Current Neuropharmacology - Volume 6, Issue 3, 2008
Volume 6, Issue 3, 2008
-
-
Brain Endothelial Cell-Cell Junctions: How to “Open” the Blood Brain Barrier
Authors: Svetlana M. Stamatovic, Richard F. Keep and Anuska V. AndjelkovicThe blood-brain barrier (BBB) is a highly specialized structural and biochemical barrier that regulates the entry of blood-borne molecules into brain, and preserves ionic homeostasis within the brain microenvironment. BBB properties are primarily determined by junctional complexes between the cerebral endothelial cells. These complexes are comprised of tight and adherens junctions. Such restrictive angioarchitecture at the BBB reduces paracellular diffusion, while minimal vesicle transport activity in brain endothelial cells limits transcellular transport. Under normal conditions, this largely prevents the extravasation of large and small solutes (unless specific transporters are present) and prevents migration of any type of blood-borne cell. However, this is changed in many pathological conditions. There, BBB disruption (“opening”) can lead to increased paracellular permeability, allowing entry of leukocytes into brain tissue, but also contributing to edema formation. In parallel, there are changes in the endothelial pinocytotic vesicular system resulting in the uptake and transfer of fluid and macromolecules into brain parenchyma. This review highlights the route and possible factors involved in BBB disruption in a variety of neuropathological disorders (e.g. CNS inflammation, Alzheimer's disease, Parkinson's disease, epilepsy). It also summarizes proposed signal transduction pathways that may be involved in BBB “opening”.
-
-
-
The TNF-α System: Functional Aspects in Depression, Narcolepsy and Psychopharmacology
Authors: Mark Berthold-Losleben and Hubertus HimmerichChanges of the tumor necrosis factor-alpha (TNF-α) system have been shown to be involved in the development of psychiatric disorders and are additionally associated with changes in body weight as well as endocrine and metabolic changes in psychiatric patients. TNF-α might, for example, contribute to the pathogenesis of depression by an activation of the hypothalamo-pituitaryadrenocortical (HPA) axis, an activation of neuronal serotonin transporters and the stimulation of the indoleamine 2,3- dioxygenase which leads to tryptophan depletion. On the other hand, during an acute depressive episode, an elevated HPA axis activity may suppress TNF-α system activity, while after remission, when HPA axis activity has normalized the suppression of the TNF-α system has been shown not to be apparent any more. In narcoleptic patients, soluble TNF receptor (sTNF-R) p75 plasma levels have been shown to be elevated, suggesting a functional role of the TNF-α system in the development of this disorder. Additionally, psychotropic drugs influence the TNF-α system as well as the secretion and the effect of hormones which counteract or interact with the TNF-α system such as the intestinal hormone ghrelin. However, only preliminary studies with restricted sample sizes exist on these issues, and many open questions remain.
-
-
-
Cellular and Biochemical Actions of Melatonin which Protect Against Free Radicals: Role in Neurodegenerative Disorders
Molecular oxygen is toxic for anaerobic organisms but it is also obvious that oxygen is poisonous to aerobic organisms as well, since oxygen plays an essential role for inducing molecular damage. Molecular oxygen is a triplet radical in its ground-stage (.O-O.) and has two unpaired electrons that can undergoes consecutive reductions of one electron and generates other more reactive forms of oxygen known as free radicals and reactive oxygen species. These reactants (including superoxide radicals, hydroxyl radicals) possess variable degrees of toxicity. Nitric oxide (NO•) contains one unpaired electron and is, therefore, a radical. NO• is generated in biological tissues by specific nitric oxide synthases and acts as an important biological signal. Excessive nitric oxide production, under pathological conditions, leads to detrimental effects of this molecule on tissues, which can be attributed to its diffusion-limited reaction with superoxide to form the powerful and toxic oxidant, peroxynitrite. Reactive oxygen and nitrogen species are molecular “renegades”; these highly unstable products tend to react rapidly with adjacent molecules, donating, abstracting, or even sharing their outer orbital electron(s). This reaction not only changes the target molecule, but often passes the unpaired electron along to the target, generating a second free radical, which can then go on to react with a new target amplifying their effects. This review describes the mechanisms of oxidative damage and its relationship with the most highly studied neurodegenerative diseases and the roles of melatonin as free radical scavenger and neurocytoskeletal protector.
