972
    [Google Scholar]
  42. JulinováM. VaňharováL. JurčaM. Water-soluble polymeric xenobiotics – Polyvinyl alcohol and polyvinylpyrrolidon – And potential solutions to environmental issues: A brief review.J. Environ. Manage.201822821322210.1016/j.jenvman.2018.09.01030223180
    [Google Scholar]
  43. SolovevV.O. SolovevaS.V. MilevskyN.A. Extraction of pyridine using systems based on water-soluble polymers.IOP Conf Ser Mater Sci Eng2022121201201510.1088/1757‑899X/1212/1/012015
    [Google Scholar]
  44. MironovA. MorozovA. TomarasT.N. Some properties of the Alday–Maldacena minimum.Phys. Lett. B2008659372373110.1016/j.physletb.2007.11.025
    [Google Scholar]
  45. ChenL. PilaniaG. BatraR. HuanT.D. KimC. KuennethC. RamprasadR. Polymer informatics: Current status and critical next steps.Mater. Sci. Eng. Rep.202114410059510.1016/j.mser.2020.100595
    [Google Scholar]
  46. DebnathS. YadavC.N. NowjiyaN. PrabhavathiM. SaiKumarA. KrishnaP.S. BabuM.N. A review on natural binders used in pharmacy.Asian J. Pharm. Res.2019915510.5958/2231‑5691.2019.00009.1
    [Google Scholar]
  47. MolaviF. Barzegar-JalaliM. HamishehkarH. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches.J. Control. Release202032026528210.1016/j.jconrel.2020.01.02831962095
    [Google Scholar]
  48. PacelliS. Di MuzioL. PaolicelliP. FortunatiV. PetralitoS. TrilliJ. CasadeiM.A. Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery.Int. J. Biol. Macromol.20211661292130010.1016/j.ijbiomac.2020.10.27333161086
    [Google Scholar]
  49. NecasJ. BartosikovaL. Carrageenan: A review.Veterinary Medicine2013584187205
    [Google Scholar]
  50. GoswamiS. NaikS. Natural gums and its pharmaceutical application.J. Sci. Innov. Res.20143111212110.31254/jsir.2014.3118
    [Google Scholar]
  51. GeorgeA. ShahP.A. ShrivastavP.S. Guar gum: Versatile natural polymer for drug delivery applications.Eur. Polym. J.201911272273510.1016/j.eurpolymj.2018.10.042
    [Google Scholar]
  52. RahmanM.S. HasanM.S. NitaiA.S. NamS. KarmakarA.K. AhsanM.S. ShiddikyM.J.A. AhmedM.B. Recent developments of carboxymethyl cellulose.Polymers2021138134510.3390/polym1308134533924089
    [Google Scholar]
  53. VlachopoulosA. KarliotiG. BallaE. DaniilidisV. KalamasT. StefanidouM. BikiarisN.D. ChristodoulouE. KoumentakouI. KaravasE. BikiarisD.N. Poly(lactic acid)-based microparticles for drug delivery applications: An overview of recent advances.Pharmaceutics202214235910.3390/pharmaceutics1402035935214091
    [Google Scholar]
  54. DeStefanoV. KhanS. TabadaA. Applications of PLA in modern medicine.Eng. Regen.20201768710.1016/j.engreg.2020.08.002
    [Google Scholar]
  55. KurianN.S. DasB. Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review.Int. J. Biol. Macromol.20211831881189010.1016/j.ijbiomac.2021.06.00734090850
    [Google Scholar]
  56. RayS. KaliaV.C. Biomedical applications of polyhydroxyalkanoates.Indian J. Microbiol.201757326126910.1007/s12088‑017‑0651‑728904409
    [Google Scholar]
  57. SchmitzC. AuzaL.G. KoberidzeD. RascheS. FischerR. BortesiL. Conversion of chitin to defined chitosan oligomers: Current status and future prospects.Mar. Drugs201917845210.3390/md1708045231374920
    [Google Scholar]
  58. IlyasR. AisyahH. NordinA. NgadiN. ZuhriM. AsyrafM. SapuanS. ZainudinE. SharmaS. AbralH. AsrofiM. SyafriE. SariN. RafidahM. ZakariaS. RazmanM. MajidN. RamliZ. AzmiA. BangarS. IbrahimR. Natural-fiber-reinforced chitosan, chitosan blends and their nanocomposites for various advanced applications.Polymers202214587410.3390/polym1405087435267697
    [Google Scholar]
  59. HariyadiD.M. IslamN. Current status of alginate in drug delivery.Adv Pharmacol Pharm Sci20202020888609510.1155/2020/8886095
    [Google Scholar]
  60. KabirI.I. SorrellC.C. MofarahS.S. YangW. YuenA.C.Y. NazirM.T. YeohG.H. Alginate/polymer-based materials for fire retardancy: Synthesis, structure, properties, and applications.Polym. Rev.202161235741410.1080/15583724.2020.1801726
    [Google Scholar]
  61. LeiC. LiuX.R. ChenQ.B. LiY. ZhouJ.L. ZhouL.Y. ZouT. Hyaluronic acid and albumin based nanoparticles for drug delivery.J. Control. Release202133141643310.1016/j.jconrel.2021.01.03333503486
    [Google Scholar]
