Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Industries release a significant amount of wastewater contaminated with heavy metals. It is a major cause of pollution and a potential health hazard when discharged into the environment without treatment. Standard adsorbents for removing heavy metals have certain limitations, like incomplete metal removal, high energy requirements, and undesirable waste generation. Therefore, the use of biosorbents is an effective alternative to conventional procedures. This critical review evaluates and summarizes the optimum results obtained from different papers covering different parameters such as biosorbent removal efficiency and their adsorption capacity, adsorbent dosage, and effect of pretreatment for removal of single and combination of heavy metals. The influence of pH, contact time, and sorbent dose on biosorption has been discussed. The Langmuir model and the Freundlich model are studied for various biosorbents, and the respective results are obtained and summarised. The pseudo-first and second-order models have been evaluated to study the sorption kinetics. Through this review, it can be concluded that biosorbents can be a promising alternative to treat industrial effluents, mainly because of their high metal binding capacity, low cost, high efficiency in diluted effluents, and environmentally friendly nature.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137278018231127062510
2025-01-01
2025-09-19
Loading full text...

Full text loading...

References

  1. SassiM. BestaniB. SaidA.H. BenderdoucheN. GuibalE. Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant.Desalination20102621-324325010.1016/j.desal.2010.06.022
    [Google Scholar]
  2. FarnaneM. TounsadiH. ElmoubarkiR. MahjoubiF.Z. ElhalilA. SaqraneS. AbdennouriM. QourzalS. BarkaN. Alkaline treated carob shells as sustainable biosorbent for clean recovery of heavy metals: Kinetics, equilibrium, ions interference and process optimisation.Ecol. Eng.201710192010.1016/j.ecoleng.2017.01.012
    [Google Scholar]
  3. WangX. LiZ. SunC. Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: Marine macroalgae and agricultural by-products.J. Hazard. Mater.200815331176118410.1016/j.jhazmat.2007.09.079 17997216
    [Google Scholar]
  4. Ihsanullah; Al-Khaldi, F.A.; Abu-Sharkh, B.; Abulkibash, A.M.; Qureshi, M.I.; Laoui, T.; Atieh, M.A. Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes.Desalination Water Treat.201657167232724410.1080/19443994.2015.1021847
    [Google Scholar]
  5. GuptaV.K. RastogiA. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies.J. Hazard. Mater.2008152140741410.1016/j.jhazmat.2007.07.028 17716814
    [Google Scholar]
  6. WaseemS. DinM.I. NasirS. RasoolA. Evaluation of Acacia nilotica as a non conventional low cost biosorbent for the elimination of Pb(II) and Cd(II) ions from aqueous solutions.Arab. J. Chem.2014761091109810.1016/j.arabjc.2012.03.020
    [Google Scholar]
  7. ChakrabortyD. MajiS. BandyopadhyayA. BasuS. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum.Bioresour. Technol.200798152949295210.1016/j.biortech.2006.09.035 17118649
    [Google Scholar]
  8. KumarM. SinghA.K. SikandarM. Biosorption of Hg (II) from aqueous solution using algal biomass: Kinetics and isotherm studies.Heliyon202061e0332110.1016/j.heliyon.2020.e03321 32042987
    [Google Scholar]
  9. QuyenV. PhamT-H. KimJ. ThanhD.M. ThangP.Q. Van LeQ. JungS.H. KimT.Y. Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater.Chemosphere202128413131210.1016/j.chemosphere.2021.131312
    [Google Scholar]
  10. Ihsanullah; Al-Khaldi, F.A.; Abusharkh, B.; Khaled, M.; Atieh, M.A.; Nasser, M.S.; laoui, T.; Saleh, T.A.; Agarwal, S.; Tyagi, I.; Gupta, V.K. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents.J. Mol. Liq.201520425526310.1016/j.molliq.2015.01.033
