Skip to content
2000
Volume 23, Issue 10
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Glutamate is implicated in playing a crucial role in modulating the complex pathophysiological mechanisms of migraines, including central or peripheral sensitization, cortical spreading depression, and pain transmission. With expanding knowledge over the last three decades, glutamate receptors have become focal points in neurological drug research. Altered plasma glutamate levels during migraines suggest a potential avenue for effective therapies targeting glutamate reduction. Furthermore, glutamate is believed to play a vital role in modulating the complex pathophysiological mechanisms underlying migraines.

Objective

This study aims to provide an overview of the ionotropic glutamate receptor antagonists (NMDA, AMPA, and Kainate receptors) and metabotropic glutamate receptors in the context of migraines. We explore the advantages and disadvantages of these receptor modulators as alternative treatments, considering efficacy, tolerability, and safety.

Methods

We conducted comprehensive online searches across various electronic databases, with a primary focus on PubMed and clinicaltrials.gov, to gather the latest treatment approaches and emerging concepts.

Results

A total of 371 articles were identified from PubMed, along with 69 articles from clinicaltrials.gov. After refinement, 113 articles were included. We summarize seven different medications currently in clinical practice for migraines and highlight six items for migraine therapy in preclinical trials and their potential value.

Conclusion

It's crucial to note that these agents pose certain challenges in specific drug research due to their intricate influence and mechanisms of action within multiple neuronal pathways. Therefore, further studies are warranted to elucidate more specific glutamatergic signaling pathways for migraine therapy while minimizing interference with normal neuronal functions.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666250403124115
2025-04-04
2025-09-08
Loading full text...

Full text loading...

References

  1. VécseiL. LukácsM. TajtiJ. FülöpF. ToldiJ. EdvinssonL. The therapeutic impact of new migraine discoveries.Curr. Med. Chem.201926346261628110.2174/0929867325666180530114534 29848264
    [Google Scholar]
  2. HoffmannJ. CharlesA. Glutamate and its receptors as therapeutic targets for migraine.Neurotherapeutics201815236137010.1007/s13311‑018‑0616‑5 29508147
    [Google Scholar]
  3. ChanK. MaassenVanDenBrinkA. Glutamate receptor antagonists in the management of migraine.Drugs201474111165117610.1007/s40265‑014‑0262‑0 25030431
    [Google Scholar]
  4. GoadsbyP.J. HollandP.R. Pathophysiology of Migraine.Neurol. Clin.201937465167110.1016/j.ncl.2019.07.008 31563225
    [Google Scholar]
  5. GaspariniC.F. SmithR.A. GriffithsL.R. Genetic insights into migraine and glutamate: A protagonist driving the headache.J. Neurol. Sci.201636725826810.1016/j.jns.2016.06.016 27423601
    [Google Scholar]
  6. LauritzenM. HansenA.J. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression.J. Cereb. Blood Flow Metab.199212222322910.1038/jcbfm.1992.32 1312539
    [Google Scholar]
  7. AshinaM. Migraine.N. Engl. J. Med.2020383191866187610.1056/NEJMra1915327 33211930
    [Google Scholar]
  8. LupiC. BenemeiS. GuerzoniS. PellesiL. NegroA. Pharmacokinetics and pharmacodynamics of new acute treatments for migraine.Expert Opin. Drug Metab. Toxicol.201915318919810.1080/17425255.2019.1578749 30714429