  62. FakhariA. BerklandC. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment.Acta Biomater.2013977081709210.1016/j.actbio.2013.03.00523507088
    [Google Scholar]
  63. ZdunekA. PieczywekP.M. CybulskaJ. The primary, secondary, and structures of higher levels of pectin polysaccharides.Compr. Rev. Food Sci. Food Saf.20212011101111710.1111/1541‑4337.1268933331080
    [Google Scholar]
  64. ChenJ. ChengH. ZhiZ. ZhangH. LinhardtR.J. ZhangF. ChenS. YeX. Extraction temperature is a decisive factor for the properties of pectin.Food Hydrocoll.202111210616010.1016/j.foodhyd.2020.106160
    [Google Scholar]
  65. Gaona-SánchezV.A. Calderón-DomínguezG. Morales-SánchezE. Moreno-RuizL.A. Terrés-RojasE. Salgado-CruzM.P. Escamilla-GarcíaM. Barrios-FranciscoR. Physicochemical and superficial characterization of a bilayer film of zein and pectin obtained by electrospraying.J. Appl. Polym. Sci.2021138125004510.1002/app.50045
    [Google Scholar]
  66. AuriemmaG. CercielloA. AquinoR.P. Del GaudioP. FuscoB.M. RussoP. Pectin and zinc alginate: The right inner/outer polymer combination for core-shell drug delivery systems.Pharmaceutics20201228710.3390/pharmaceutics1202008731972993
    [Google Scholar]
  67. DuJ. DaiH. WangH. YuY. ZhuH. FuY. MaL. PengL. LiL. WangQ. ZhangY. Preparation of high thermal stability gelatin emulsion and its application in 3D printing.Food Hydrocoll.202111310653610.1016/j.foodhyd.2020.106536
    [Google Scholar]
  68. AbdullahM.S.P. NoordinM.I. Mohd IsmailS.I. MustaphaN.M. JasamaiM. DanikM.F. Wan IsmailW.A. ShamsuddinA.F. Recent advances in the use of animal-sourced gelatine as natural polymers for food, cosmetics and pharmaceutical applications.Sains Malays.20184732333610.17576/jsm‑2018‑4702‑15
    [Google Scholar]
  69. AlipalJ. Mohd Pu’adN.A.S. LeeT.C. NayanN.H.M. SahariN. BasriH. IdrisM.I. AbdullahH.Z. A Review of Gelatin: Properties, Sources, Process, Applications, and CommercialisationMaterials Today: Proceedings201942240250
    [Google Scholar]
  70. FarokhiM. MottaghitalabF. ReisR.L. RamakrishnaS. KunduS.C. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges.J. Control. Release202032132434710.1016/j.jconrel.2020.02.02232061791
    [Google Scholar]
  71. TandonK. OttoC. FIT clinical decision making intramural hematoma or aortitis: A diagnostic dilemma.J Am Coll Cardiol.20176911_Supplement2445
    [Google Scholar]
  72. ManciniL. TaralloF. QuinziV. FratiniA. MummoloS. MarchettiE. Platelet-rich fibrin in single and multiple coronally advanced flap for type 1 recession: An updated systematic review and meta-analysis.Medicine202157120
    [Google Scholar]
  73. SorushanovaA. DelgadoL.M. WuZ. ShologuN. KshirsagarA. RaghunathR. MullenA.M. BayonY. PanditA. RaghunathM. ZeugolisD.I. The collagen suprafamily: From biosynthesis to advanced biomaterial development.Adv. Mater.2019311180165110.1002/adma.20180165130126066
    [Google Scholar]
  74. LeeC.H. SinglaA. LeeY. Biomedical applications of collagen.Int J Pharm.20012211-2122
    [Google Scholar]
  75. LiY. ChenX. JiJ. LiL. ZhaiG. Redox-responsive nanoparticles based on Chondroitin Sulfate and Docetaxel prodrug for tumor targeted delivery of Docetaxel.Carbohydr. Polym.202125511739310.1016/j.carbpol.2020.11739333436222
    [Google Scholar]
  76. SantosG.R.C. PiquetA. GlauserB. TovarA.M.F. PereiraM. VilanovaE. MourãoP.A.S. Systematic analysis of pharmaceutical preparations of chondroitin sulfate combined with glucosamine.Pharmaceuticals20171043810.3390/ph1002003828368296
    [Google Scholar]
  77. ThanY.M. SuriyarakS. TitapiwatanakunV. Rheological investigation of hydroxypropyl cellulose–based filaments for material extrusion 3D printing.Polymers2022146110810.3390/polym1406110835335439
    [Google Scholar]
  78. LatifM.S. AzadA.K. NawazA. RashidS.A. RahmanM.H. Al OmarS.Y. BungauS.G. AleyaL. Abdel-DaimM.M. Ethyl cellulose and hydroxypropyl methyl cellulose blended methotrexate-loaded transdermal patches: In vitro and ex vivo.Polymers 20211320345510.3390/polym13203455
    [Google Scholar]
  79. BerningerT. DietzN. González LópezÓ. Water‐soluble polymers in agriculture: xanthan gum as eco‐friendly alternative to synthetics.Microb. Biotechnol.20211451881189610.1111/1751‑7915.1386734196103