    [Google Scholar]
  11. IhsanullahI. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects.Chem. Eng. J.202038812434010.1016/j.cej.2020.124340
    [Google Scholar]
  12. Kelly-VargasK. Cerro-LopezM. Reyna-TellezS. BandalaE.R. Sanchez-SalasJ.L. Biosorption of heavy metals in polluted water, using different waste fruit cortex.Phys. Chem. Earth Parts ABC201237-39262910.1016/j.pce.2011.03.006
    [Google Scholar]
  13. VoleskyB. Advances in biosorption of metals: Selection of biomass types.FEMS Microbiol. Rev.199414429130210.1111/j.1574‑6976.1994.tb00102.x 7917417
    [Google Scholar]
  14. BilalM. IhsanullahI. YounasM. Ul Hassan ShahM. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review.Separ. Purif. Tech.202127811951010.1016/j.seppur.2021.119510
    [Google Scholar]
  15. RazaM.H. SadiqA. FarooqU. AtharM. HussainT. MujahidA. SalmanM. Phragmites karka as a biosorbent for the removal of mercury metal ions from aqueous solution: Effect of modification.J. Chem.20152015112
    [Google Scholar]
  16. ManoharD.M. Anoop KrishnanK. AnirudhanT.S. Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay.Water Res.20023661609161910.1016/S0043‑1354(01)00362‑1 11996349
    [Google Scholar]
  17. Es-sahbanyH. BerradiM. NkhiliS. HsissouR. AllaouiM. LoutfiM. BassirD. BelfaquirM. El YoubiM.S. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay.Mater. Today Proc.20191386687510.1016/j.matpr.2019.04.050
    [Google Scholar]
  18. RajiC. AnirudhanT.S. Batch Cr(VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics.Water Res.199832123772378010.1016/S0043‑1354(98)00150‑X
    [Google Scholar]
  19. BeidokhtiM.Z. NaeeniS.T. AbdiGhahroudi MS. Biosorption of nickel (II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent.Civil Eng. J.20195244745710.28991/cej‑2019‑03091259
    [Google Scholar]
  20. GiannakoudakisD.A. Hosseini-BandegharaeiA. TsafrakidouP. TriantafyllidisK.S. KornarosM. AnastopoulosI. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review.J. Environ. Manage.201822735436410.1016/j.jenvman.2018.08.064 30199731
    [Google Scholar]
  21. NasrullahA. KhanH. KhanA.S. ManZ. MuhammadN. KhanM.I. Abd El-SalamN.M. NaserM. Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution.ScientificWorldJournal2015201511110.1155/2015/562693 25705714
    [Google Scholar]
  22. GuptaS. SharmaS.K. KumarA. Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder.Water Sci. Eng.2019121273610.1016/j.wse.2019.04.003
    [Google Scholar]
  23. SaravananD. GomathiT. SudhaP.N. Sorption studies on heavy metal removal using chitin/bentonite biocomposite.Int. J. Biol. Macromol.201353677110.1016/j.ijbiomac.2012.11.005 23148945
    [Google Scholar]
  24. LangmuirI. The adsorption of gases on plane surfaces of glass, mica and platinum.J. Am. Chem. Soc.19184091361140310.1021/ja02242a004
    [Google Scholar]
  25. KarthikeyanG. AnbalaganK. AndalN.M. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan.J. Chem. Sci.2004116211912710.1007/BF02708205
    [Google Scholar]
  26. KurniawanA. SisnandyV.O.A. TrilestariK. SunarsoJ. IndraswatiN. IsmadjiS. Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater.Ecol. Eng.201137694094710.1016/j.ecoleng.2011.01.019
    [Google Scholar]
  27. ParkD. YunY.S. ParkJ.M. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp.Chemosphere200560101356136410.1016/j.chemosphere.2005.02.020 16054904
    [Google Scholar]
  28. PillaiS.S. MullasseryM.D. FernandezN.B. GirijaN. GeethaP. KoshyM. Biosorption of Cr(VI) from aqueous solution by chemically modified potato starch: Equilibrium and kinetic studies.Ecotoxicol. Environ. Saf.20139219920510.1016/j.ecoenv.2013.01.020 23499185
    [Google Scholar]