    [Google Scholar]
  9. SchytzH.W. HargreavesR. AshinaM. Challenges in developing drugs for primary headaches.Prog. Neurobiol.2017152708810.1016/j.pneurobio.2015.12.005 26751129
    [Google Scholar]
  10. BarbantiP. AuriliaC. EgeoG. FofiL. Future trends in drugs for migraine prophylaxis.Neurol. Sci.201233S113714010.1007/s10072‑012‑1058‑1 22644189
    [Google Scholar]
  11. TajtiJ. CsátiA. VécseiL. Novel strategies for the treatment of migraine attacks via the CGRP, serotonin, dopamine, PAC1, and NMDA receptors.Expert Opin. Drug Metab. Toxicol.201410111509152010.1517/17425255.2014.963554 25253587
    [Google Scholar]
  12. AuroraS.K. DodickD.W. TurkelC.C. DeGryseR.E. SilbersteinS.D. LiptonR.B. DienerH.C. BrinM.F. PREEMPT 1 Chronic Migraine Study Group. Onabotulinumtoxin A for treatment of chronic migraine: Results from the double-blind; randomized.; placebo-controlled phase of the PREEMPT 1 trial.Cephalalgia201030779380310.1177/0333102410364676 20647170
    [Google Scholar]
  13. DienerH.C. DodickD.W. AuroraS.K. TurkelC.C. DeGryseR.E. LiptonR.B. SilbersteinS.D. BrinM.F. PREEMPT 2 Chronic Migraine Study Group. Onabotulinumtoxin A for treatment of chronic migraine: Results from the double-blind.; randomized.; placebo-controlled phase of the PREEMPT 2 trial.Cephalalgia201030780481410.1177/0333102410364677 20647171
    [Google Scholar]
  14. FerrariA. SpaccalopeloL. PinettiD. TacchiR. BertoliniA. Effective prophylactic treatments of migraine lower plasma glutamate levels.Cephalalgia200929442342910.1111/j.1468‑2982.2008.01749.x 19170689
    [Google Scholar]
  15. VieiraD.S. Naffah-MazzacorattiM.G. ZukermanE. SoaresC.A.S. CavalheiroE.A. PeresM.F.P. Glutamate levels in cerebrospinal fluid and triptans overuse in chronic migraine.Headache200747684284710.1111/j.1526‑4610.2007.00812.x 17578532
    [Google Scholar]
  16. Michail Vikelis MitsikostasD.D. The role of glutamate and its receptors in migraine.CNS Neurol. Disord. Drug Targets20076425125710.2174/187152707781387279 17691981
    [Google Scholar]
  17. RamadanN.M. The link between glutamate and migraine.CNS Spectr.20038644644910.1017/S1092852900018757 12858134
    [Google Scholar]
  18. KewJ.N.C. KempJ.A. Ionotropic and metabotropic glutamate receptor structure and pharmacology.Psychopharmacology (Berl.)2005179142910.1007/s00213‑005‑2200‑z 15731895
    [Google Scholar]
  19. TraynelisS.F. WollmuthL.P. McBainC.J. MennitiF.S. VanceK.M. OgdenK.K. HansenK.B. YuanH. MyersS.J. DingledineR. Glutamate receptor ion channels: Structure, regulation, and function.Pharmacol. Rev.201062340549610.1124/pr.109.002451 20716669
    [Google Scholar]
  20. MazzitelliM. PrestoP. AntenucciN. MeltanS. NeugebauerV. Recent advances in the modulation of pain by the metabotropic glutamate receptors.Cells20221116260810.3390/cells11162608 36010684
    [Google Scholar]
  21. ReinerA. LevitzJ. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert.Neuron20189861080109810.1016/j.neuron.2018.05.018 29953871
    [Google Scholar]
  22. BursteinR. Deconstructing migraine headache into peripheral and central sensitization.Pain200189210711010.1016/S0304‑3959(00)00478‑4 11166465
    [Google Scholar]
  23. BursteinR. CutrerM.F. YarnitskyD. The development of cutaneous allodynia during a migraine attack Clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine.Brain200012381703170910.1093/brain/123.8.1703 10908199