    [Google Scholar]
  80. MoradpoorH. MohammadiH. SafaeiM. MozaffariH.R. SharifiR. GorjiP. SulongA.B. MuhamadN. EbadiM. Recent advances on bacterial cellulose-based wound management: Promises and challenges.Int J Polym Sci 20222022124
    [Google Scholar]
  81. Reyes-MeloM.E. Miranda-ValdezI.Y. Puente-CórdovaJ.G. Camarillo-HernándezC.A. López-WalleB. Fabrication and characterization of a biocompatible hybrid film based on silver nanoparticle/ethyl cellulose polymer.Cellulose202128149227924010.1007/s10570‑021‑04066‑4
    [Google Scholar]
  82. GrigorasA.G. Natural and synthetic polymeric antimicrobials with quaternary ammonium moieties: A review.Environ. Chem. Lett.20211943009302210.1007/s10311‑021‑01215‑w
    [Google Scholar]
  83. UmarY. Al-BattyS. RahmanH. AshwaqO. SariefA. SadiqueZ. SreekumarP.A. HaqueS.K.M. Polymeric materials as potential inhibitors against SARS-CoV-2.J. Polym. Environ.20223041244126310.1007/s10924‑021‑02272‑634518763
    [Google Scholar]
  84. BadryR. El-KhodaryS. ElhaesH. NadaN. IbrahimM. Optical, conductivity and dielectric properties of plasticized solid polymer electrolytes based on blends of sodium carboxymethyl cellulose and polyethylene oxide.Opt. Quantum Electron.2021531310.1007/s11082‑020‑02649‑2
    [Google Scholar]
  85. QamruzzamanM. AhmedF. MondalM.I.H. An overview on starch-based sustainable hydrogels: Potential applications and aspects.J. Polym. Environ.2022301195010.1007/s10924‑021‑02180‑9
    [Google Scholar]
  86. KlinmalaiP. SrisaA. LaorenzaY. KatekhongW. HarnkarnsujaritN. Antifungal and plasticization effects of carvacrol in biodegradable poly(lactic acid) and poly(butylene adipate terephthalate) blend films for bakery packaging.Lebensm. Wiss. Technol.202115211235610.1016/j.lwt.2021.112356
    [Google Scholar]
  87. El-AassarM.R. IbrahimO.M. FoudaM.M.G. FakhryH. AjaremJ. MaodaaS.N. AllamA.A. HafezE.E. Wound dressing of chitosan-based-crosslinked gelatin/ polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes.Carbohydr. Polym.202125511748410.1016/j.carbpol.2020.11748433436244
    [Google Scholar]
  88. RisehR. VazvaniM. Ebrahimi-ZarandiM. SkorikY.A. Alginate-induced disease resistance in plants.Polymers202214466110.3390/polym1404066135215573
    [Google Scholar]
  89. GhoshD. KarmakarP. Insight into anti-oxidative carbohydrate polymers from medicinal plants: Structure-activity relationships, mechanism of actions and interactions with bovine serum albumin.Int. J. Biol. Macromol.20211661022103410.1016/j.ijbiomac.2020.10.25833166557
    [Google Scholar]
  90. MunavalliG.G. GuthridgeR. Knutsen-LarsonS. BrodskyA. MatthewE. LandauM. “COVID-19/SARS-CoV-2 virus spike protein-related delayed inflammatory reaction to hyaluronic acid dermal fillers: A challenging clinical conundrum in diagnosis and treatment”.Arch. Dermatol. Res.2022314111510.1007/s00403‑021‑02190‑633559733
    [Google Scholar]
  91. DevasvaranK. LimV. Green synthesis of metallic nanoparticles using pectin as a reducing agent: A systematic review of the biological activities.Pharm. Biol.202159149250110.1080/13880209.2021.191071633905665
    [Google Scholar]
  92. SharmaA. PuriV. KumarP. SinghI. Rifampicin-loaded alginate-gelatin fibers incorporated within transdermal films as a Fiber-in-Film system for wound healing applications.Membranes2020111710.3390/membranes1101000733374601
    [Google Scholar]
  93. KhanA.R. HuangK. JinzhongZ. ZhuT. MorsiY. AldalbahiA. El-NewehyM. YanX. MoX. PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation.Colloids Surf. B Biointerfaces202019611135210.1016/j.colsurfb.2020.11135232919244
    [Google Scholar]
  94. de MeloB.A.G. JodatY.A. CruzE.M. BenincasaJ.C. ShinS.R. PorcionattoM.A. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues.Acta Biomater.2020117607610.1016/j.actbio.2020.09.02432949823
    [Google Scholar]
  95. YuL. WeiM. Biomineralization of collagen-based materials for hard tissue repair.Int. J. Mol. Sci.202122294410.3390/ijms2202094433477897
    [Google Scholar]
  96. KorotkyiO. HuetA. DvorshchenkoK. KobyliakN. FalalyeyevaT. OstapchenkoL. Probiotic composition and chondroitin sulfate regulate TLR-2/4-mediated NF-κB inflammatory pathway and cartilage metabolism in experimental osteoarthritis.Probiotics Antimicrob. Proteins20211341018103210.1007/s12602‑020‑09735‑733459997