  29. ForstnerV. WittmanG.T.W. Metal Pollution in the Aquatic EnvironmentSpringer-Verlag, BerlinHeidelberg, New York198112±4510.1007/978‑3‑642‑69385‑4
    [Google Scholar]
  30. GuptaS. GargD. KumarA. Cadmium biosorption using Aloe. barbadensis Miller leaves waste powder treated with sodium bicarbonate.Cleaner Waste Systems2022310003210.1016/j.clwas.2022.100032
    [Google Scholar]
  31. FourestE. RouxJ.C. Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH.Appl. Microbiol. Biotechnol.199237339940310.1007/BF00211001
    [Google Scholar]
  32. SelatniaA. BakhtiM.Z. MadaniA. KertousL. MansouriY. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass.Hydrometallurgy2004751-4112410.1016/j.hydromet.2004.06.005
    [Google Scholar]
  33. MatheickalJ.T. YuQ. Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae.Bioresour. Technol.199969322322910.1016/S0960‑8524(98)00196‑5
    [Google Scholar]
  34. KaewsarnP. YuQ. Cadmium(II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp.Environ. Pollut.2001112220921310.1016/S0269‑7491(00)00114‑7 11234537
    [Google Scholar]
  35. DuY. LianF. ZhuL. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells.Environ. Pollut.201115971763176810.1016/j.envpol.2011.04.017 21550150
    [Google Scholar]
  36. Peña-RodríguezS. Fernández-CalviñoD. Nóvoa-MuñozJ.C. Arias-EstévezM. Núñez-DelgadoA. Fernández-SanjurjoM.J. Álvarez-RodríguezE. Kinetics of Hg(II) adsorption and desorption in calcined mussel shells.J. Hazard. Mater.20101801-362262710.1016/j.jhazmat.2010.04.079 20466485
    [Google Scholar]
  37. HossainA. BhattacharyyaS.R. AdityaG. Biosorption of cadmium from aqueous solution by shell dust of the freshwater snail Lymnaea luteola.Environ. Technol. Innov.20154829110.1016/j.eti.2015.05.001
    [Google Scholar]
  38. WickhamJ.R. HalyeJ.L. KashtanovS. KhandoginJ. RiceC.V. Revisiting magnesium chelation by teichoic acid with phosphorus solid-state NMR and theoretical calculations.J. Phys. Chem. B200911372177218310.1021/jp809313j 19173634
    [Google Scholar]
  39. ÇolakF. AtarN. YazıcıoğluD. OlgunA. Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance.Chem. Eng. J.2011173242242810.1016/j.cej.2011.07.084
    [Google Scholar]
  40. HanifM.A. NadeemR. BhattiH.N. AhmadN.R. AnsariT.M. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass.J. Hazard. Mater.2007139234535510.1016/j.jhazmat.2006.06.040 16860463
    [Google Scholar]
  41. RiazM. NadeemR. HanifM.A. AnsariT.M. RehmanK. Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass.J. Hazard. Mater.20091611889410.1016/j.jhazmat.2008.03.096 18502037
    [Google Scholar]
  42. KingP. RakeshN. BeenalahariS. Prasanna KumarY. PrasadV.S.R.K. Removal of lead from aqueous solution using Syzygium cumini L.: Equilibrium and kinetic studies.J. Hazard. Mater.20071421-234034710.1016/j.jhazmat.2006.08.027 16987604
    [Google Scholar]
  43. Ekmekyapar TorunF. AslanA. BayhanY.K. CakiciA. Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm.J. Hazard. Mater.2006137129329810.1016/j.jhazmat.2006.02.003 16530938
    [Google Scholar]
  44. BasciN. KocadagistanE. KocadagistanB. Biosorption of copper (II) from aqueous solutions by wheat shell.Desalination2004164213514010.1016/S0011‑9164(04)00172‑9
    [Google Scholar]
  45. ChenH. DaiG. ZhaoJ. ZhongA. WuJ. YanH. Removal of copper(II) ions by a biosorbent—Cinnamomum camphora leaves powder.J. Hazard. Mater.20101771-322823610.1016/j.jhazmat.2009.12.022 20022692
    [Google Scholar]
  46. AksuZ. İşoğluİ.A. Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp.Process Biochem.20054093031304410.1016/j.procbio.2005.02.004
    [Google Scholar]
  47. NorouziS. HeidariM. AlipourV. RahmanianO. FazlzadehM. Mohammadi-moghadamF. NourmoradiH. GoudarziB. DindarlooK. Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste.Bioresour. Technol.2018258485610.1016/j.biortech.2018.02.106 29522925