    [Google Scholar]
  24. BursteinR. YarnitskyD. Goor-AryehI. RansilB.J. BajwaZ.H. An association between migraine and cutaneous allodynia.Ann. Neurol.200047561462410.1002/1531‑8249(200005)47:5<614::AID‑ANA9>3.0.CO;2‑N 10805332
    [Google Scholar]
  25. ParkC.G. ChuM.K. Interictal plasma glutamate levels are elevated in individuals with episodic and chronic migraine.Sci. Rep.2022121692110.1038/s41598‑022‑10883‑9 35484312
    [Google Scholar]
  26. Baad-HansenL. CairnsB.E. ErnbergM. SvenssonP. Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity.Cephalalgia2010301687610.1111/j.1468‑2982.2009.01881.x 19438927
    [Google Scholar]
  27. ShimadaA. CairnsB.E. VadN. UlriksenK. PedersenA.M.L. SvenssonP. Baad-HansenL. Headache and mechanical sensitization of human pericranial muscles after repeated intake of monosodium glutamate (MSG).J. Headache Pain2013141210.1186/1129‑2377‑14‑2 23565943
    [Google Scholar]
  28. LiangY.C. HuangC.C. HsuK.S. Characterization of long-term potentiation of primary afferent transmission at trigeminal synapses of juvenile rats: Essential role of subtype 5 metabotropic glutamate receptors.Pain2005114341742810.1016/j.pain.2005.01.008 15777867
    [Google Scholar]
  29. HoffmannJ. Martins-OliveiraM. SupronsinchaiW. The CK1δ T44A mutation affects nociceptive activation of the trigeminocervical complex in an in vivo model of migraine (P1.258).Neurology20148210_supplement25810.1212/WNL.82.10_supplement.P1.25
    [Google Scholar]
  30. LadépêcheL. DupuisJ.P. GrocL. Surface trafficking of NMDA receptors: Gathering from a partner to another.Semin. Cell Dev. Biol.20142731310.1016/j.semcdb.2013.10.005 24177014
    [Google Scholar]
  31. CollingridgeG.L. BlissT.V.P. Memories of NMDA receptors and LTP.Trends Neurosci.1995182545610.1016/0166‑2236(95)80016‑U 7537406
    [Google Scholar]
  32. RisonR.A. StantonP.K. Long-term potentiation and N-methyl-d-aspartate receptors: Foundations of memory and neurologic disease?Neurosci. Biobehav. Rev.199519453355210.1016/0149‑7634(95)00017‑8 8684715
    [Google Scholar]
  33. AhmedH. HaiderA. AmetameyS.M. N -Methyl-D-Aspartate (NMDA) receptor modulators: A patent review (2015-present).Expert Opin. Ther. Pat.2020301074376710.1080/13543776.2020.1811234 32926646
    [Google Scholar]
  34. ParsonsC.G. DanyszW. QuackG. Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data.Neuropharmacology199938673576710.1016/S0028‑3908(99)00019‑2 10465680
    [Google Scholar]
  35. PaolettiP. Molecular basis of NMDA receptor functional diversity.Eur. J. Neurosci.20113381351136510.1111/j.1460‑9568.2011.07628.x 21395862
    [Google Scholar]
  36. O’BrienM. CairnsB.E. Monosodium glutamate alters the response properties of rat trigeminovascular neurons through activation of peripheral NMDA receptors.Neuroscience201633423624410.1016/j.neuroscience.2016.08.007 27522962
    [Google Scholar]
  37. Guerrero-ToroC. KorolevaK. ErmakovaE. Ga furovO. AbushikP. TaviP. SitdikovaG. GiniatullinR. Testing the role of glutamate NMDA receptors in peripheral trigeminal nociception im plicated in migraine pain.Int. J. Mol. Sci.2022233152910.3390/ijms23031529 35163452
    [Google Scholar]
  38. ZhouQ. WangJ. ZhangX. ZengL. WangL. JiangW. Effect of metabotropic glutamate 5 receptor antagonists on morphine efficacy and tolerance in rats with neuropathic pain.Eur. J. Pharmacol.20137181-3172310.1016/j.ejphar.2013.09.009 24041921
    [Google Scholar]