-
-
-
Assessing the Neuronal Serotonergic Target-based Antidepressant Stratagem: Impact of In Vivo Interaction Studies and Knockout Models
Authors: R. Rajkumar and R. MaheshDepression remains a challenge in the field of affective neuroscience, despite a steady research progress. Six out of nine basic antidepressant mechanisms rely on serotonin neurotransmitter system. Preclinical studies have demonstrated the significance of serotonin receptors (5-HT1-3,6,7), its signal transduction pathways and classical down stream targets (including neurotrophins, neurokinins, other peptides and their receptors) in antidepressant drug action. Serotonergic control of depression embraces the recent molecular requirements such as influence on proliferation, neurogenesis, plasticity, synaptic (re)modeling and transmission in the central nervous system. The present progress report analyses the credibility of each protein as therapeutically relevant target of depression. In vivo interaction studies and knockout models which identified these targets are foreseen to unearth new ligands and help them transform to drug candidates. The importance of the antidepressant assay selection at the preclinical level using salient animal models/assay systems is discussed. Such test batteries would definitely provide antidepressants with faster onset, efficacy in resistant (and co-morbid) types and with least adverse effects. Apart from the selective ligands, only those molecules which bring an overall harmony, by virtue of their affinities to various receptor subtypes, could qualify as effective antidepressants. Synchronised modulation of various serotonergic sub-pathways is the basis for a unique and balanced antidepressant profile, as that of fluoxetine (most exploited antidepressant) and such a profile may be considered as a template for the upcoming antidepressants. In conclusion, 5-HT based multi-targeted antidepressant drug discovery supported by in vivo interaction studies and knockout models is advocated as a strategy to provide classic molecules for clinical trials.
-
-
-
Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part I: Principles of Functional Organisation
Authors: E. R. Samuels and E. SzabadiThe locus coeruleus (LC) is the major noradrenergic nucleus of the brain, giving rise to fibres innervating extensive areas throughout the neuraxis. Recent advances in neuroscience have resulted in the unravelling of the neuronal circuits controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. The LC is a major wakefulness-promoting nucleus, resulting from dense excitatory projections to the majority of the cerebral cortex, cholinergic neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic neurones of the dorsal raphe and cholinergic neurones of the pedunculopontine and laterodorsal tegmental nucleus, and substantial inhibitory projections to sleep-promoting GABAergic neurones of the basal forebrain and ventrolateral preoptic area. Activation of the LC thus results in the enhancement of alertness through the innervation of these varied nuclei. The importance of the LC in controlling autonomic function results from both direct projections to the spinal cord and projections to autonomic nuclei including the dorsal motor nucleus of the vagus, the nucleus ambiguus, the rostroventrolateral medulla, the Edinger-Westphal nucleus, the caudal raphe, the salivatory nuclei, the paraventricular nucleus, and the amygdala. LC activation produces an increase in sympathetic activity and a decrease in parasympathetic activity via these projections. Alterations in LC activity therefore result in complex patterns of neuronal activity throughout the brain, observed as changes in measures of arousal and autonomic function.
-
-
-
Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans
Authors: E. R. Samuels and E. SzabadiThe locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxiety- provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug administration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of the LC to the ageing process and to neurodegenerative disease (Parkinson's and Alzheimer's diseases) is of considerable clinical significance. In general, physiological manipulations and the administration of stimulant drugs, α2-adrenoceptor antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of the sympathetic nervous system. In contrast, the administration of sedative drugs, including α2-adrenoceptor agonists, and pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation and activation of the parasympathetic nervous system.
-
-
-
Role of the Central Cholinergic System in the Therapeutics of Schizophrenia
More LessThe therapeutic agents currently used to treat schizophrenia effectively improve psychotic symptoms; however, they are limited by adverse effects and poor efficacy when negative symptoms of the illness and cognitive dysfunction are considered. While optimal pharmacotherapy would directly target the neuropathology of schizophrenia neither the underlying neurobiological substrates of the behavioral symptoms nor the cognitive deficits have been clearly established. Abnormalities in the neurotransmitters dopamine, serotonin, glutamate, and GABA are commonly implicated in schizophrenia; however, it is not uncommon for alterations in the brain cholinergic system (e.g., choline acetyltransferase, nicotinic and muscarinic acetylcholine receptors) to also be reported. Further, there is now considerable evidence in the animal literature to suggest that both first and second generation antipsychotics (when administered chronically) can alter the levels of several cholinergic markers in the brain as well as impair memory-related task performance. Given the well-established importance of central cholinergic neurons to information processing and cognition, it is important that cholinergic function in schizophrenia be further elucidated and that the mechanisms of the chronic effects of antipsychotic drugs on this important neurotransmitter system be identified. A better understanding of these mechanisms would be expected to facilitate optimal treatment strategies for schizophrenia as well as the identification of novel therapeutic targets. In this review, the following topics are discussed: 1) the central cholinergic system in schizophrenia 2) effects of antipsychotic drugs on central cholinergic neurons 3) important neurotrophins in schizophrenia, especially those that support central cholinergic neurons; 4) novel strategies to optimize the therapeutics of schizophrenia via the use of cholinergic compounds as primary (i.e., antipsychotic) treatments as well as adjunctive, pro-cognitive agents.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month