    [Google Scholar]
  97. BentleyK. StantonR.J. Hydroxypropyl methylcellulose-based nasal sprays effectively inhibit in vitro SARS-CoV-2 infection and spread.Viruses20211312234510.3390/v1312234534960612
    [Google Scholar]
  98. Fernández-CatalánA. PalouL. TabernerV. GrimalA. Argente-SanchisM. Pérez-GagoM.B. Hydroxypropyl methylcellulose-based edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored “rojo brillante” persimmons.Agronomy 202111475710.3390/agronomy11040757
    [Google Scholar]
  99. LuoY. HongY. ShenL. WuF. LinX. Multifunctional role of polyvinylpyrrolidone in pharmaceutical formulations.AAPS PharmSciTech20212213410.1208/s12249‑020‑01909‑433404984
    [Google Scholar]
  100. LiH. NiD. LiL. DongB. ChenQ. GuL. Insight into the role of polyacrylamide polymer powder on the cracking in plastic period of cement mortar.Constr. Build. Mater.202026011991410.1016/j.conbuildmat.2020.119914
    [Google Scholar]
  101. BobdeY. PaulM. PatelT. BiswasS. GhoshB. Polymeric micelles of a copolymer composed of all-trans retinoic acid, methoxy-poly(ethylene glycol), and b-poly(N-(2 hydroxypropyl) methacrylamide) as a doxorubicin-delivery platform and for combination chemotherapy in breast cancer.Int. J. Pharm.202160612086610.1016/j.ijpharm.2021.12086634237409
    [Google Scholar]
  102. SerbinA.V. KarasevaE.N. DunaevaI.V. Krut’koE.B. TalyzenkovY.A. FilatovaM.P. ChernikovaE.V. Controlled free-radical copolymerization of maleic anhydride and divinyl ether in the presence of reversible addition-fragmentation chain-transfer agents.Polym. Sci. Ser. B2011533-411612410.1134/S1560090411030079
    [Google Scholar]
  103. SimonL. BellardE. JouanmiqueouB. LapinteV. MarcotteN. DevoisselleJ.M. RolsM.P. GolzioM. BéguS. Evaluation of polyoxazolines insertion into the epidermis: From membrane models to in vivo studies study of pox interaction on different skin models.SSRN Elec. J.2022
    [Google Scholar]
  104. AhmedD.S. IbrahimF.M. BufarooshaM. Al-MashhadaniM.H. JawadA.H. YusopR.M. SalihN. MohammedS.A. YousifE. Polyphosphates as thermal stabilizers for poly(Vinyl Chloride).Proceedings of the Materials TodayElsevier Ltd20214226802685
    [Google Scholar]
  105. MagiriR. MutwiriG. WilsonH.L. Recent advances in experimental polyphosphazene adjuvants and their mechanisms of action.Cell Tissue Res.2018374346547110.1007/s00441‑018‑2929‑430294754
    [Google Scholar]
  106. SilvaJ.C. UdangawaR.N. ChenJ. MancinelliC.D. GarrudoF.F.F. MikaelP.E. CabralJ.M.S. FerreiraF.C. LinhardtR.J. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering.Mater. Sci. Eng. C202010711029110.1016/j.msec.2019.11029131761240
    [Google Scholar]
  107. KumarR. JhaD. PandaA.K. Antimicrobial therapeutics delivery systems based on biodegradable polylactide/polylactide-co-glycolide particles.Environ. Chem. Lett.20191731237124910.1007/s10311‑019‑00871‑3
    [Google Scholar]
  108. SeabraA.B. de OliveiraM.G. Poly(vinyl alcohol) and poly(vinyl pyrrolidone) blended films for local nitric oxide release.Biomaterials200425173773378210.1016/j.biomaterials.2003.10.03515020153
    [Google Scholar]
  109. Silva PereiraR.L. CampinaF.F. CostaM.S. Pereira da CruzR. Sampaio de FreitasT. Lucas dos SantosA.T. CruzB.G. Maciel de Sena JúniorD. LimaI.K. XavierM.R. TeixeiraA.M. Alencar de MenezesI.R. Quintans-JúniorL.J. AraújoA.A.S. CoutinhoH.D. Antibacterial and modulatory activities of β-cyclodextrin complexed with (+)-β-citronellol against multidrug-resistant strains.Microb. Pathog.202115610492810.1016/j.micpath.2021.10492833957243
    [Google Scholar]
  110. RamadanN. TahaM. La RosaA.D. ElsabbaghA. Towards selection charts for epoxy resin, unsaturated polyester resin and their fibre-fabric composites with flame retardants.Materials2021145118110.3390/ma1405118133802309
    [Google Scholar]
  111. WangX. LiB. FanJ. TianS. WeiX. Novel nanoformulated combination of Se and CeO 2 particles loaded polylactic‐co‐glycolic acid vesicle to improved anti‐inflammation and auto‐regenerative for the treatment and care of spinal cord injury.Appl. Organomet. Chem.2021358e626910.1002/aoc.6269
    [Google Scholar]