  39. RogawskiM.A. Common pathophysiologic mechanisms in migraine and epilepsy.Arch. Neurol.200865670971410.1001/archneur.65.6.709 18541791
    [Google Scholar]
  40. LatremoliereA. WoolfC.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity.J. Pain200910989592610.1016/j.jpain.2009.06.012 19712899
    [Google Scholar]
  41. Tallaksen-GreeneS.J. YoungA.B. PenneyJ.B. BeitzA.J. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat.Neurosci. Lett.19921411798310.1016/0304‑3940(92)90339‑9 1324445
    [Google Scholar]
  42. HuangT.H. LaiM.C. ChenY.S. HuangC.W. The roles of glutamate receptors and their antagonists in status epilepticus, refractory status epilepticus, and super-refractory status epilepticus.Biomedicines202311368610.3390/biomedicines11030686 36979664
    [Google Scholar]
  43. ZhangW. LeiM. WenQ. ZhangD. QinG. ZhouJ. ChenL. Dopamine receptor D2 regulates GLUA1-containing AMPA receptor trafficking and central sensitization through the PI3K signaling pathway in a male rat model of chronic migraine.J. Headache Pain20222319810.1186/s10194‑022‑01469‑x 35948867
    [Google Scholar]
  44. LeoA. GiovanniniG. RussoE. MelettiS. The role of AMPA receptors and their antagonists in status epilepticus.Epilepsia20185961098110810.1111/epi.14082 29663350
    [Google Scholar]
  45. GuoC. MaY.Y. Calcium permeable-AMPA receptors and excitotoxicity in neurological disorders.Front. Neural Circuits20211571156410.3389/fncir.2021.711564 34483848
    [Google Scholar]
  46. ManH.Y. GluA2-lacking, calcium-permeable AMPA receptors-inducers of plasticity?.Curr. Opin. Neurobiol.201121229129810.1016/j.conb.2011.01.001 21295464
    [Google Scholar]
  47. GilronI. MaxM.B. LeeG. BooherS.L. SangC.N. ChappellA.S. DionneR.A. Effects of the 2-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid/kainate antagonist LY293558 on spontaneous and evoked postoperative pain.Clin. Pharmacol. Ther.200068332032710.1067/mcp.2000.108677 11014414
    [Google Scholar]
  48. ChanK.Y. GuptaS. de VriesR. DanserA.H. VillalónC.M. Muñoz-IslasE. Maassenvanden brink, A. Effects of ionotropic glutamate receptor an tagonists on rat dural artery diameter in an intravital microscopy model.Br. J. Pharmacol.201016061316132510.1111/j.1476‑5381.2010.00733.x 20590623
    [Google Scholar]
  49. ChałupnikP. SzymańskaE. Kainate receptor antagonists: Recent advances and therapeutic perspective.Int. J. Mol. Sci.2023243190810.3390/ijms24031908 36768227
    [Google Scholar]
  50. HansenK.B. WollmuthL.P. BowieD. FurukawaH. MennitiF.S. SobolevskyA.I. SwansonG.T. SwangerS.A. GregerI.H. NakagawaT. McBainC.J. JayaramanV. LowC.M. Dell’AcquaM.L. DiamondJ.S. CampC.R. PerszykR.E. YuanH. TraynelisS.F. Structure, function, and pharmacology of glutamate receptor ion channels.Pharmacol. Rev.20217341469165810.1124/pharmrev.120.000131 34753794
    [Google Scholar]
  51. HuettnerJ.E. Kainate receptors and synaptic transmission.Prog. Neurobiol.200370538740710.1016/S0301‑0082(03)00122‑9 14511698
    [Google Scholar]
  52. ZhouS. BonaseraL. CarltonS.M. Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats.Neuroreport19967489590010.1097/00001756‑199603220‑00012 8724668
    [Google Scholar]
  53. JacksonD.L. GraffC.B. RichardsonJ.D. HargreavesK.M. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats.Eur. J. Pharmacol.1995284332132510.1016/0014‑2999(95)00449‑U 8666015
    [Google Scholar]
  54. BleakmanD. AltA. NisenbaumE.S. Glutamate receptors and pain.Semin. Cell Dev. Biol.200617559260410.1016/j.semcdb.2006.10.008 17110139