    [Google Scholar]
  48. NhamN.T. TahtamouniT.M.A. NguyenT.D. HuongP.T. JitaeK. VietN.M. NoiN.V. PhuongN.M. AnhN.T.H. Synthesis of iron modified rice straw biochar toward arsenic from groundwater.Mater. Res. Express201961111552810.1088/2053‑1591/ab4b98
    [Google Scholar]
  49. ŞenA. PereiraH. OlivellaM.A. VillaescusaI. Heavy metals removal in aqueous environments using bark as a biosorbent.Int. J. Environ. Sci. Technol.201512139140410.1007/s13762‑014‑0525‑z
    [Google Scholar]
  50. SenA.U. Olivella CostaÀ. Fiol SantalóN. MirandaI. Villaescusa GilI. PereiraH Removal of chromium (VI) in aqueous environments using cork and heat-treated cork samples from Quercus cerris and Quercus suber.BioResources20127448434857
    [Google Scholar]
  51. NiadM. RasoolzadehL. ZareiF. Biosorption of copper (II) on Sargassum angostifolium C. agardh phaeophyceae biomass.Chem. Spec. Bioavail.201426317618310.3184/095422914X14039722451529
    [Google Scholar]
  52. AldorI. FourestE. VoleskyB. Desorption of cadmium from algal biosorbent.Can. J. Chem. Eng.199573451652210.1002/cjce.5450730412
    [Google Scholar]
  53. DavisT.A. VoleskyB. VieiraR.H.S.F. Sargassum seaweed as biosorbent for heavy metals.Water Res.200034174270427810.1016/S0043‑1354(00)00177‑9
    [Google Scholar]
  54. KılıçM. KeskinM.E. MazlumS. MazlumN. Hg(II) and Pb(II) adsorption on activated sludge biomass: Effective biosorption mechanism.Int. J. Miner. Process.2008871-21810.1016/j.minpro.2008.01.001
    [Google Scholar]
  55. WangX. ChenL. XiaS. ZhaoJ. ChovelonJ.M. RenaultN.J. Biosorption of Cu(II) and Pb(II) from aqueous solutions by dried activated sludge.Miner. Eng.200619996897110.1016/j.mineng.2005.09.042
    [Google Scholar]
  56. GuibalE. Interactions of metal ions with chitosan-based sorbents: A review.Separ. Purif. Tech.2004381437410.1016/j.seppur.2003.10.004
    [Google Scholar]
  57. SvecovaL. SpanelovaM. KubalM. GuibalE. Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies.Separ. Purif. Tech.200652114215310.1016/j.seppur.2006.03.024
    [Google Scholar]
  58. SchiewerS. VoleskyB. Biosorption processes for heavy metal removal.Environ. Microbe‐metal Interac.200032936210.1128/9781555818098.ch14
    [Google Scholar]
  59. SaeedA. AkhterM. IqbalM. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent.Separ. Purif. Tech.2005451253110.1016/j.seppur.2005.02.004
    [Google Scholar]
  60. BagchiS.N. SharmaR. SinghH.N. Inorganic nitrogen control of growth, chlorophyll, and protein level in cyanobacterium Nostoc muscorum.J. Plant Physiol.19851211738110.1016/S0176‑1617(85)80092‑4 23195932
    [Google Scholar]
  61. El-EnanyA.E. IssaA.A. Cyanobacteria as a biosorbent of heavy metals in sewage water.Environ. Toxicol. Pharmacol.2000829510110.1016/S1382‑6689(99)00037‑X 10867368
    [Google Scholar]
  62. Du LaingG. TackF.M.G. VerlooM.G. Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis).Anal. Chim. Acta20034971-219119810.1016/j.aca.2003.08.044
    [Google Scholar]
  63. SouthichakB. NakanoK. NomuraM. ChibaN. NishimuraO. Phragmites australis: A novel biosorbent for the removal of heavy metals from aqueous solution.Water Res.200640122295230210.1016/j.watres.2006.04.027 16766011
    [Google Scholar]
  64. LiangP. DingQ. SongF. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples.J. Sep. Sci.200528172339234310.1002/jssc.200500154 16342800
    [Google Scholar]
  65. TuzenM. SaygiK.O. UstaC. SoylakM. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions.Bioresour. Technol.20089961563157010.1016/j.biortech.2007.04.013 17532628
    [Google Scholar]