  112. PaschH. NdiripoA. BunguP.S.E. Multidimensional analytical protocols for the fractionation and analysis of complex polyolefins.J. Polym. Sci.20226071059107810.1002/pol.20210236
    [Google Scholar]
  113. LiuS. WippermannK. LehnertW. Mechanism of action of polytetrafluoroethylene binder on the performance and durability of high-temperature polymer electrolyte fuel cells.Int. J. Hydrogen Energy20214627146871469810.1016/j.ijhydene.2021.01.192
    [Google Scholar]
  114. JosephP. ArunM. BiggerS. GuerrieriM. PospiechD. HarnischC. Mode of action of condensed- and gaseous-phase fire retardation in some phosphorus-modified polymethyl methacrylate- and polystyrene-based bulk polymers.Polymers20211319340210.3390/polym1319340234641217
    [Google Scholar]
  115. MosaaZ.A. ZimamE.H. Thermal stability of novel maleimide polymers based on dapsone.Sys. Rev. Pharm.2021122447
    [Google Scholar]
  116. KN. RoutC.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications.RSC Advances202111105659569710.1039/D0RA07800J35686160
    [Google Scholar]
  117. SelviS.V. LincyV. ChenS.M. HongP-D. PrasannanA. Highly soluble polythiophene-based strontium-doped NiO nanocomposite for effective electrochemical detection of catechol in contaminated water.J. Mol. Liq.202133411649010.1016/j.molliq.2021.116490
    [Google Scholar]
  118. XieJ. ZhaoP. ZhangC. FuJ. TurngL.S. Current state of magnetic levitation and its applications in polymers: A review.Sens. Actuators B Chem.202133312953310.1016/j.snb.2021.129533
    [Google Scholar]
  119. ShiY. BaiY. LeiY. ZhangH. ZhouS. ZouH. LiangM. ChenY. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure.J. Mater. Sci. Technol.20229923925010.1016/j.jmst.2021.05.043
    [Google Scholar]
  120. KimJ. SongY. KimH. BaeN.H. LeeT.J. ParkY.M. LeeS.J. 3D Hierarchical polyaniline–metal hybrid nanopillars: Morphological control and its antibacterial application.Nanomaterials20211110271610.3390/nano11102716
    [Google Scholar]
  121. BhardwajH. KhuteS. SahuR. JangdeR.K. Advanced drug delivery system for management of chronic diabetes wound healing.Curr. Drug Targets202324161239125910.2174/011389450126000223110108050537957907
    [Google Scholar]
  122. DonatoR.K. MijaA. Keratin associations with synthetic, biosynthetic and natural polymers: An extensive review.Polymers20191213210.3390/polym1201003231878054
    [Google Scholar]
  123. GregoryH. PhillipsJ.B. Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers?Neurochem. Int.202114310495310.1016/j.neuint.2020.10495333388359
    [Google Scholar]
  124. StoneC.A.Jr LiuY. RellingM.V. KrantzM.S. PrattA.L. AbreoA. HemlerJ.A. PhillipsE.J. Immediate hypersensitivity to polyethylene glycols and polysorbates: More common than we have recognized.J. Allergy Clin. Immunol. Pract.20197515331540.e810.1016/j.jaip.2018.12.00330557713
    [Google Scholar]
  125. Bruusgaard-MouritsenM.A. JohansenJ.D. GarveyL.H. Clinical manifestations and impact on daily life of allergy to polyethylene glycol (PEG) in ten patients.Clin. Exp. Allergy202151346347010.1111/cea.1382233394522
    [Google Scholar]
  126. KurakulaM. RaoG.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition.J. Drug Deliv. Sci. Technol.20206010204610.1016/j.jddst.2020.10204632905026
    [Google Scholar]
  127. AlbalasmehA.A. HamdanE.H. GharaibehM.A. HanandehA.E. Improving aggregate stability and hydraulic properties of Sandy loam soil by applying polyacrylamide polymer.Soil Tillage Res.202120610482110.1016/j.still.2020.104821
    [Google Scholar]
  128. AlsuraifiA. MathewE. LamprouD.A. CurtisA. HoskinsC. Thermally reactive N-(2-hydroxypropyl)methacrylamide (HPMA) amphiphiles for drug solubilisation.Int. J. Pharm.202160112057010.1016/j.ijpharm.2021.12057033812968
    [Google Scholar]
  129. Torres-FigueroaA.V. Pérez-MartínezC.J. EncinasJ.C. Burruel-IbarraS. Silvas-GarcíaM.I. García AlegríaA.M. del Castillo-CastroT. Thermosensitive bioadhesive hydrogels based on poly(N-isopropylacrilamide) and Poly(methyl vinyl ether-alt-maleic anhydride) for the controlled release of metronidazole in the vaginal environment.Pharmaceutics2021138128410.3390/pharmaceutics1308128434452245
    [Google Scholar]
