Current Neuropharmacology - Volume 23, Issue 6, 2025
Volume 23, Issue 6, 2025
-
-
GRIN2A and Schizophrenia: Scientific Evidence and Biological Mechanisms
Authors: Xiao-Ming Sheng and Wei GuanSchizophrenia is a severe psychiatric disorder and a complex polygenic inherited disease that affects nearly 1% of the global population. Although considerable progress has been made over the past 10 years in the treatment of schizophrenia, antipsychotics are not universally effective and may have serious side effects. The hypofunction of glutamate NMDA receptors (NMDARs) in GABAergic interneurons has long been postulated to be the principal pathophysiology of schizophrenia. A recent study has shown that GRIN2A pathogenic variants are closely related to the aetiology of the disorder. GRIN2A encodes the GluN2A protein, which is a subunit of NMDAR. Most GRIN2A variants have been predicted to cause protein truncation, which results in reduced gene expression. Preclinical studies have indicated that GRIN2A mutations lead to NMDAR loss of function and substantially increase the risk of schizophrenia; however, their role in schizophrenia is not well understood. We hypothesise that the heterozygous loss of GRIN2A induces NMDAR hypofunction sufficient to confer a substantial risk of schizophrenia. Therefore, this review focuses on GRIN2A as a target for novel antipsychotics and discusses the mechanisms by which GRIN2A modulates antischizophrenic activities. Moreover, our review contributes to the understanding of the pathophysiology of schizophrenia to facilitate finding treatments for the cognitive and negative symptoms of schizophrenia.
-
-
-
The Role of circRNAs in the Pathological Mechanisms of Alzheimer's Disease: Potential Biomarkers for Diagnosis
Authors: Zulalai Abuduwaili, Yingao Fan, Wenyuan Tao, Yanting Chen, Yun Xu and Xiaolei ZhuAlzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia in the elderly, and the mechanisms of AD have not been fully defined. Circular RNAs (circRNAs), covalently closed RNAs produced by reverse splicing, have critical effects in the pathogenesis of AD. CircRNAs participate in production and clearance of Aβ and tau, regulate neuroinflammation, synaptic plasticity and the process of apoptosis and autophagy, indicating that circRNAs may be alternative biomarkers and therapeutic targets. Our review summarizes the functions of circRNAs in the progression and development of AD, which provide insights into the prospect of circRNAs in the diagnosis and treatment of AD.
-
-
-
NeuropsychopharmARCology: Shaping Neuroplasticity through Arc/Arg3.1 Modulation
Authors: Francesca Mottarlini, Lucia Caffino, Fabio Fumagalli, Francesca Calabrese and Paola BrivioActivity-regulated cytoskeleton-associated protein (aka activity-regulated gene Arg3.1) belongs to the effector gene family of the immediate early genes. This family encodes effector proteins, which act directly on cellular homeostasis and function. Arc/Arg3.1 is localized at dendritic processes, allowing the protein local synthesis on demand, and it is considered a reliable index of activity-dependent synaptic changes. Evidence also exists showing the critical role of Arc/Arg3.1 in memory processes. The high sensitivity to changes in neuronal activity, its specific localization as well as its involvement in long-term synaptic plasticity indeed make this effector gene a potential, critical target of the action of psychotropic drugs. In this review, we focus on antipsychotic and antidepressant drugs as well as on psychostimulants, which belong to the category of drugs of abuse but can also be used as drugs for specific disorders of the central nervous system (i.e., Attention Deficit Hyperactivity Disorder). It is demonstrated that psychotropic drugs with different mechanisms of action converge on Arc/Arg3.1, providing a means whereby Arc/Arg3.1 synaptic modulation may contribute to their therapeutic activity. The potential translational implications for different neuropsychiatric conditions are also discussed, recognizing that the treatment of these disorders is indeed complex and involves the simultaneous regulation of several dysfunctional mechanisms.
-
-
-
Oxidative Stress-mediated Lipid Peroxidation-derived Lipid Aldehydes in the Pathophysiology of Neurodegenerative Diseases
Authors: Kieran Allowitz, Justin Taylor, Kyra Harames, John Yoo, Omar Baloch and Kota V. RamanaNeurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis cause damage and gradual loss of neurons affecting the central nervous system. Neurodegenerative diseases are most commonly seen in the ageing process. Ageing causes increased reactive oxygen species and decreased mitochondrial ATP generation, resulting in redox imbalance and oxidative stress. Oxidative stress-generated free radicals cause damage to membrane lipids containing polyunsaturated fatty acids, leading to the formation of toxic lipid aldehyde products such as 4-hydroxynonenal and malondialdehyde. Several studies have shown that lipid peroxidation-derived aldehyde products form adducts with cellular proteins, altering their structure and function. Thus, these lipid aldehydes could act as secondary signaling intermediates, modifying important metabolic pathways, and contributing to the pathophysiology of several human diseases, including neurodegenerative disorders. Additionally, they could serve as biomarkers for disease progression. This narrative review article discusses the biological and clinical significance of oxidative stress-mediated lipid peroxidation-derived lipid aldehydes in the pathophysiology of various neurodegenerative diseases.
