Current Neuropharmacology - Volume 9, Issue 2, 2011
Volume 9, Issue 2, 2011
-
-
Function and Pharmacology of Spinally-Projecting Sympathetic Pre-Autonomic Neurones in the Paraventricular Nucleus of the Hypothalamus
More LessAuthors: Nicolas Nunn, Matthew Womack, Caroline Dart and Richard Barrett-JolleyThe paraventricular nucleus (PVN) of the hypothalamus has been described as the “autonomic master controller”. It co-ordinates critical physiological responses through control of the hypothalamic-pituitary-adrenal (HPA)-axis, and by modulation of the sympathetic and parasympathetic branches of the central nervous system. The PVN comprises several anatomical subdivisions, including the parvocellular/ mediocellular subdivision, which contains neurones projecting to the medulla and spinal cord. Consensus indicates that output from spinally-projecting sympathetic pre-autonomic neurones (SPANs) increases blood pressure and heart rate, and dysfunction of these neurones has been directly linked to elevated sympathetic activity during heart failure. The influence of spinally-projecting SPANs on cardiovascular function highlights their potential as targets for future therapeutic drug development. Recent studies have demonstrated pharmacological control of these spinally-projecting SPANs with glutamate, GABA, nitric oxide, neuroactive steroids and a number of neuropeptides (including angiotensin, substance P, and corticotrophin-releasing factor). The underlying mechanism of control appears to be a state of tonic inhibition by GABA, which is then strengthened or relieved by the action of other modulators. The physiological function of spinally-projecting SPANs has been subject to some debate, and they may be involved in physiological stress responses, blood volume regulation, glucose regulation, thermoregulation and/or circadian rhythms. This review describes the pharmacology of PVN spinally-projecting SPANs and discusses their likely roles in cardiovascular control.
-
-
-
The Dopaminergic System in Peripheral Blood Lymphocytes: From Physiology to Pharmacology and Potential Applications to Neuropsychiatric Disorders
More LessBesides its action on the nervous system, dopamine (DA) plays a role on neural-immune interactions. Here we review the current evidence on the dopaminergic system in human peripheral blood lymphocytes (PBL). PBL synthesize DA through the tyrosine-hydroxylase/DOPA-decarboxylase pathway, and express DA receptors and DA transporter (DAT) on their plasma membrane. Stimulation of DA receptors on PBL membrane contributes to modulate the development and initiation of immune responses under physiological conditions and in immune system pathologies such as autoimmunity or immunodeficiency. The characterization of DA system in PBL gave rise to a further line of research investigating the feasibility of PBL as a cellular model for studying DA derangement in neuropsychiatric disorders. Several reports showed changes of the expression of DAT and/or DA receptors in PBL from patients suffering from several neuropsychiatric disorders, in particular parkinsonian syndromes, schizophrenia and drug- or alcohol-abuse. Despite some methodological and theoretical limitations, these findings suggest that PBL may prove a cellular tool with which to identify the derangement of DA transmission in neuropsychiatric diseases, as well as to monitor the effects of pharmacological treatments.
-
-
-
Schizophrenia: Redox Regulation and Volume Neurotransmission
More LessHere, we show that volume neurotransmission and the redox property of dopamine, as well as redox-regulated processes at glutamate receptors, can contribute significantly to our understanding of schizophrenia. Namely, volume neurotransmission may play a key role in the development of dysconnectivity between brain regions in schizophrenic patients, which can cause abnormal modulation of NMDA-dependent synaptic plasticity and produce local paroxysms in deafferented neural areas. During synaptic transmission, neuroredox regulations have fundamental functions, which involve the excellent antioxidant properties and nonsynaptic neurotransmission of dopamine. It is possible that the effect of redox-linked volume neurotransmission (diffusion) of dopamine is not as exact as communication by the classical synaptic mechanism so approaching the study of complex schizophrenic mechanisms from this perspective may be beneficial. However, knowledge of redox signal processes, including the sources and molecular targets of reactive species, is essential for understanding the physiological and pathophysiological signal pathways in cells and the brain, as well as for pharmacological design of various types of new drugs.