  66. ZhouQ. WangW. XiaoJ. WangJ. LiuG. ShiQ. GuoG. Comparison of the enrichment efficiency of multiwalled carbon nanotubes, C18 silica, and activated carbon as the adsorbents for the solid phase extraction of atrazine and simazine in water samples.Mikrochim. Acta20061523-421522410.1007/s00604‑005‑0448‑y
    [Google Scholar]
  67. AnirudhanT.S. RadhakrishnanP.G. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell.J. Chem. Thermodyn.200840470270910.1016/j.jct.2007.10.005
    [Google Scholar]
  68. SaviozziA. RiffaldiR. Levi-MinziR. ScagnozziA. VanniG. Decomposition of vegetation-water sludge in soil.Bioresour. Technol.199344322322810.1016/0960‑8524(93)90156‑6
    [Google Scholar]
  69. ReddyB.R. MirghaffariN. GaballahI. Removal and recycling of copper from aqueous solutions using treated Indian barks.Resour. Conserv. Recycling199721422724510.1016/S0921‑3449(97)00036‑0
    [Google Scholar]
  70. ChoucheneA. JeguirimM. TrouvéG. Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions.Clean Technol. Environ. Policy201416597998610.1007/s10098‑013‑0680‑9
    [Google Scholar]
  71. BarkaN. OuzaouitK. AbdennouriM. El MakhfoukM. QourzalS. AssabbaneA. Ait-IchouY. NounahA. Kinetics and equilibrium of cadmium removal from aqueous solutions by sorption onto synthesized hydroxyapatite.Desalination Water Treat.2012431-381610.1080/19443994.2012.672189
    [Google Scholar]
  72. RubioF. GonçalvesA.C.Jr MeneghelA.P. TarleyC.R.T. SchwantesD. CoelhoG.F. Removal of cadmium from water using by-product Crambe abyssinica Hochst seeds as biosorbent material.Water Sci. Technol.201368122723310.2166/wst.2013.233 23823559
    [Google Scholar]
  73. DjinniI. DjoudiW. Streptomyces sp. WR1L1S8 a potent endophytic marine strain for heavy metal resistance and copper removal enhanced by RSM modeling.Acta Ecol. Sin.2022422808910.1016/j.chnaes.2021.04.004
    [Google Scholar]
  74. KarthikeyanS. BalasubramanianR. IyerC.S.P. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions.Bioresour. Technol.200798245245510.1016/j.biortech.2006.01.010 16530408
    [Google Scholar]
  75. IbrahimW.M. Biosorption of heavy metal ions from aqueous solution by red macroalgae.J. Hazard. Mater.201119231827183510.1016/j.jhazmat.2011.07.019 21798665
    [Google Scholar]
  76. KhalilH.P.S.A. AlwaniM.S. OmarA.K.M. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers.BioResources20061222023210.15376/biores.1.2.220‑232
    [Google Scholar]
  77. FryS.C. Primary cell wall metabolism: Tracking the careers of wall polymers in living plant cells.New Phytol.2004161364167510.1111/j.1469‑8137.2004.00980.x 33873719
    [Google Scholar]
  78. SchneiderI.A.H. RubioJ. MisraM. SmithR.W. Eichhornia crassipes as biosorbent for heavy metal ions.Miner. Eng.19958997998810.1016/0892‑6875(95)00061‑T
    [Google Scholar]
  79. Salah AzabM. PetersonP.J. The removal of cadmium from water by the use of biological sorbents.Water Sci. Technol.198921121705170610.2166/wst.1989.0149
    [Google Scholar]
  80. MuhammadA.A. AbdulW. KaramatM. MohdJ.M. IsmailY. Low cost biosorbent banana peel (Musa sapientum) for the removal of heavy metals.Sci. Res. Essays20116194055406410.5897/SRE11.303
    [Google Scholar]
  81. FaucetteL.B. Cardoso-GendreauF.A. CodlingE. SadeghiA.M. PachepskyY.A. SheltonD.R. Storm water pollutant removal performance of compost filter socks.J. Environ. Qual.20093831233123910.2134/jeq2008.0306 19398521
    [Google Scholar]
  82. PennanenT. SrivastavaV. SillanpääM. SainioT. Compost: Potent biosorbent for the removal of heavy metals from industrial and landfill stormwater.J. Clean. Prod.202027312273610.1016/j.jclepro.2020.122736
    [Google Scholar]
  83. VahurS. TeearuA. PeetsP. JoosuL. LeitoI. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000-80 cm–1.Anal. Bioanal. Chem.2016408133373337910.1007/s00216‑016‑9411‑5 26968569
