Current Neuropharmacology - Volume 11, Issue 6, 2013
Volume 11, Issue 6, 2013
-
-
“Bedside-to-Bench” Behavioral Outc omes in Animal Models of Pain: Beyond the Evaluation of Reflexes
Authors: Enrique J. Cobos and Enrique Portillo-SalidoDespite the myriad promising new targets and candidate analgesics recently identified in preclinical pain studies, little translation to novel pain medications has been generated. The pain phenotype in humans involves complex behavioral alterations, including changes in daily living activities and psychological disturbances. These behavioral changes are not reflected by the outcome measures traditionally used in rodents for preclinical pain testing, which are based on reflexes evoked by sensory stimuli of different types (mechanical, thermal or chemical). These measures do not evaluate the impact of the pain experience on the global behavior or disability of the animals, and therefore only consider a limited aspect of the pain phenotype. The development of relevant new outcomes indicative of pain to increase the validity of animal models of pain has been increasingly pursued over the past few years. The aim has been to translate “bedside-to-bench” outcomes from the human pain phenotype to rodents, in order to complement traditional pain outcomes by providing a closer and more realistic measure of clinical pain in rodents. This review summarizes and discusses the most important nonstandard outcomes for pain assessment in preclinical studies. The advantages and drawbacks of these techniques are considered, and their potential impact on the validation of potential analgesics is evaluated.
-
-
-
Tissue Injury and Related Mediators of Pain Exacerbation
Authors: Fumimasa Amaya, Yuta Izumi, Megumi Matsuda and Mika SasakiTissue injury and inflammation result in release of various mediators that promote ongoing pain or pain hypersensitivity against mechanical, thermal and chemical stimuli. Pro-nociceptive mediators activate primary afferent neurons directly or indirectly to enhance nociceptive signal transmission to the central nervous system. Excitation of primary afferents by peripherally originating mediators, so-called “peripheral sensitization”, is a hallmark of tissue injuryrelated pain. Many kinds of pro-nociceptive mediators, including ATP, glutamate, kinins, cytokines and tropic factors, synthesized at the damaged tissue, contribute to the development of peripheral sensitization. In the present review we will discuss the molecular mechanisms of peripheral sensitization following tissue injury.
-
-
-
Protease-Activated Receptors as Therapeutic Targets in Visceral Pain
More LessThe protease-activated receptors (PARs) play a pivotal role in inflammatory and nociceptive processes. PARs have raised considerable interest because of their capacity to regulate numerous aspects of viscera physiology and pathophysiology. The present article summarizes research on PARs and proteases as signalling molecules in visceral pain. In particular, experiments in animal models suggest that PAR2 is important for visceral hypersensitivity. Moreover, endogenous PAR2 agonists seem to be released by colonic tissue of patients suffering from irritable bowel syndrome, suggesting a role for this receptor in visceral pain perception. Thus, PARs, together with proteases that activate them, represent exciting targets for therapeutic intervention on visceral pain.
-
-
-
Pharmacological Inhibition of Voltage-gated Ca2+ Channels for Chronic Pain Relief
By Seungkyu LeeChronic pain is a major therapeutic problem as the current treatment options are unsatisfactory with low efficacy and deleterious side effects. Voltage-gated Ca2+ channels (VGCCs), which are multi-complex proteins consisting of α1,β,γ, and α2δ subunits, play an important role in pain signaling. These channels are involved in neurogenic inflammation, excitability, and neurotransmitter release in nociceptors. It has been previously shown that N-type VGCCs (Cav2.2) are a major pain target. U.S. FDA approval of three Cav2.2 antagonists, gabapentin, pregabalin, and ziconotide, for chronic pain underlies the importance of this channel subtype. Also, there has been increasing evidence that L-type (Cav1.2) or T-type (Cav3.2) VGCCs may be involved in pain signaling and chronic pain. In order to develop novel pain therapeutics and to understand the role of VGCC subtypes, discovering subtype selective VGCC inhibitors or methods that selectively target the inhibitor into nociceptors would be essential. This review describes the various VGCC subtype inhibitors and the potential of utilizing VGCC subtypes as targets of chronic pain. Development of VGCC subtype inhibitors and targeting them into nociceptors will contribute to a better understanding of the roles of VGCC subtypes in pain at a spinal level as well as development of a novel class of analgesics for chronic pain.
-
-
-
Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential
Authors: Xiaona Du and Nikita GamperElectrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design.
-
-
-
Anoctamin 1 Mediates Thermal Pain as a Heat Sensor
More LessVertebrates can sense and avoid noxious heat that evokes pain. Many thermoTRP channels are associated with temperature sensation. TRPV1 is a representative ion channel that is activated by noxious heat. Anoctamin 1 (ANO1) is a Cl- channel activated by calcium that is highly expressed in small sensory neurons, colocalized with markers for nociceptors, and most surprisingly, activated by noxious heat over 44°C. Although ANO1 is a Cl- channel, opening of this channel leads to depolarization of sensory neurons, suggesting a role in nociception. Indeed, the functional deletion of ANO1 in sensory neurons triggers the reduction in thermal pain sensation. Thus, it seems clear that ANO1 is a heat sensor in a nociceptive pathway. Since ANO1 modulators are developed for the purpose of treating chronic diseases such as cystic fibrosis, this finding is likely to predict unwanted effects and provide a guide for better developmental strategy.
-
-
-
Targeting Pain-evoking Transient Receptor Potential Channels for the Treatment of Pain
Authors: Jialie Luo, Edgar T Walters, Susan M. Carlton and Hongzhen HuChronic pain affects billions of lives globally and is a major public health problem in the United States. However, pain management is still a challenging task due to a lack of understanding of the fundamental mechanisms of pain. In the past decades transient receptor potential (TRP) channels have been identified as molecular sensors of tissue damage and inflammation. Activation/sensitization of TRP channels in peripheral nociceptors produces neurogenic inflammation and contributes to both somatic and visceral pain. Pharmacological and genetic studies have affirmed the role of TRP channels in multiple forms of inflammatory and neuropathic pain. Thus pain-evoking TRP channels emerge as promising therapeutic targets for a wide variety of pain and inflammatory conditions.
-
-
-
Resolvins: Endogenously-Generated Potent Painkilling Substances and their Therapeutic Perspectives
Authors: Sungjae Yoo, Ji Yeon Lim and Sun Wook HwangThe efficacy of many of pain-relieving drugs is based on mechanisms by which the drugs interfere with the body’s natural pain-mediating pathways. By contrast, although it is less popular, other drugs including opioids exert more powerful analgesic actions by augmenting endogenous inhibitory neural circuits for pain mediation. Recently, a novel endogenous pain-inhibitory principle was suggested and is now attracting both scientific and clinical attentions. The central players for the actions are particular body lipids: resolvins. Although research is in the preclinical phase, multiple hypotheses have actively been matured regarding the potency and molecular and neural processes of the analgesic effects of these substances. Consistently, accumulating experimental evidence has been demonstrating that treatment with these lipid substances is strongly effective at controlling diverse types of pain. Treatment of resolvins does not appear to disturb the body homeostasis as severely as many other therapeutic agents that interrupt the body’s natural signaling flow, which enables us to predict their fewer adverse effects. This paper serves as a review of currently documented painkilling actions of resolvins, summarizes the potential cellular and receptor-mediated mechanisms to date, and discusses the many clinical uses for these therapeutic lipids that have not yet been tested. Future scientific efforts will more concentrate to unveil such aspects of the substances and to construct clear proofs of concept for pain relief.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month
