Current Neuropharmacology - Volume 17, Issue 2, 2019
Volume 17, Issue 2, 2019
-
-
Ayahuasca: Psychological and Physiologic Effects, Pharmacology and Potential Uses in Addiction and Mental Illness
Authors: Jonathan Hamill, Jaime Hallak, Serdar M. Dursun and Glen BakerBackground: Ayahuasca, a traditional Amazonian decoction with psychoactive properties, is made from bark of the Banisteriopsis caapi vine (containing beta-carboline alkaloids) and leaves of the Psychotria viridis bush (supplying the hallucinogen N,N-dimethyltryptamine, DMT). Originally used by indigenous shamans for the purposes of spirit communication, magical experiences, healing, and religious rituals across several South American countries, ayahuasca has been incorporated into folk medicine and spiritual healing, and several Brazilian churches use it routinely to foster a spiritual experience. More recently, it is being used in Europe and North America, not only for religious or healing reasons, but also for recreation. Objective: To review ayahuasca's behavioral effects, possible adverse effects, proposed mechanisms of action and potential clinical uses in mental illness. Method: We searched Medline, in English, using the terms ayahuasca, dimethyltryptamine, Banisteriopsis caapi, and Psychotria viridis and reviewed the relevant publications. Results: The following aspects of ayahuasca are summarized: Political and legal factors; acute and chronic psychological effects; electrophysiological studies and imaging; physiological effects; safety and adverse effects; pharmacology; potential psychiatric uses. Conclusion: Many years of shamanic wisdom have indicated potential therapeutic uses for ayahuasca, and several present day studies suggest that it may be useful for treating various psychiatric disorders and addictions. The side effect profile appears to be relatively mild, but more detailed studies need to be done. Several prominent researchers believe that government regulations with regard to ayahuasca should be relaxed so that it could be provided more readily to recognized, credible researchers to conduct comprehensive clinical trials.
-
-
-
Five Decades of Cuprizone, an Updated Model to Replicate Demyelinating Diseases
Introduction: Demyelinating diseases of the central nervous system (CNS) comprise a group of neurological disorders characterized by progressive (and eventually irreversible) loss of oligodendrocytes and myelin sheaths in the white matter tracts. Some of myelin disorders include: Multiple sclerosis, Guillain-Barré syndrome, peripheral nerve polyneuropathy and others. To date, the etiology of these disorders is not well known and no effective treatments are currently available against them. Therefore, further research is needed to gain a better understand and treat these patients. To accomplish this goal, it is necessary to have appropriate animal models that closely resemble the pathophysiology and clinical signs of these diseases. Herein, we describe the model of toxic demyelination induced by cuprizone (CPZ), a copper chelator that reduces the cytochrome and monoamine oxidase activity into the brain, produces mitochondrial stress and triggers the local immune response. These biochemical and cellular responses ultimately result in selective loss of oligodendrocytes and microglia accumulation, which conveys to extensive areas of demyelination and gliosis in corpus callosum, superior cerebellar peduncles and cerebral cortex. Remarkably, some aspects of the histological pattern induced by CPZ are similar to those found in multiple sclerosis. CPZ exposure provokes behavioral changes, impairs motor skills and affects mood as that observed in several demyelinating diseases. Upon CPZ removal, the pathological and histological changes gradually revert. Therefore, some authors have postulated that the CPZ model allows to partially mimic the disease relapses observed in some demyelinating diseases. Conclusion: for five decades, the model of CPZ-induced demyelination is a good experimental approach to study demyelinating diseases that has maintained its validity, and is a suitable pharmacological model for reproducing some key features of demyelinating diseases, including multiple sclerosis.
-
-
-
The Role of CXCR3 in Neurological Diseases
Authors: Ya-Qun Zhou, Dai-Qiang Liu, Shu-Ping Chen, Jia Sun, Xue-Rong Zhou, Cui Xing, Da-Wei Ye and Yu-Ke TianBackground: Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demonstrated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases. Methods: English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews. Results: The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer's disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases. Conclusion: These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their activity in neurological diseases.
-
-
-
Spreading Depolarization Waves in Neurological Diseases: A Short Review about its Pathophysiology and Clinical Relevance
Authors: Yağmur Çetin Taş, İhsan Solaroğlu and Yasemin Gürsoy-ÖzdemirLesion growth following acutely injured brain tissue after stroke, subarachnoid hemorrhage and traumatic brain injury is an important issue and a new target area for promising therapeutic interventions. Spreading depolarization or peri-lesion depolarization waves were demonstrated as one of the significant contributors of continued lesion growth. In this short review, we discuss the pathophysiology for SD forming events and try to list findings detected in neurological disorders like migraine, stroke, subarachnoid hemorrhage and traumatic brain injury in both human as well as experimental studies. Pharmacological and non-pharmacological treatment strategies are highlighted and future directions and research limitations are discussed.
