Current Neuropharmacology - Volume 12, Issue 5, 2014
Volume 12, Issue 5, 2014
-
-
Agomelatine in the Treatment of Major Depressive Disorder: An Assessment of Benefits and Risks
More LessAgomelatine (AGM) was approved for the treatment of major depressive disorder (MDD) in adults by the European Medicines Agency (EMA) in February 2009. It is an analogue of melatonin and features a unique pharmacodynamic profile with agonism on both types of melatonergic receptors (MT1/MT2) and antagonism at serotonergic 5-HT2C receptors. There is, however, an ongoing debate regarding the efficacy and safety of this novel antidepressant agent, originally evoked by claims of a significant publication bias underlying the assessment of AGM being an effective antidepressant. Indeed, two recent comprehensive metaanalyses of published and unpublished clinical trials found evidence for a relevant publication bias. However, due to its statistically significant advantage over placebo based on the results of these metaanalyses AGM must be referred to as an effective antidepressant agent in the acute phase of MDD. However, the effect sizes of AGM in the treatment of MDD were evaluated as being small in comparison to other antidepressant agents. In addition, there is insufficient evidence for the efficacy of AGM in relapse prevention of MDD. Apart from efficacy issues, AGM appears to have the potential to exhibit severe hepatotoxicity (the EMA has identified AGM-associated “hepatotoxic reactions” as a new safety concern in September 2013) that is currently poorly understood. Considering these aspects, it seems inappropriate to evaluate AGM as an antidepressant agent of first choice. Nevertheless, its unique mechanism of action with particular sleep modulating effects may represent a specific treatment strategy for patients with particular characteristics; further studies with thorough characterization of patients are needed to test this hypothesis.
-
-
-
Combination of Therapeutic Hypothermia and Other Neuroprotective Strategies after An Ischemic Cerebral Insult
More LessAuthors: Joline Goossens and Said Hachimi-IdrissiAbrupt deprivation of substrates to neuronal tissue triggers a number of pathological events (the “ischemic cascade”) that lead to cell death. As this is a process of delayed neuronal cell death and not an instantaneous event, several pharmacological and non-pharmacological strategies have been developed to attenuate or block this cascade. The most promising neuroprotectant so far is therapeutic hypothermia and its beneficial effects have inspired researchers to further improve its protective benefit by combining it with other neuroprotective agents. This review provides an overview of all neuroprotective strategies that have been combined with therapeutic hypothermia in rodent models of focal cerebral ischemia. A distinction is made between drugs interrupting only one event of the ischemic cascade from those mitigating different pathways and having multimodal effects. Also the combination of therapeutic hypothermia with hemicraniectomy, gene therapy and protein therapy is briefly discussed. Furthermore, those combinations that have been studied in a clinical setting are also reviewed.
-
-
-
Relevance of Excitable Media Theory and Retinal Spreading Depression Experiments in Preclinical Pharmacological Research
More LessAuthors: V.M. Fernandes de Lima and W. HankeIn preclinical neuropharmacological research, molecular, cell-based, and systems using animals are well established. On the tissue level the situation is less comfortable, although during the last decades some effort went into establishing such systems, i.e. using slices of the vertebrate brain together with optical and electrophysiological techniques. However, these methods are neither fast, nor can they be automated or upscaled. By contrast, the chicken retina can be used as a suitable model. It is easy accessible and can be kept alive in vitro for hours up to days. Due to its structure, in addition the retina displays remarkable intrinsic optical signals, which can be easily used in experiments. Also to electrophysiological methods the retina is well accessible. In excitable tissue, to which the brain and the retina belong, propagating excitation waves can be expected, and the spreading depression is such a phenomenon. It has been first observed in the forties of the last century. Later, Martins- Ferreira established it in the chicken retina (retinal spreading depression or RSD). The electrophysiological characteristics of it are identical with those of the cortical SD. The metabolic differences are known and can be taken into account. The experimental advantage of the RSD compared to the cortical SD is the pronounced intrinsic optical signal (IOS) associated with the travelling wave. This is due to the maximum transparency of retinal tissue in the functional state; thus any physiological event will change it markedly and therefore can be easily seen even by naked eye. The theory can explain wave spread in one (action potentials), two (RSDs) and three dimensions (one heart beat). In this review we present the experimental and the excitable media context for the data interpretation using as example the cholinergic pharmacology in relation to functional syndromes. We also discuss the intrinsic optical signal and how to use it in pre-clinical research.