    [Google Scholar]
  55. WalkerK. ReeveA. BowesM. WinterJ. Woth erspoonG. DavisA. SchmidP. GaspariniF. KuhnR. UrbanL. mGlu5 receptors and nocicep tive function II. mGlu5 receptors functionally ex pressed on peripheral sensory neurones mediate in flammatory hyperalgesia.Neuropharmacology2001401101910.1016/S0028‑3908(00)00114‑3 11077066
    [Google Scholar]
  56. WalkerK. BowesM. PanesarM. DavisA. Metabotropic glutamate receptor sub type 5 (mGlu5) and nociceptive function. I. Selective blockade of mGlu5 receptors in models of acute, per sistent and chronic pain.Neuropharmacology20014011910.1016/S0028‑3908(00)00113‑1 11077065
    [Google Scholar]
  57. WaungM.W. AkermanS. WakefieldM. KeywoodC. GoadsbyP.J. Metabotropic glutamate receptor 5: A target for migraine therapy.Ann. Clin. Transl. Neurol.20163856057110.1002/acn3.302 27606340
    [Google Scholar]
  58. CopelandC.S. NealeS.A. NisenbaumE.S. SaltT.E. Group II metabotropic glutamate receptor (MGLU 2 and MGLU 3) roles in thalamic processing.Br. J. Pharmacol.202217981607161910.1111/bph.15640 34355803
    [Google Scholar]
  59. BereiterD.A. BereiterD.F. HathawayC.B. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity in central trigeminal neurons and blocks select endocrine and autonomic responses to corneal stimulation in the rat.Pain199664117918910.1016/0304‑3959(95)00095‑X 8867261
    [Google Scholar]
  60. ClasseyJ.D. KnightY.E. GoadsbyP.J. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat.Brain Res.20019071-211712410.1016/S0006‑8993(01)02550‑1 11430892
    [Google Scholar]
  61. HattoriY. WatanabeM. IwabeT. TanakaE. NishiM. AoyamaJ. SatodaT. UchidaT. TanneK. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars.Brain Res.20041021218319110.1016/j.brainres.2004.06.048 15342266
    [Google Scholar]
  62. MitsikostasD.D. del RioM.S. WaeberC. MoskowitzM.A. CutrerM.F. The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis.Pain199876123924810.1016/S0304‑3959(98)00051‑7 9696479
    [Google Scholar]
  63. Nagy-GróczG. ZádorF. DvorácskóS. BohárZ. BenyheS. TömbölyC. PárdutzÁ. VécseiL. Interactions between the kynurenine and the endocannabinoid system with special emphasis on migraine.Int. J. Mol. Sci.2017188161710.3390/ijms18081617 28758944
    [Google Scholar]
  64. VécseiL. MajláthZ. BalogA. TajtiJ. Drug targets of migraine and neuropathy: Treatment of hyperexcitability.CNS Neurol. Disord. Drug Targets201514566467610.2174/1871527314666150429114040 25921739
    [Google Scholar]
  65. GuoS. VecseiL. AshinaM. The L-kynurenine signalling pathway in trigeminal pain processing: A potential therapeutic target in migraine?Cephalalgia20113191029103810.1177/0333102411404717 21593189
    [Google Scholar]
  66. Al-KaragholiM.A.M. HansenJ.M. Abou-KassemD. HanstedA.K. UbhayasekeraK. BergquistJ. VécseiL. Jansen-OlesenI. AshinaM. Phase 1 study to access safety, tolerability, pharmacokinetics, and pharmacodynamics of kynurenine in healthy volunteers.Pharmacol. Res. Perspect.202192e0074110.1002/prp2.741 33682377
    [Google Scholar]
  67. BirchP.J. GrossmanC.J. HayesA.G. Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor.Eur. J. Pharmacol.19881541858710.1016/0014‑2999(88)90367‑6 2846328
    [Google Scholar]
  68. FukuiS. SchwarczR. RapoportS.I. TakadaY. SmithQ.R. Blood-brain barrier transport of kynurenines: Implications for brain synthesis and metabolism.J. Neurochem.19915662007201710.1111/j.1471‑4159.1991.tb03460.x 1827495