-
-
-
Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiology of Parkinson’s Disease and Huntington’s Disease: A Review
Authors: Sumit Jamwal and Puneet KumarAlteration in neurotransmitters signaling in basal ganglia has been consistently shown to significantly contribute to the pathophysiological basis of Parkinson’s disease and Huntington’s disease. Dopamine is an important neurotransmitter which plays a critical role in coordinated body movements. Alteration in the level of brain dopamine and receptor radically contributes to irregular movements, glutamate mediated excitotoxic neuronal death and further leads to imbalance in the levels of other neurotransmitters viz. GABA, adenosine, acetylcholine and endocannabinoids. This review is based upon the data from clinical and preclinical studies to characterize the role of various striatal neurotransmitters in the pathogenesis of Parkinson’s disease and Huntington’s disease. Further, we have collected data of altered level of various neurotransmitters and their metabolites and receptor density in basal ganglia region. Although the exact mechanisms underlying neuropathology of movement disorders are not fully understood, but several mechanisms related to neurotransmitters alteration, excitotoxic neuronal death, oxidative stress, mitochondrial dysfunction, neuroinflammation are being put forward. Restoring neurotransmitters level and downstream signaling has been considered to be beneficial in the treatment of Parkinson’s disease and Huntington’s disease. Therefore, there is an urgent need to identify more specific drugs and drug targets that can restore the altered neurotransmitters level in brain and prevent/delay neurodegeneration.
-
-
-
Modulation of the Cannabinoid System: A New Perspective for the Treatment of the Alzheimer’s Disease
Authors: Giuseppina Talarico, Alessandro Trebbastoni, Giuseppe Bruno and Carlo de LenaThe pathogenesis of Alzheimer’s disease (AD) is somewhat complex and has yet to be fully understood. As the effectiveness of the therapy currently available for AD has proved to be limited, the need for new drugs has become increasingly urgent. The modulation of the endogenous cannabinoid system (ECBS) is one of the potential therapeutic approaches that is attracting a growing amount of interest. The ECBS consists of endogenous compounds and receptors. The receptors CB1 and CB2 have already been well characterized: CB1 receptors, which are abundant in the brain, particularly in the hippocampus, basal ganglia and cerebellum, regulate memory function and cognition. It has been suggested that the activation of CB1 receptors reduces intracellular Ca concentrations, inhibits glutamate release and enhances neurotrophin expression and neurogenesis. CB2 receptors are expressed, though to a lesser extent, in the central nervous system, particularly in the microglia and immune system cells involved in the release of cytokines. CB2 receptors have been shown to be upregulated in neuritic plaque-associated microglia in the hippocampus and entorhinal cortex of patients, which suggests that these receptors play a role in the inflammatory pathology of AD. The role of the ECBS in AD is supported by cellular and animal models. By contrast, few clinical studies designed to investigate therapies aimed at reducing behaviour disturbances, especially night-time agitation, eating behaviour and aggressiveness, have yielded positive results. In this review, we will describe how the manipulation of the ECBS offers a potential approach to the treatment of AD.
-
-
-
Prevention and Treatment for Chemotherapy-Induced Peripheral Neuropathy: Therapies Based on CIPN Mechanisms
Authors: Lang-Yue Hu, Wen-Li Mi, Gen-Cheng Wu, Yan-Qing Wang and Qi-Liang Mao-YingBackground: Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, enduring, and often irreversible adverse effect of many antineoplastic agents, among which sensory abnormities are common and the most suffering issues. The pathogenesis of CIPN has not been completely understood, and strategies for CIPN prevention and treatment are still open problems for medicine. Objectives: The objective of this paper is to review the mechanism-based therapies against sensory abnormities in CIPN. Methods: This is a literature review to describe the uncovered mechanisms underlying CIPN and to provide a summary of mechanism-based therapies for CIPN based on the evidence from both animal and clinical studies. Results: An abundance of compounds has been developed to prevent or treat CIPN by blocking ion channels, targeting inflammatory cytokines and combating oxidative stress. Agents such as glutathione, mangafodipir and duloxetine are expected to be effective for CIPN intervention, while Ca/Mg infusion and venlafaxine, tricyclic antidepressants, and gabapentin display limited efficacy for preventing and alleviating CIPN. And the utilization of erythropoietin, menthol and amifostine needs to be cautious regarding to their side effects. Conclusions: Multiple drugs have been used and studied for decades, their effect against CIPN are still controversial according to different antineoplastic agents due to the diverse manifestations among different antineoplastic agents and complex drug-drug interactions. In addition, novel therapies or drugs that have proven to be effective in animals require further investigation, and it will take time to confirm their efficacy and safety.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month