-
-
-
Oxidative Stress in Schizophrenia
More LessAuthors: Marija Boskovic, Tomas Vovk, Blanka Kores Plesnicar and Iztok GrabnarIncreasing evidence indicates that oxidative damage exists in schizophrenia. Available literature about possible mechanisms of oxidative stress induction was reviewed. Furthermore, possibilities of measuring biomarkers of schizophrenia outside the central nervous system compartment, their specificity for different types of schizophrenia and potential therapeutic strategies to prevent oxidative injuries in schizophrenia were discussed. Data were extracted from published literature found in Medline, Embase, Biosis, Cochrane and Web of Science, together with hand search of references. Search terms were: schizophrenia, oxidative stress, antipsychotics, antioxidants and fatty acids. Finding a sensitive, specific and non invasive biomarker of schizophrenia, which could be measured in peripheral tissue, still stays an important task. Antioxidant enzymes, markers of lipid peroxidation, oxidatively modified proteins and DNA are most commonly used. As it considers the supplemental therapy, according to our meta-analysis vitamin E could potentially improve tardive dyskinesia, while for the effect of therapy with polyunsaturated fatty acids there is no clear evidence. Oxidative stress is a part of the pathology in schizophrenia and appears as a promising field to develop new therapeutic strategies. There is a need for well designed, placebo controlled trials with supplementation therapy in schizophrenia.
-
-
-
Neuroprotection: The Emerging Concept of Restorative Neural Stem Cell Biology for the Treatment of Neurodegenerative Diseases
More LessAuthors: Barbara Carletti, Fiorella Fpiemonte and Ferdinando RossiDuring the past decades Neural Stem Cells have been considered as an alternative source of cells to replace lost neurons and NSC transplantation has been indicated as a promising treatment for neurodegenerative disorders. Nevertheless, the current understanding of NSC biology suggests that, far from being mere spare parts for cell replacement therapies, NSCs could play a key role in the pharmacology of neuroprotection and become protagonists of innovative treatments for neurodegenerative diseases. Here, we review this new emerging concept of NSC biology.
-
-
-
Bioinformatics Approach to BDNF and BDNF-Related Disorders
More LessContext: Currently, the keyword ‘BDNF’ retrieves 7388 publications in Pubmed, which point to many directions. Objective: This paper aims to uncover patterns that are hidden under this huge mass of studies and then to review the most prominent sub-topics in ‘BDNF and mental health’. Method: Several semi-automatic tools employed, in order to present: 1. A visual representation of BDNF's main molecular pathways; 2. A table with all the components of this pathway that are known to be associated with human diseases; 3. A conceptual map of the whole literature; 4. A histogram of the mental disorders that are known to be associated with BDNF, as well as a review of the literature on each one of these topics. Results: The conceptual map suggests that the field is divided in two major sections: BDNF molecular pathways, receptors, other neurotrophins and neurotransmitters; and BDNF-related disorders. Among the latter, the mental disorders that are mostly related to BDNF are: depression, schizophrenia, Parkinson disease, Alzheimer disease, and bipolar disorder.
-
-
-
Neurochemical and Neuropharmacological Aspects of Circadian Disruptions: An Introduction to Asynchronization
More LessBy Jun KohyamaCircadian disruptions are common in modern society, and there is an urgent need for effective treatment strategies. According to standard diagnostic criteria, most adolescents showing both insomnia and daytime sleepiness are diagnosed as having behavioral-induced sleep efficiency syndrome resulting from insomnia due to inadequate sleep hygiene. However, a simple intervention of adequate sleep hygiene often fails to treat them. As a solution to this clinical problem, the present review first overviews the basic neurochemical and neuropharmachological aspects of sleep and circadian rhythm regulation, then explains several circadian disruptions from similar viewpoints, and finally introduces the clinical notion of asynchronization. Asynchronization is designated to explain the pathophysiology/pathogenesis of exhibition of both insomnia and hypersomnia in adolescents, which comprises disturbances in various aspects of biological rhythms. The major triggers for asynchronization are considered to be a combination of light exposure during the night, which disturbs the biological clock and decreases melatonin secretion, as well as a lack of light exposure in the morning, which prohibits normal synchronization of the biological clock to the 24-hour cycle of the earth and decreases the activity of serotonin. In the chronic phase of asynchronization, involvement of both wake- and sleep-promoting systems is suggested. Both conventional and alternative therapeutic approaches for potential treatment of asynchronization are suggested.