  130. PortierÉ. AzemarF. BenkhaledB.T. BardeauJ.F. FaÿF. RéhelK. LapinteV. LinossierI. Poly(oxazoline) for the design of amphiphilic silicone coatings.Prog. Org. Coat.202115310611610.1016/j.porgcoat.2020.106116
    [Google Scholar]
  131. AlbrightV. Penarete-AcostaD. StackM. ZhengJ. MarinA. HlushkoH. WangH. JayaramanA. AndrianovA.K. SukhishviliS.A. Polyphosphazenes enable durable, hemocompatible, highly efficient antibacterial coatings.Biomaterials202126812058610.1016/j.biomaterials.2020.12058633310537
    [Google Scholar]
  132. StewartS.A. Domínguez-RoblesJ. UtomoE. PiccoC.J. CorduasF. MancusoE. AmirM.N. BaharM.A. SumarheniS. DonnellyR.F. PermanaA.D. LarrañetaE. Poly(caprolactone)-based subcutaneous implant for sustained delivery of levothyroxine.Int. J. Pharm.202160712101110.1016/j.ijpharm.2021.12101134391850
    [Google Scholar]
  133. SunJ. ShenJ. ChenS. CooperM. FuH. WuD. YangZ. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends.Polymers201810550510.3390/polym1005050530966540
    [Google Scholar]
  134. GuoX. YaoY. ZhaoH. ChiC. ZengF. QianF. LiuZ. HuoL. LvY. Environmental impacts of functional fillers in polylactide (PLA)-based bottles using life cycle assessment methodology.Sci. Total Environ.202178814785210.1016/j.scitotenv.2021.14785234134360
    [Google Scholar]
  135. AslamM. KalyarM.A. RazaZ.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites.Polym. Eng. Sci.201858122119213210.1002/pen.24855
    [Google Scholar]
  136. MuppalaneniS. Polyvinyl alcohol in medicine and pharmacy.J. Dev. Drugs20130231510.4172/2329‑6631.1000112
    [Google Scholar]
  137. PetitjeanM. García-ZubiriI.X. IsasiJ.R. History of cyclodextrin-based polymers in food and pharmacy: A review.Environ. Chem. Lett.20211943465347610.1007/s10311‑021‑01244‑533907537
    [Google Scholar]
  138. XuQ. ZhangJ. HuY.Z. MaT.B. Tribological behavior of Poly(tetrafluoroethylene) and its composites reinforced by carbon nanotubes and graphene sheets: Molecular dynamics simulation.Phys. Status Solidi Rapid Res. Lett.2022163210029810.1002/pssr.202100298
    [Google Scholar]
  139. WendelsS. AvérousL. Biobased polyurethanes for biomedical applications.Bioact. Mater.2021641083110610.1016/j.bioactmat.2020.10.00233102948
    [Google Scholar]
  140. SuriyakumarS. BhardwajP. GraceA.N. StephanA.M. Role of polymers in enhancing the performance of electrochemical supercapacitors: A review.Batter. Supercaps20214457158410.1002/batt.202000272
    [Google Scholar]
  141. IdumahC.I. Novel trends in conductive polymeric nanocomposites, and bionanocomposites.Synth. Met.202127311667410.1016/j.synthmet.2020.116674
    [Google Scholar]
  142. DengS. GigliobiancoM.R. CensiR. Di MartinoP. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities.Nanomaterials202010584710.3390/nano1005084732354008
    [Google Scholar]
  143. YuJ. WangD. GeethaN. KhawarK.M. JogaiahS. MujtabaM. Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review.Carbohydr. Polym.202126111790410.1016/j.carbpol.2021.11790433766382
    [Google Scholar]
  144. TajikS. BeitollahiH. NejadF.G. DourandishZ. KhalilzadehM.A. JangH.W. VendittiR.A. VarmaR.S. ShokouhimehrM. Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants.Ind. Eng. Chem. Res.20216031112113610.1021/acs.iecr.0c0495235340740
    [Google Scholar]
  145. ChaouiN. TrunkM. DawsonR. SchmidtJ. ThomasA. Trends and challenges for microporous polymers.Chem. Soc. Rev.201746113302332110.1039/C7CS00071E28422212
    [Google Scholar]
  146. JurakM. WiącekA.E. ŁadniakA. PrzykazaK. SzafranK. What affects the biocompatibility of polymers?Adv. Colloid Interface Sci.202129410245110.1016/j.cis.2021.10245134098385
    [Google Scholar]
  147. ChochosC.L. SpanosM. KatsourasA. TatsiE. DrakopoulouS. GregoriouV.G. AvgeropoulosA. Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules.Prog. Polym. Sci.201991517910.1016/j.progpolymsci.2019.02.002
    [Google Scholar]
  148. HudsonB. Polyacetylene: Myth and reality.Materials201811224210.3390/ma1102024229415419
    [Google Scholar]
  149. MousaviS.M. HashemiS.A. BahraniS. YousefiK. BehbudiG. BabapoorA. OmidifarN. LaiC.W. GholamiA. ChiangW.H. Recent advancements in polythiophene-based materials and their biomedical, geno sensor and DNA detection.Int. J. Mol. Sci.20212213685010.3390/ijms2213685034202199