    [Google Scholar]
  69. ColpoG.D. VennaV.R. McCulloughL.D. TeixeiraA.L. Systematic review on the involvement of the kynurenine pathway in stroke: Pre-clinical and clinical evidence.Front. Neurol.20191077810.3389/fneur.2019.00778 31379727
    [Google Scholar]
  70. VécseiL. BealM.F. Comparative behavioral and pharmacological studies with centrally administered kynurenine and kynurenic acid in rats.Eur. J. Pharmacol.1991196323924610.1016/0014‑2999(91)90436‑T 1893912
    [Google Scholar]
  71. Gomez-MancillaB. BrandR. JurgensT.P. GobelH. SommerC. StraubeA. EversS. SommerM. CamposV. KalkmanH.O. HariryS. PezousN. JohnsD. DienerH-C. Randomized, multicenter trial to assess the efficacy, safety and tolerability of a single dose of a novel AMPA receptor antagonist BGG492 for the treatment of acute migraine attacks.Cephalalgia201434210311310.1177/0333102413499648 23963355
    [Google Scholar]
  72. RamadanN.M. Glutamate and migraine: From Ikeda to the 21st century.Cephalalgia2014342868910.1177/0333102413499646 23935158
    [Google Scholar]
  73. SaharaY. NoroN. IidaY. SomaK. NakamuraY. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons.J. Neurosci.199717176611662010.1523/JNEUROSCI.17‑17‑06611.1997 9254673
    [Google Scholar]
  74. JohnsonK.W. NisenbaumE.S. JohnsonM.P. DieckmanD.K. Clemens-SmithA. SiudaE.R. In novative drug development for headache disorders: glutamate.Frontiers in Headache Research Series200810.1093/med/9780199552764.003.0022
    [Google Scholar]
  75. AndreouA.P. HollandP.R. LasalandraM.P. GoadsbyP.J. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors.Pain2015156343945010.1097/01.j.pain.0000460325.25762.c0 25679470
    [Google Scholar]
  76. AndreouA.P. HollandP.R. GoadsbyP.J. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation.Br. J. Pharmacol.2009157346447310.1111/j.1476‑5381.2009.00142.x 19309356
    [Google Scholar]
  77. SangC.N. RamadanN.M. WallihanR.G. ChappellA.S. FreitagF.G. SmithT.R. SilbersteinS.D. JohnsonK.W. PhebusL.A. BleakmanD. OrnsteinP.L. ArnoldB. TepperS.J. VandenhendeF. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine.Cephalalgia200424759660210.1111/j.1468‑2982.2004.00723.x 15196302
    [Google Scholar]
  78. WitkinJ.M. PandeyK.P. SmithJ.L. Clinical investigations of compounds targeting metabotropic glutamate receptors.Pharmacol. Biochem. Behav.202221917344610.1016/j.pbb.2022.173446 35987339
    [Google Scholar]
  79. MarinJ.C.A. GoadsbyP.J. Glutamatergic fine tuning with ADX-10059: A novel therapeutic approach for migraine?Expert Opin. Investig. Drugs201019455556110.1517/13543781003691832 20218930
    [Google Scholar]
  80. TerziogluB. OguzE. AcetG. Effect of valproic acid on oxidative stress parameters of glutamate induced excitotoxicity in SH SY5Y cells.Exp. Ther. Med.20202021321132810.3892/etm.2020.8802 32742366
    [Google Scholar]
  81. ChaudharyS. ParvezS. An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats.Neuroscience201222525826810.1016/j.neuroscience.2012.08.060 22960313
    [Google Scholar]
  82. SunZ.W. ZhangL. ZhuS.J. ChenW.C. MeiB. Excitotoxicity effects of glutamate on human neuroblastoma SH-SY5Y cells via oxidative damage.Neurosci. Bull.201026181610.1007/s12264‑010‑0813‑7 20101268
    [Google Scholar]
  83. LeeJ.Y. MaengS. KangS.R. ChoiH.Y. OhT.H. JuB.G. YuneT.Y. Valproic acid protects motor neuron death by inhibiting oxidative stress and endoplasmic reticulum stress-mediated cytochrome C release after spinal cord injury.J. Neurotrauma201431658259410.1089/neu.2013.3146 24294888
