Current Neuropharmacology - Volume 14, Issue 7, 2016
Volume 14, Issue 7, 2016
-
-
Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression
Authors: Eunsoo Won and Yong-Ku KimThe autonomic nervous system is one of the major neural pathways activated by stress. In situations that are often associated with chronic stress, such as major depressive disorder, the sympathetic nervous system can be continuously activated without the normal counteraction of the parasympathetic nervous system. As a result, the immune system can be activated with increased levels of proinflammatory cytokines. These inflammatory conditions have been repeatedly observed in depression. In the search for the mechanism by which the immune system might contribute to depression, the enhanced activity of indoleamine 2,3- dioxygenase by pro-inflammatory cytokines has been suggested to play an important role. Indoleamine 2,3-dioxygenase is the first enzyme in the kynurenine pathway that converts tryptophan to kynurenine. Elevated activity of this enzyme can cause imbalances in downstream kynurenine metabolites. This imbalance can induce neurotoxic changes in the brain and create a vulnerable glial-neuronal network, which may render the brain susceptible to depression. This review focuses on the interaction between stress, the autonomic nervous system and the immune system which can cause imbalances in the kynurenine pathway, which may ultimately lead to major depressive disorder.
-
-
-
Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment
Authors: Frank M. Schmidt, Kenneth C. Kirkby and Nicole LichtblauGrowing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration.
-
-
-
Animal Models of Maternal Immune Activation in Depression Research
Authors: Marianne Ronovsky, Stefanie Berger, Barbara Molz, Angelika Berger and Daniela D. PollakBackground: Depression and schizophrenia are debilitating mental illnesses with significant socio-economic impact. The high degree of comorbidity between the two disorders, and shared symptoms and risk factors, suggest partly common pathogenic mechanisms. Supported by human and animal studies, maternal immune activation (MIA) has been intimately associated with the development of schizophrenia. However, the link between MIA and depression has remained less clear, in part due to the lack of appropriate animal models. Objective: Here we aim to summarize findings obtained from studies using MIA animal models and discuss their relevance for preclinical depression research. Methods: Results on molecular, cellular and behavioral phenotypes in MIA animal models were collected by literature search (PubMed) and evaluated for their significance for depression. Results: Several reports on offspring depression-related behavioral alterations indicate an involvement of MIA in the development of depression later in life. Depression-related behavioral phenotypes were frequently paralleled by neurogenic and neurotrophic deficits and modulated by several genetic and environmental factors. Conclusion: Literature evidence analyzed in this review supports a relevance of MIA as animal model for a specific early life adversity, which may prime an individual for the development of distinct psychopathologies later life. MIA animal models may present a unique tool for the identification of additional exogenous and endogenous factors, which are required for the manifestation of a specific neuropsychiatric disorder, such as depression, later in life. Hereby, novel insights into the molecular mechanisms involved in the pathophysiology of depression may be obtained, supporting the identification of alternative therapeutic strategies.
-
-
-
A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders
In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies.
-
-
-
Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets
Authors: Ji-chun Zhang, Wei Yao and Kenji HashimotoDepression is the most prevalent and among the most debilitating of psychiatric disorders. The precise neurobiology of this illness is unknown. Several lines of evidence suggest that peripheral and central inflammation plays a role in depressive symptoms, and that anti-inflammatory drugs can improve depressive symptoms in patients with inflammation-related depression. Signaling via brain-derived neurotrophic factor (BDNF) and its receptor, tropomycin receptor kinase B (TrkB) plays a key role in the pathophysiology of depression and in the therapeutic mechanisms of antidepressants. A recent paper showed that lipopolysaccharide (LPS)-induced inflammation gave rise to depression-like phenotype by altering BDNF-TrkB signaling in the prefrontal cortex, hippocampus, and nucleus accumbens, areas thought to be involved in the antidepressant effects of TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) and TrkB antagonist, ANA-12. Here we provide an overview of the tryptophan-kynurenine pathway and BDNF-TrkB signaling in the pathophysiology of inflammation-induced depression, and propose mechanistic actions for potential therapeutic agents. Additionally, the authors discuss the putative role of TrkB agonists and antagonists as novel therapeutic drugs for inflammation-related depression.
-
-
-
Inflammation in Depression and the Potential for Anti-Inflammatory Treatment
Authors: Ole Kohler, Jesper Krogh, Ole Mors and Michael Eriksen BenrosAccumulating evidence supports an association between depression and inflammatory processes, a connection that seems to be bidirectional. Clinical trials have indicated antidepressant treatment effects for anti-inflammatory agents, both as add-on treatment and as monotherapy. In particular, nonsteroidal anti-inflammatory drugs (NSAIDs) and cytokine-inhibitors have shown antidepressant treatment effects compared to placebo, but also statins, poly-unsaturated fatty acids, pioglitazone, minocycline, modafinil, and corticosteroids may yield antidepressant treatment effects. However, the complexity of the inflammatory cascade, limited clinical evidence, and the risk for side effects stress cautiousness before clinical application. Thus, despite proof-of-concept studies of anti-inflammatory treatment effects in depression, important challenges remain to be investigated. Within this paper, we review the association between inflammation and depression together with the current evidence on use of anti-inflammatory treatment in depression. Based on this, we address the questions and challenges that seem most important and relevant to future studies, such as timing, most effective treatment lengths and identification of subgroups of patients potentially responding better to different anti-inflammatory treatment regimens.
