Current Neuropharmacology - Volume 4, Issue 2, 2006
Volume 4, Issue 2, 2006
-
-
Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology
More LessBy L. CirannaThe neurotransmitter serotonin (5-HT), widely distributed in the central nervous system (CNS), is involved in a large variety of physiological functions. In several brain regions 5-HT is diffusely released by volume transmission and behaves as a neuromodulator rather than as a "classical" neurotransmitter. In some cases 5-HT is co-localized in the same nerve terminal with other neurotransmitters and reciprocal interactions take place. This review will focus on the modulatory action of 5-HT on the effects of glutamate and γ-amino-butyric acid (GABA), which are the principal neurotransmitters mediating respectively excitatory and inhibitory signals in the CNS. Examples of interaction at preand/ or post-synaptic levels will be illustrated, as well as the receptors involved and their mechanisms of action. Finally, the physiological meaning of neuromodulatory effects of 5-HT will be briefly discussed with respect to pathologies deriving from malfunctioning of serotonin system.
-
-
-
On the Origin of Cortical Dopamine: Is it a Co-Transmitter in Noradrenergic Neurons?
More LessAuthors: Paola Devoto and Giovanna FloreDopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA. To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter. Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas. Systemic administration or intra-cortical perfusion of α2-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex. Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC. Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced. Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of α2-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex. Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration. Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex. The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions.
-
-
-
Heterotrimeric G Proteins: Insights into the Neurobiology of Mood Disorders
More LessAuthors: Javier Gonzalez-Maeso and J. J. MeanaMood disorders such as major depression and bipolar disorder are common, severe, chronic and often lifethreatening illnesses. Suicide is estimated to be the cause of death in up to approximately 10-15% of individuals with mood disorders. Alterations in the signal transduction through G protein-coupled receptor (GPCR) pathways have been reported in the etiopathology of mood disorders and the suicidal behavior. In this regard, the implication of certain GPCR subtypes such as α2A-adrenoceptor has been repeatedly described using different approaches. However, several discrepancies have been recently reported in density and functional status of the heterotrimeric G proteins both in major depression and bipolar disorder. A compilation of the most relevant research topics about the implication of heterotrimeric G proteins in the etiology of mood disorders (i.e., animal models of mood disorders, studies in peripheral tissue of depressive patients, and studies in postmortem human brain of suicide victims with mood disorders) will provide a broad perspective of this potential therapeutic target field. Proposed causes of the discrepancies reported at the level of G proteins in postmortem human brain of suicide victims will be discussed.
-
-
-
Neuronal Cell Death in Alzheimer's Disease and a Neuroprotective Factor, Humanin
More LessAuthors: Takako Niikura, Hirohisa Tajima and Yoshiko KitaBrain atrophy caused by neuronal loss is a prominent pathological feature of Alzheimer's disease (AD). Amyloid (A ), the major component of senile plaques, is considered to play a central role in neuronal cell death. In addition to removal of the toxic Aβ , direct suppression of neuronal loss is an essential part of AD treatment; however, no such neuroprotective therapies have been developed. Excess amount of Aβ evokes multiple cytotoxic mechanisms, involving increase of the intracellular Ca2+ level, oxidative stress, and receptor-mediated activation of cell-death cascades. Such diversity in cytotoxic mechanisms induced by Aβ clearly indicates a complex nature of the AD-related neuronal cell death. We have identified a 24-residue peptide, Humanin (HN), which suppresses in vitro neuronal cell death caused by all AD-related insults, including Aβ , so far tested. The anti-AD effect of HN has been further confirmed in vivo using mice with Aβ -induced amnesia. Altogether, such potent neuroprotective activity of HN against AD-relevant cytotoxicity both in vitro and in vivo suggests the potential clinical applications of HN in novel AD therapies aimed at controlling neuronal death.
-
-
-
The Role of β-Amyloid Protein in Synaptic Function: Implications for Alzheimer's Disease Therapy
More LessAuthors: F. Pena, A. I. Gutierrez-Lerma, R. Quiroz-Baez and C. AriasAlzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive and irreversible loss of memory and other cognitive functions. Substantial evidence based on genetic, neuropathological and biochemical data has established the central role of -amyloid protein ( βAP) in this pathology. Although the precise etiology of AD is not well understood yet, strong evidence for some of the molecular events that lead to progressive brain dysfunction and neurodegeneration in AD has been afforded by identification of biochemical pathways implicated in the generation of βAP, development of transgenic models exhibiting progressive disease pathology and by data on the effects of βAP at the neuronal network level. However, the mechanisms by which βAP causes cognitive decline have not been determined, nor is it clear if the degree of dementia correlates in time with the degree of neuronal loss. Hence, it is of interest to understand the biochemical processes involved in the mechanisms of βAP-induced neurotoxicity and the mechanisms involved in electrophysiological effects of this protein on different parameters of synaptic transmission and on neuronal firing properties. In this review we analyze recent evidence suggesting a complex role of βAP in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in AD as well as the therapeutic implications based on βAP metabolism inhibition.
-
-
-
Peripheral Neuropathy Induced by Paclitaxel: Recent Insights and Future Perspectives
More LessAuthors: Charity D. Scripture, William D. Figg and Alex SparreboomPaclitaxel is an antineoplastic agent derived from the bark of the western yew, Taxus brevifolia, with a broad spectrum of activity. Because paclitaxel promotes microtubule assembly, neurotoxicity is one of its side effects. Clinical use of paclitaxel has led to peripheral neuropathy and this has been demonstrated to be dependent upon the dose administered, the duration of the infusion, and the schedule of administration. Vehicles in the drug formulation, for example Cremophor in Taxol®, have been investigated for their potential to induce peripheral neuropathy. A variety of neuroprotective agents have been tested in animal and clinical studies to prevent paclitaxel neurotoxicity. Recently, novel paclitaxel formulations have been developed to minimize toxicities. This review focuses on recent advances in the etiology of paclitaxel-mediated peripheral neurotoxicity, and discusses current and ongoing strategies for amelioration of this side effect.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month