    [Google Scholar]
  84. DienerH.C. Tfelt-HansenP. DahlöfC. LáinezM.J. SandriniG. WangS.J. NetoW. VijapurkarU. DoyleA. JacobsD. Topiramate in migraine prophylaxis--results from a placebo-controlled trial with propranolol as an active control.J. Neurol.2004251894395010.1007/s00415‑004‑0464‑6 15316798
    [Google Scholar]
  85. ZhangX. VelumianA.A. JonesO.T. CarlenP.L. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate.Epilepsia200041S1526010.1111/j.1528‑1157.2000.tb02173.x 10768302
    [Google Scholar]
  86. TavernaS. SanciniG. MantegazzaM. Frances chettiS. AvanziniG. Inhibition of transient and persistent Na+ current fractions by the new anti covulsant topiramate.J. Pharmacol. Exp. Ther.19992883960968 10027832
    [Google Scholar]
  87. WhiteH.S. BrownS.D. WoodheadJ.H. SkeenG.A. WolfH.H. Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold.Epilepsy Res.199728316717910.1016/s0920‑1211(97)00045‑4 9332882
    [Google Scholar]
  88. KaminskiR.M. BanerjeeM. RogawskiM.A. Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist.Neuropharmacology20044681097110410.1016/j.neuropharm.2004.02.010 15111016
    [Google Scholar]
  89. SprengerT. VianaM. TassorelliC. Current prophylactic medications for migraine and their potential mechanisms of action.Neurotherapeutics201815231332310.1007/s13311‑018‑0621‑8 29671241
    [Google Scholar]
  90. SteinerT.J. FindleyL.J. YuenA.W.C. Lamotrigine versus placebo in the prophylaxis of migraine with and without aura.Cephalalgia199717210911210.1046/j.1468‑2982.1997.1702109.x 9137848
    [Google Scholar]
  91. LamplC. BuzathA. KlingerD. NeumannK. Lamotrigine in the prophylactic treatment of migraine aura-a pilot study.Cephalalgia1999191586310.1111/j.1468‑2982.1999.1901058.x 10099861
    [Google Scholar]
  92. D’AndreaG. GranellaF. CadaldiniM. ManzoniG.C. Effectiveness of lamotrigine in the prophylaxis of migraine with aura: an open pilot study.Cephalalgia1999191646610.1111/j.1468‑2982.1999.1901064.x 10099862
    [Google Scholar]
  93. HansenJ.M. CharlesA. Differences in treatment response between migraine with aura and migraine without aura: Lessons from clinical practice and RCTs.J. Headache Pain20192019610.1186/s10194‑019‑1046‑4 31492106
    [Google Scholar]
  94. IacobucciG.J. VisnjevacO. PourafkariL. NaderN.D. Ketamine: An update on cellular and subcellular mechanisms with implications for clinical practice.Pain Physician2017202E285E301 28158165
    [Google Scholar]
  95. Rueda CarrilloL. GarciaK.A. YalcinN. ShahM. Ketamine and its emergence in the field of neurology.Cureus2022147e2738910.7759/cureus.27389 36046286
    [Google Scholar]
  96. EtchisonA. BosL. RayM. McAllisterK. MohammedM. ParkB. PhanA. HeitzC. Low-dose ketamine does not improve migraine in the emergency department: A randomized placebo-controlled trial.West. J. Emerg. Med.201819695296010.5811/westjem.2018.8.37875 30429927
    [Google Scholar]
  97. NicolodiM. SicuteriF. Exploration of NMDA receptors in migraine: Therapeutic and theoretic implications.Int. J. Clin. Pharmacol. Res.1995155-6181189 8835616
    [Google Scholar]
  98. WohlebE.S. GerhardD. ThomasA. DumanR.S. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine.Curr. Neuropharmacol.2017151112010.2174/1570159x14666160309114549 26955968
    [Google Scholar]