-
-
-
Interferon-Related Depression: A Primer on Mechanisms, Treatment, and Prevention of a Common Clinical Problem
Authors: Ekta Franscina Pinto and Chittaranjan AndradeBackground: Depression is among the commonest of psychiatric disorders, and inflammatory mechanisms have been suggested to play a role in its pathophysiology. Interferons are a superfamily of proinflammatory cytokines that play a role in host defence mechanisms. Interferons are used in the treatment of a variety of autoimmune (e.g. multiple sclerosis), viral (e.g. chronic hepatitis B and C), and malignant (e.g. malignant melanoma, hairy cell leukemia) disorders; depression, however, is a notable and clinically troublesome adverse effect. Objective: This article seeks to present a simple explanation and update for the reader about what interferons are, how interferons are classified, the clinical conditions in which interferons are used, the occurrence of depression as a clinical adverse effect of interferon therapy, possible mechanisms that explain interferon-related depression, the treatment of interferon-related depression, and the prevention of interferon-related depression. Methods: A qualitative literature review is presented. Results and Conclusions: Irrespective of the indication for IFN therapy, IFNs are associated with a 30- 70% risk of treatment-emergent depression. This risk could be due to the IFN, or to an interaction between the IFN and the indication for which it was prescribed. Various neurohormonal, neurochemical, neurohistological, and other mechanisms have been put forth to explain IFN-related depression. Prophylactic treatment with antidepressants reduces the risk of IFN-related depression; antidepressants also effectively treat the condition. Recent alternatives to IFNs have shown to decrease the risk of treatment-emergent depression.
-
-
-
Systems Genomics Support for Immune and Inflammation Hypothesis of Depression
By Abhay SharmaBackground: Immune system plays an important role in brain development and function. With the discovery of increased circulating inflammatory cytokine levels in depression over two decades ago, evidence implicating immune system alterations in the disease has increasingly accumulated. Objective: To assess the underlying etiology and pathophysiology, a brief overview of the hypothesis free genomic, transcriptomic and proteomic studies in depression is presented here in order to specifically examine if the immune and inflammation hypothesis of depression is supported. Results: It is observed that genes identified in genome-wide association studies, and genes showing differential expression in transcriptomic studies in human depression do separately overrepresent processes related to both development as well as functioning of the immune system, and inflammatory response. These processes are also enriched in differentially expressed genes reported in animal models of antidepressant treatment. It is further noted that some of the genes identified in genome sequencing and proteomic analyses in human depression, and transcriptomic studies in chronic social defeat stress, an established animal model of depression, relate to immune and inflammatory pathways. Conclusion: In conclusion, integrative genomics evidence supports the immune and inflammation hypothesis of depression.
-
-
-
Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal Models
Authors: Joaquín Manjarrez-Marmolejo and Javier Franco-PérezBackground: Gap junctions are clusters of intercellular channels allowing the bidirectional pass of ions directly into the cytoplasm of adjacent cells. Electrical coupling mediated by gap junctions plays a role in the generation of highly synchronized electrical activity. The hypersynchronous neuronal activity is a distinctive characteristic of convulsive events. Therefore, it has been postulated that enhanced gap junctional communication is an underlying mechanism involved in the generation and maintenance of seizures. There are some chemical compounds characterized as gap junction blockers because of their ability to disrupt the gap junctional intercellular communication. Objective: Hence, the aim of this review is to analyze the available data concerning the effects of gap junction blockers specifically in seizure models. Results: Carbenoxolone, quinine, mefloquine, quinidine, anandamide, oleamide, heptanol, octanol, meclofenamic acid, niflumic acid, flufenamic acid, glycyrrhetinic acid and retinoic acid have all been evaluated on animal seizure models. In vitro, these compounds share anticonvulsant effects typically characterized by the reduction of both amplitude and frequency of the epileptiform activity induced in brain slices. In vivo, gap junction blockers modify the behavioral parameters related to seizures induced by 4-aminopyridine, pentylenetetrazole, pilocarpine, penicillin and maximal electroshock. Conclusion: Although more studies are still required, these molecules could be a promising avenue in the search for new pharmaceutical alternatives for the treatment of epilepsy.
-
-
-
Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol
Background: Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the "+" of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the "-" side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. Method: We used two-electrode voltage clamp to determine the functional effects of mutations to the "+" and "-" sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. Results: We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. Conclusion: We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month