    [Google Scholar]
  150. ZareE.N. AgarwalT. ZarepourA. PinelliF. ZarrabiA. RossiF. AshrafizadehM. MalekiA. ShahbaziM.A. MaitiT.K. VarmaR.S. TayF.R. HamblinM.R. MattoliV. MakvandiP. Electroconductive multi-functional polypyrrole composites for biomedical applications.Appl. Mater. Today20212410111710.1016/j.apmt.2021.101117
    [Google Scholar]
  151. HadimaniP. MurthyH.N. MudbidreR. Thermal and mechanical properties of glass fibre reinforced polyphenylene ether/polystyrene/nylon-6 ternary blends.Polym. Polymer Compos.20212971075108810.1177/0967391120949490
    [Google Scholar]
  152. DinuA. ApetreiC. A review of sensors and biosensors modified with conducting polymers and molecularly imprinted polymers used in electrochemical detection of amino acids: Phenylalanine, tyrosine, and tryptophan.Int. J. Mol. Sci.2022233121810.3390/ijms2303121835163145
    [Google Scholar]
  153. BoniR. AliA. ShavandiA. ClarksonA.N. Current and novel polymeric biomaterials for neural tissue engineering.J. Biomed. Sci.20182519010.1186/s12929‑018‑0491‑830572957
    [Google Scholar]
  154. MadkourL.H. Nanoparticle and polymeric nanoparticle-based targeted drug delivery systems.Nucleic Acids as Gene Anticancer Drug Delivery Therapy.Elsevier201919124010.1016/B978‑0‑12‑819777‑6.00013‑5
    [Google Scholar]
  155. JangdeR. KhanT. BhardwajH. Development and characterization of nanostructured lipid carrier for topical delivery of naringenin.Res. J. Pharm. Technol.2023162572257610.52711/0974‑360X.2023.00422
    [Google Scholar]
  156. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano1007140332707641
    [Google Scholar]
  157. BhardwajH. JangdeR.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications.Next Nanotechnology2023210001310.1016/j.nxnano.2023.100013
    [Google Scholar]
  158. VahedS. FathiN. SamieiM. DizajS. SharifiS. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles.J. Drug Target.201927329229910.1080/1061186X.2018.149197829929413
    [Google Scholar]
  159. GrewalI.K. SinghS. AroraS. SharmaN. Polymeric nanoparticles for breast cancer therapy: A comprehensive review.Biointerface Res. Appl. Chem.2021111115111171
    [Google Scholar]
  160. AfsharzadehM. HashemiM. MokhtarzadehA. AbnousK. RamezaniM. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment.Artif. Cells Nanomed. Biotechnol.20184661095111010.1080/21691401.2017.137667528954547
    [Google Scholar]
  161. WibowoD. JorritsmaS.H.T. GonzagaZ.J. EvertB. ChenS. RehmB.H.A. Polymeric nanoparticle vaccines to combat emerging and pandemic threats.Biomaterials202126812059710.1016/j.biomaterials.2020.12059733360074
    [Google Scholar]
  162. SwetledgeS. JungJ.P. CarterR. SabliovC. Distribution of polymeric nanoparticles in the eye: Implications in ocular disease therapy.J. Nanobiotechnology20211911010.1186/s12951‑020‑00745‑933413421
    [Google Scholar]
  163. ZhangW. MehtaA. TongZ. EsserL. VoelckerN.H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges.Adv. Sci.2021810200393710.1002/advs.20200393734026447
    [Google Scholar]
  164. WakaskarR.R. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes.J. Drug Target.201826431131810.1080/1061186X.2017.136700628797169
    [Google Scholar]
  165. TorneselloA.L. TagliamonteM. TorneselloM.L. BuonaguroF.M. BuonaguroL. Nanoparticles to improve the efficacy of peptide-based cancer vaccines.Cancers2020124104910.3390/cancers1204104932340356
    [Google Scholar]
  166. Sadeghi-GhadiZ. EbrahimnejadP. AmiriF. NokhodchiA. Improved oral delivery of quercetin with hyaluronic acid containing niosomes as a promising formulation.J. Drug Target.202129222523410.1080/1061186X.2020.183040832997536
    [Google Scholar]
  167. BaraneiM. TaheriR.A. TirgarM. SaeidiA. OroojalianF. UzunL. AsefnejadA. WurmF.R. GoodarziV. Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome Coated with PEG against different cell lines.Mater. Today Commun.20212610175110.1016/j.mtcomm.2020.101751
    [Google Scholar]
  168. AsadM.I. KhanD. RehmanA. ElaissariA. AhmedN. Development and in vitro/in vivo evaluation of ph-sensitive polymeric nanoparticles loaded hydrogel for the management of psoriasis.Nanomaterials20211112343310.3390/nano1112343334947782
