Current Neuropharmacology - Volume 5, Issue 1, 2007
Volume 5, Issue 1, 2007
-
-
Synaptic Transmission at Functionally Identified Synapses in the Enteric Nervous System: Roles for Both Ionotropic and Metabotropic Receptors
Authors: R. M. Gwynne and J. C. BornsteinDigestion and absorption of nutrients and the secretion and reabsorption of fluid in the gastrointestinal tract are regulated by neurons of the enteric nervous system (ENS), the extensive peripheral nerve network contained within the intestinal wall. The ENS is an important physiological model for the study of neural networks since it is both complex and accessible. At least 20 different neurochemically and functionally distinct classes of enteric neurons have been identified in the guinea pig ileum. These neurons express a wide range of ionotropic and metabotropic receptors. Synaptic potentials mediated by ionotropic receptors such as the nicotinic acetylcholine receptor, P2X purinoceptors and 5-HT3 receptors are seen in many enteric neurons. However, prominent synaptic potentials mediated by metabotropic receptors, like the P2Y1 receptor and the NK1 receptor, are also seen in these neurons. Studies of synaptic transmission between the different neuron classes within the enteric neural pathways have shown that both ionotropic and metabotropic synaptic potentials play major roles at distinct synapses within simple reflex pathways. However, there are still functional synapses at which no known transmitter or receptor has been identified. This review describes the identified roles for both ionotropic and metabotropic neurotransmission at functionally defined synapses within the guinea pig ileum ENS. It is concluded that metabotropic synaptic potentials act as primary transmitters at some synapses. It is suggested identification of the interactions between different synaptic potentials in the production of complex behaviours will require the use of well validated computer models of the enteric neural circuitry.
-
-
-
Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics
Authors: Seongeun Cho, Andrew Wood and Mark R. BowlbyRecent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context. In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro- and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
-
-
-
Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinson's Disease
Authors: Randy L. Hunter and Guoying BingEvidence suggests inflammation, mitochondria dysfunction, and oxidative stress play major roles in Parkinson's disease (PD), where the primary pathology is the significant loss of dopaminergic neurons in the substantia nigra (SN). Current methods used to treat PD focus mainly on replacing dopamine in the nigrostriatal system. However, with time these methods fail and worsen the symptoms of the disease. This implies there is more to the treatment of PD than just restoring dopamine or the dopaminergic neurons, and that a broader spectrum of factors must be changed in order to restore environmental homeostasis. Pharmacological agents that can protect against progressive neuronal degeneration, increase the level of dopamine in the nigrostriatal system, or restore the dopaminergic system offer various avenues for the treatment of PD. Drugs that reduce inflammation, restore mitochondrial function, or scavenge free radicals have also been shown to offer neuroprotection in various animal models of PD. The activation of peroxisome proliferator receptor- gamma (PPAR-γ ) has been associated with altering insulin sensitivity, increasing dopamine, inhibiting inflammation, altering mitochondrial bioenergetics, and reducing oxidative stress - a variety of factors that are altered in PD. Therefore, PPAR-γ activation may offer a new clinically relevant treatment approach to neuroinflammation and PD related neurodegeneration. This review will summarize the current understanding of the role of PPAR-γ agonists in neuroinflammation and discuss their potential for the treatment of PD.
-
-
-
GABA and Neuroactive Steroid Interactions in Glia: New Roles for Old Players?
More LessIn recent years it has becoming clear that glial cells of the central and peripheral nervous system play a crucial role from the earliest stages of development throughout adult life. Glial cells are important for neuronal plasticity, axonal conduction and synaptic transmission. In this respect, glial cells are able to produce, uptake and metabolize many factors that are essential for neuronal physiology, including classic neurotransmitters and neuroactive steroids. In particular, neuroactive steroids, which are mainly synthesized by glial cells, are able to modulate some neurotransmitter receptors affecting both glia and neurons. Among the signaling systems that are specialized for neuron-glial communication, we can include neurotransmitter GABA. The main focus of this review is to illustrate the cross-talk between neurons and glial cells in terms of GABA neurotransmission and actions of neuroactive steroids. To this purpose, we will review the presence of the different GABA receptors in the glial cells of the central and peripheral nervous system. Then, we will discuss their modulation by some neuroactive steroids.
-
-
-
Modelling Anxiety in Humans for Drug Development
Authors: Martin Siepmann and Peter JoraschkyAnimal behavioural profiles are commonly employed to investigate new therapeutic agents to treat anxiety disorders as well as to investigate the mechanism of action of anxiolytic drugs. However, many clinically important symptoms of anxiety can not be modelled directly in animals. Human models of anxiety should bridge between animal models and anxiety disorders. Experimental anxiety states in humans can be induced by either pharmacological means such as CO2 inhalation or psychological means such as aversive conditioning of skin conductance responses to tones. Investigation of these models may contribute to a better understanding of anxiety disorders, both from a biological and behavioural point of view. In a comprehensive review existing models of human experimental anxiety states are summarized and validity is discussed.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month