-
-
-
Neuropsychiatric Manifestations of COVID-19 Disease and Post COVID Syndrome: The Role of N-acetylcysteine and Acetyl-L-carnitine
COVID-19 is associated with neuropsychiatric symptoms, such as anosmia, anxiety, depression, stress-related reactions, and psychoses. The illness can cause persistent cognitive impairment and “brain fog”, suggesting chronic brain involvement. Clinical entities of ongoing symptomatic COVID-19 and Post COVID Syndrome (PCS) mainly present neuropsychiatric symptoms such as dysgeusia, headache, fatigue, anxiety, depression, sleep disturbances, and post-traumatic stress disorder. The pathophysiology of COVID-19-related brain damage is unclear, but it is linked to various mechanisms such as inflammation, oxidative stress, immune dysregulation, impaired glutamate homeostasis, glial and glymphatic damage, and hippocampal degeneration. Noteworthy is that the metabotropic receptor mGluR2 was discovered as a mechanism of internalisation of SARS-CoV-2 in Central Nervous System (CNS) cells. N-acetylcysteine (NAC) and acetyl-L-carnitine (ALC) are two supplements that have already been found effective in treating psychiatric conditions. Furthermore, NAC showed evidence in relieving cognitive symptomatology in PCS, and ALC was found effective in treating depressive symptomatology of PCS. The overlapping effects on the glutamatergic system of ALC and NAC could help treat COVID-19 psychiatric symptoms and PCS, acting through different mechanisms on the xc-mGluR2 network, with potentially synergistic effects on chronic pain and neuro-astrocyte protection. This paper aims to summarise the current evidence on the potential therapeutic role of NAC and ALC, providing an overview of the underlying molecular mechanisms and pathophysiology. It proposes a pathophysiological model explaining the effectiveness of NAC and ALC in treating COVID-19-related neuropsychiatric symptoms.
-
-
-
Effects of Alcohol on EEG Activity: A Systematic Review Focused on Sex-Related Differences in Youth
More LessBackgroundMost electroencephalographic (EEG) investigations on alcohol have focused on adults, and scarce data is available about the potential of EEG measurements to detect young people at high-risk, as well as, to understand possible sex differences in alcohol impact on the brain.
ObjectiveThis systematic review aimed to explore sex-related differences in EEG among young people with alcohol misuse, alcohol use disorder (AUD), and offspring of families with AUD.
MethodsA systematic review of the literature was conducted following PRISMA guidelines. Review protocol was registered in Prospero (ID: CRD42024511471). After article selection process and quality assessment, 25 studies were included in our review. The search included participants between 12 and 30 years old with problematic alcohol consumption, as defined by DSM, AUDIT, or specific alcohol misuse questionnaires.
ResultsIt seems that beta was generally higher in young males with AUD, and they usually exhibited greater interhemispheric connectivity (interHC), whereas young females with AUD tended towards enhanced intraHC. P3 appears to be particularly sensitive to alcohol misuse, with males typically exhibiting a lower amplitude than young females. Other event related potentials (ERPs) such as N415, P640, and the error-related negativity (ERN) lacked sufficient methodological support to draw conclusions regarding sex differences, N340 and P540 suggested avenues for expanding research on memory processing, indicating differences in amplitude between males and females.
ConclusionConsidering sex variables in clinical research will enhance our understanding of alterations in brain function and structure with the goal of tailoring treatment strategies for AUD.
-
-
-
Efficacy and Safety of Natural Apigenin Treatment for Alzheimer's Disease: Focus on In vivo Research Advancements
Authors: Nan Zhang, Jianfei Nao and Xiaoyu DongBackgroundAlzheimer's Disease (AD) is the most common dementia in clinics. Despite decades of progress in the study of the pathogenesis of AD, clinical treatment strategies for AD remain lacking. Apigenin, a natural flavonoid compound, is present in a variety of food and Chinese herbs and has been proposed to have a wide range of therapeutic effects on dementia.
ObjectiveTo clarify the relevant pharmacological mechanism and therapeutic effect of apigenin on animal models of AD.
MethodsComputer-based searches of the PubMed, Cochrane Library, Embase, and Web of Science databases were used to identify preclinical literature on the use of apigenin for treating AD. All databases were searched from their respective inception dates until June 2023. The meta-analysis was performed with Review manager 5.4.1 and STATA 17.0.
ResultsThirteen studies were eventually enrolled, which included 736 animals in total. Meta-analysis showed that apigenin had a positive effect on AD. Compared to controls, apigenin treatment reduced escape latency, increased the percentage of time spent in the target quadrant and the number of plateaus traversed; apigenin was effective in reducing nuclear factor kappa-B (NF-κB) p65 levels; apigenin effectively increased antioxidant molecules SOD and GSH-px and decreased oxidative index MDA; for ERK/CREB/BDNF pathway, apigenin effectively increased BDNF and pCREB molecules; additionally, apigenin effectively decreased caspase3 levels and the number of apoptotic cells in the hippocampus.
ConclusionThe results show some efficacy of apigenin in the treatment of AD models. However, further clinical studies are needed to confirm the clinical efficacy of apigenin.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month