    [Google Scholar]
  169. AhmedR.M.G. AnisB. KhalilA.S.G. Facile surface treatment and decoration of graphene-based 3D polymeric sponges for high performance separation of heavy oil-in-water emulsions.J. Environ. Chem. Eng.20219210508710.1016/j.jece.2021.105087
    [Google Scholar]
  170. VillaC.C. SánchezL.T. ValenciaG.A. AhmedS. GutiérrezT.J. Molecularly imprinted polymers for food applications: A review.Trends Food Sci. Technol.202111164266910.1016/j.tifs.2021.03.003
    [Google Scholar]
  171. AlhalmiA. Hasan AliN. AltowairiM. AlmoiliqyM. AlzubaidiN. SharmaB. Phosphocreatine improves cardiac dysfunction by normalizing mitochondrial respiratory function through JAK2/STAT3 signaling pathway in vivo and in vitro view project evaluation of hedychium spicatum extract against ovalbumin induced asthma in experimental rat model view project XANTHAN GUM; Its biopharmaceutical applications: An overview.World J Pharm Pharm Sci201871536154810.20959/wjpps20181‑10869
    [Google Scholar]
  172. JadounS. RiazU. BudhirajaV. Biodegradable conducting polymeric materials for biomedical applications: A review.Med. Devices Sens.202141e1014110.1002/mds3.10141
    [Google Scholar]
  173. RaiR. AlwaniS. BadeaI. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications.Polymers201911474510.3390/polym1104074531027272
    [Google Scholar]
  174. LiuF. ChenQ. LiuC. AoQ. TianX. FanJ. TongH. WangX. Natural polymers for organ 3D bioprinting.Polymers20181011127810.3390/polym1011127830961203
    [Google Scholar]
  175. JangdeR. ElhassanG.O. KhuteS. SinghD. SinghM. SahuR.K. KhanJ. Hesperidin-loaded lipid polymer hybrid nanoparticles for topical delivery of bioactive drugs.Pharmaceuticals202215221110.3390/ph1502021135215324
    [Google Scholar]
  176. PiresL.S. MagalhãesF.D. PintoA.M. New polymeric composites based on two-dimensional nanomaterials for biomedical applications.Polymers2022147146410.3390/polym1407146435406337
    [Google Scholar]
  177. DmourI. TahaM.O. Natural and semisynthetic polymers in pharmaceutical nanotechnology.Organic Materials as Smart Nanocarriers for Drug Delivery.Elsevier Inc.20183510010.1016/B978‑0‑12‑813663‑8.00002‑6
    [Google Scholar]
  178. DaveV. TakK. SohgauraA. GuptaA. SadhuV. ReddyK.R. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications.J. Microbiol. Methods201916013014210.1016/j.mimet.2019.03.01730898602
    [Google Scholar]
  179. XuK. LiangZ.C. DingX. HuH. LiuS. NurmikM. BiS. HuF. JiZ. RenJ. YangS. YangY.Y. LiL. Nanomaterials in the prevention, diagnosis, and treatment of mycobacterium tuberculosis infections.Adv. Healthc. Mater.201871170050910.1002/adhm.20170050928941042
    [Google Scholar]
  180. DebottonN. DahanA. Applications of polymers as pharmaceutical excipients in solid oral dosage forms.Med. Res. Rev.2017371529710.1002/med.2140327502146
    [Google Scholar]
  181. NyamweyaN.N. Applications of polymer blends in drug delivery.Futur J Pharm Sci2021711810.1186/s43094‑020‑00167‑2
    [Google Scholar]
  182. ChenX. ZhaoY. LiL. WangY. WangJ. XiongJ. DuS. ZhangP. ShiX. YuJ. MXene/polymer nanocomposites: Preparation, properties, and applications.Polym. Rev.20216118011510.1080/15583724.2020.1729179
    [Google Scholar]
  183. GandhiA. VermaS. VyasM. A review on techniques for grafting of natural polymers and their applications.Plant Arch. 201919972978
    [Google Scholar]
  184. DebP.K. KokazS.F. AbedS.N. ParadkarA. TekadeR.K. Pharmaceutical and biomedical applications of polymers.Basic Fundamentals of Drug Delivery.Elsevier2018203267
    [Google Scholar]
  185. ZhangX. ParekhG. GuoB. HuangX. DongY. HanW. ChenX. XiaoG. Polyphenol and self-assembly: Metal polyphenol nanonetwork for drug delivery and pharmaceutical applications.Future Drug Discov.201911FDD710.4155/fdd‑2019‑0001
    [Google Scholar]
  186. HussainS.A. AbdelkaderH. AbdullahN. KmaruddinS. Review on micro-encapsulation with Chitosan for pharmaceuticals applications.MOJ Current Research & Reviews201812778410.15406/mojcrr.2018.01.00013
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137294889240314032718
Loading
/content/journals/cnano/10.2174/0115734137294889240314032718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test