-
-
-
Nuclear Factor κB and Adenosine Receptors: Biochemical and Behavioral Profiling
More LessAuthors: Vickram Ramkumar, Krishna A. Jhaveri, Xiaobin Xie, Sarvesh Jajoo and Linda A. TothAdenosine is produced primarily by the metabolism of ATP and mediates its physiological actions by interacting primarily with adenosine receptors (ARs) on the plasma membranes of different cell types in the body. Activation of these G protein-coupled receptors promotes activation of diverse cellular signaling pathways that define their tissuespecific functions. One of the major actions of adenosine is cytoprotection, mediated primarily via two ARs - A1 (A1AR) and A3 (A3AR). These ARs protect cells exposed to oxidative stress and are also regulated by oxidative stress. Stressmediated regulation of ARs involves two prominent transcription factors - activator protein-1 (AP-1) and nuclear factor (NF)-κB - that mediate the induction of genes important in cell survival. Mice that are genetically deficient in the p50 subunit of NF-κB (i.e., p50 knock-out mice) exhibit altered expression of A1AR and A2AAR and demonstrate distinct behavioral phenotypes under normal conditions or after drug challenges. These effects suggest an important role for NF-κB in dictating the level of expression of ARs in vivo, in regulating the cellular responses to stress, and in modifying behavior.
-
-
-
Medical Management of Parkinson's Disease: Focus on Neuroprotection
More LessAuthors: Marie-Catherine Boll, Mireya Alcaraz-Zubeldia and Camilo RiosNeuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson's disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy.
-
-
-
Human Endogenous Retroviruses in Multiple Sclerosis: Potential for Novel Neuro-Pharmacological Research
More LessBy F. P. RyanThere is growing evidence that the env genes of two or more human endogenous retroviruses (HERVs) of the W family are contributing to the inflammatory processes, and thus to the pathogenesis, of multiple sclerosis (MS). Increasing understanding of the human endogenous retroviral locus, ERVWE1, and the putative multiple sclerosis associated retrovirus, or MSRV, and in particular of the HERV-W env sequences associated with these, offers the potential of new lines of pharmacological research that might assist diagnosis, prognosis and therapy of multiple sclerosis.
-
-
-
Carbohydrate Reward and Psychosis: An Explanation For Neuroleptic Induced Weight Gain and Path to Improved Mental Health?
More LessAuthors: Simon Thornley, Bruce Russell and Rob KyddEvidence links dopamine release in the mid-brain to the pathophysiology of psychosis, addiction and reward. Repeated ingestion of refined carbohydrate may stimulate the same mesolimbic dopaminergic pathway, rewarding such eating behaviour and resulting in excessive food intake along with obesity. In this paper, we explore the role of dopamine in reward and psychosis, and discuss how reward pathways may contribute to the weight gain that commonly follows antipsychotic drug use, in people with psychotic illness. Our theory also explains the frequent co-occurrence of substance abuse and psychosis. From our hypothesis, we discuss the use of carbohydrate modified diets as an adjunctive treatment for people with psychosis.
-
-
-
Kynurenine Metabolites and Migraine: Experimental Studies and Therapeutic Perspectives
More LessAuthors: Annamaria Fejes, Arpad Pardutz, Jozsef Toldi and Laszlo VecseiMigraine is one of the commonest neurological disorders. Despite intensive research, its exact pathomechanism is still not fully understood and effective therapy is not always available. One of the key molecules involved in migraine is glutamate, whose receptors are found on the first-, second- and third-order trigeminal neurones and are also present in the migraine generators, including the dorsal raphe nucleus, nucleus raphe magnus, locus coeruleus and periaqueductal grey matter. Glutamate receptors are important in cortical spreading depression, which may be the electrophysiological correlate of migraine aura. The kynurenine metabolites, endogenous tryptophan metabolites, include kynurenic acid (KYNA), which exerts a blocking effect on ionotropic glutamate and α7-nicotinic acetylcholine receptors. Thus, KYNA and its derivatives may act as modulators at various levels of the pathomechanism of migraine. They can give rise to antinociceptive effects at the periphery, in the trigeminal nucleus caudalis, and may also act on migraine generators and cortical spreading depression. The experimental data suggest that KYNA or its derivatives might offer a novel approach to migraine therapy.
-
-
-
Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines
More LessAuthors: Xing-Mei Zhang and Jie ZhuGlutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neurotoxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month