-
-
-
The Gastrin-Releasing Peptide Receptor (GRPR) in the Spinal Cord as a Novel Pharmacological Target
More LessAuthors: Keiko Takanami and Hirotaka SakamotoGastrin-releasing peptide (GRP) is a mammalian neuropeptide that acts through the G protein-coupled receptor, GRP receptor (GRPR). Increasing evidence indicates that GRPR-mediated signaling in the central nervous system plays an important role in many physiological processes in mammals. Additionally, we have recently reported that the GRP system within the lumbosacral spinal cord not only controls erection but also triggers ejaculation in male rats. This system of GRP neurons is sexually dimorphic, being prominent in male rats but vestigial or absent in females. It is suggested that the sexually dimorphic GRP/GRPR system in the lumbosacral spinal cord plays a critical role in the regulation of male sexual function. In parallel, it has been reported that the somatosensory GRP/GRPR system in the spinal cord contributes to the regulation of itch specific transmission independently of the pain transmission. Interestingly, these two distinct functions in the same spinal region are both regulated by the neuropeptide, GRP. In this report, we review findings on recently identified GRP/GRPR systems in the spinal cord. These GRP/GRPR systems in the spinal cord provide new insights into pharmacological treatments for psychogenic erectile dysfunction as well as for chronic pruritus.
-
-
-
The Role of Ketamine in Treatment-Resistant Depression: A Systematic Review
More LessAuthors: Gianluca Serafini, Robert H. Howland, Fabiana Rovedi, Paolo Girardi and Mario AmoreBackground: At least 10-20% of the patients suffering from depression meet criteria for treatment-resistant depression (TRD). In the last decades, an important role of glutamate in mood modulation has been hypothesized and ketamine, a non noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) receptors, has been demonstrated to be effective in both MDD and TRD. However, concerns emerged about the optimal dosage, and frequency of administration of this treatment. Methods: aiming to systematically review the current literature focusing on the main pharmacological properties and impact of ketamine in TRD, a detailed literature search in PubMed/Medline and ScienceDirect databases was conducted. Twenty-four manuscripts including a total of 416 patients fulfilled inclusion criteria. Results: Most studies demonstrated that the NMDA antagonist ketamine has rapid antidepressant effects in TRD patients, confirming the active role of glutamate in the pathophysiology of this complex condition. Ketamine has been demonstrated to be rapidly effective and was associated with a significant clinical improvement in depressive symptoms within hours after administration. Also, ketamine was also found to be effective in reducing suicidality in TRD samples. Limitations: The long-term efficacy of ketamine has not been investigated by most studies. The psychotomimetic properties may complicate the application of this pharmacological agent. Conclusions: Ketamine may be considered a valid and intriguing antidepressant option for the treatment of TRD. Further studies are needed to evaluate its long-term antidepressant efficacy in patients with TRD.
-
-
-
The Endocannabinoid/Endovanilloid System and Depression
More LessAuthors: Irena Smaga, Beata Bystrowska, Dawid Gawlinski, Edmund Przegalinski and Malgorzata FilipDepression is one of the most frequent causes of disability in the 21st century. Despite the many preclinical and clinical studies that have addressed this brain disorder, the pathophysiology of depression is not well understood and the available antidepressant drugs are therapeutically inadequate in many patients. In recent years, the potential role of lipidderived molecules, particularly endocannabinoids (eCBs) and endovanilloids, has been highlighted in the pathogenesis of depression and in the action of antidepressants. There are many indications that the eCB/endovanilloid system is involved in the pathogenesis of depression, including the localization of receptors, modulation of monoaminergic transmission, inhibition of the stress axis and promotion of neuroplasticity in the brain. Preclinical pharmacological and genetic studies of eCBs in depression also suggest that facilitating the eCB system exerts antidepressant-like behavioral responses in rodents. In this article, we review the current knowledge of the role of the eCB/endovanilloid system in depression, as well as the effects of its ligands, models of depression and antidepressant drugs in preclinical and clinical settings.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month