    [Google Scholar]
  84. Witek-KrowiakA. SzafranR.G. ModelskiS. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent.Desalination20112651-312613410.1016/j.desal.2010.07.042
    [Google Scholar]
  85. IqbalM. SaeedA. AkhtarN. Petiolar felt-sheath of palm: A new biosorbent for the removal of heavy metals from contaminated water.Bioresour. Technol.200281215115310.1016/S0960‑8524(01)00126‑2 11762907
    [Google Scholar]
  86. SheikhZ. AminM. KhanN. KhanM.N. SamiS.K. KhanS.B. HafeezI. KhanS.A. BakhshE.M. ChengC.K. Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution.Chemosphere202127913054510.1016/j.chemosphere.2021.130545 33866098
    [Google Scholar]
  87. Bartnicki-GarciaS. NickersonW.J. Nutrition, growth, and morphogenesis of Mucor rouxii.J. Bacteriol.196284484185810.1128/jb.84.4.841‑858.1962 13969720
    [Google Scholar]
  88. TewariN. VasudevanP. GuhaB.K. Study on biosorption of Cr(VI) by Mucor hiemalis.Biochem. Eng. J.200523218519210.1016/j.bej.2005.01.011
    [Google Scholar]
  89. YanG. ViraraghavanT. Heavy-metal removal from aqueous solution by fungus Mucor rouxii.Water Res.200337184486449610.1016/S0043‑1354(03)00409‑3 14511719
    [Google Scholar]
  90. WuanaR.A. OkieimenF.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation.Int. Scholarly Res. Notices.2011201110.5402/2011/402647
    [Google Scholar]
  91. IbrahimW.M. HassanA.F. AzabY.A. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt.J. Basic Appl. Sci.201633241249
    [Google Scholar]
  92. WongK.K. LeeC.K. LowK.S. HaronM.J. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions.Chemosphere2003501232810.1016/S0045‑6535(02)00598‑2 12656225
    [Google Scholar]
  93. CristR.H. MartinJ.R. GuptillP.W. EslingerJ.M. CristD.R. Interaction of metals and protons with algae. 2. Ion exchange in adsorption and metal displacement by protons.Environ. Sci. Technol.199024333734210.1021/es00073a008
    [Google Scholar]
  94. SuhasiniI. SriramG. AsolekarS. SureshkumarG. Nickel biosorption from aqueous systems: Studies on single and multimetal equilibria, kinetics, and recovery.Sep. Sci. Technol.199934142761277910.1081/SS‑100100803
    [Google Scholar]
  95. SchiewerS. VoleskyB. Modeling multi-metal ion exchange in biosorption.Environ. Sci. Technol.199630102921292710.1021/es950800n
    [Google Scholar]
  96. VillaescusaI. FiolN. MartínezM. MirallesN. PochJ. SerarolsJ. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes.Water Res.2004384992100210.1016/j.watres.2003.10.040 14769419
    [Google Scholar]
  97. AbdulrasaqO.O. BasiruO.G. Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk.Afr. J. Environ. Sci. Technol.201046
    [Google Scholar]
  98. AhmadiH. HafizS.S. SharifiH. ReneN.N. HabibiS.S. HussainS. Low cost biosorbent (Melon Peel) for effective removal of Cu (II), Cd (II), and Pb (II) ions from aqueous solution.Case Studies Chem. Environ. Eng.2022610024210.1016/j.cscee.2022.100242
    [Google Scholar]
  99. ConradK. BruunhansenH. Sorption of zinc and lead on coir.Bioresour. Technol.2007981899710.1016/j.biortech.2005.11.018 16413776
    [Google Scholar]
  100. AdegokeK.A. AkinnawoS.O. AjalaO.A. AdebusuyiT.A. MaxakatoN.W. BelloO.S. Progress and challenges in batch and optimization studies on the adsorptive removal of heavy metals using modified biomass-based adsorbents.Bioresour. Technol. Rep.20221910111510.1016/j.biteb.2022.101115
    [Google Scholar]
  101. WangJ. ChenC. Biosorbents for heavy metals removal and their future.Biotechnol. Adv.200927219522610.1016/j.biotechadv.2008.11.002 19103274
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137278018231127062510
Loading
/content/journals/cnano/10.2174/0115734137278018231127062510
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test