  99. RammesG. RupprechtR. FerrariU. ZieglgänsbergerW. ParsonsC.G. The N-methyl-d-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT3 receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner.Neurosci. Lett.20013061-2818410.1016/S0304‑3940(01)01872‑9 11403963
    [Google Scholar]
  100. KabirM.T. SufianM.A. UddinM.S. BegumM.M. AkhterS. IslamA. MathewB. IslamM.S. AmranM.S. Md AshrafG. NMDA receptor antagonists: Repositioning of memantine as a multitargeting agent for Alzheimer’s therapy.Curr. Pharm. Des.201925333506351810.2174/1381612825666191011102444 31604413
    [Google Scholar]
  101. MistryV.M. MorizioP.L. PepinM.J. BryanW.E. BrownJ.N. Role of memantine in the prophylactic treatment of episodic migraine: A systematic review.Headache20216181207121310.1111/head.14186 34352118
    [Google Scholar]
  102. ShanmugamS. KarunaikadalK. VaradarajanS. KrishnanM. Memantine ameliorates migraine headache.Ann. Indian Acad. Neurol.201922328629010.4103/aian.AIAN_294_18 31359939
    [Google Scholar]
  103. BigalM. RapoportA. SheftellF. TepperD. TepperS. Memantine in the preventive treatment of refractory migraine.Headache20084891337134210.1111/j.1526‑4610.2008.01083.x 19031499
    [Google Scholar]
  104. BentivegnaE. LucianiM. FerrariV. GalastriS. BaldariF. ScarsoF. LambertiP.A. MartellettiP. Recently approved and emerging drug options for migraine prophylaxis.Expert Opin. Pharmacother.202223111325133510.1080/14656566.2022.2102420 35850597
    [Google Scholar]
  105. ZhouT. TangY. ZhuH. Effectiveness and safety of memantine for headache: A meta-analysis of randomized controlled studies.Clin. Neuropharmacol.2022453404410.1097/WNF.0000000000000504 35467554
    [Google Scholar]
  106. DomitrzI. CegielskaJ. Magnesium as an important factor in the pathogenesis and treatment of migraine—from theory to practice.Nutrients2022145108910.3390/nu14051089 35268064
    [Google Scholar]
  107. ShinH.J. NaH.S. DoS.H. Magnesium and Pain.Nutrients2020128218410.3390/nu12082184 32718032
    [Google Scholar]
  108. AhmedF. MohammedA. Magnesium: The forgotten electrolyte—a review on hypomagnesemia.Med. Sci. (Basel)2019745610.3390/medsci7040056 30987399
    [Google Scholar]
  109. ArpaciD. TocogluA.G. ErgencH. KorkmazS. UcarA. TamerA. Associations of serum Magnesium levels with diabetes mellitus and diabetic complications.Hippokratia2015192153157 27418765
    [Google Scholar]
  110. HanadaT. IdoK. KosasaT. Effect of perampanel, a novel AMPA antagonist, on benzodiazepine-resistant status epilepticus in a lithium-pilocarpine rat model.Pharmacol. Res. Perspect.201425e0006310.1002/prp2.63 25505607
    [Google Scholar]
  111. FernandesM. DonoF. DaineseF. RennaR. ConsoliS. GaspariC. IzziF. PagliucaM. PlacidiF. Biagio MercuriN. LiguoriC. Perampanel may represent an effective treatment for the preven tion of migraine comorbid with epilepsy.Epilepsy Behav.202112510839110.1016/j.yebeh.2021.108391 34742034
    [Google Scholar]
  112. LimS.N. WuT. TsengW.E.J. ChiangH.I. ChengM.Y. LinW.R. LinC.N. Efficacy and safety of perampanel in refractory and super-refractory status epilepticus: cohort study of 81 patients and literature review.J. Neurol.2021268103744375710.1007/s00415‑021‑10506‑9 33754209
    [Google Scholar]
  113. Rugg-GunnF. Adverse effects and safety profile of perampanel: A review of pooled data.Epilepsia201455s1131510.1111/epi.12504 24400692
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666250403124115
Loading
/content/journals/cn/10.2174/1570159X23666250403124115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test