Skip to content
2000
Volume 23, Issue 7
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Post-Traumatic Stress Disorder (PTSD) is mainly characterized by dysregulated fear responses, including hyperarousal and intrusive re-experiencing of traumatic memories. This work delves into the intricate interplay between abnormal fear responses, cortisol dysregulation, and the Hypothalamic-Pituitary-Adrenal (HPA) axis, elucidating their role in the manifestation of PTSD. Given the persistent nature of PTSD symptoms and the limitations of conventional therapies, innovative interventions are urgently needed. One promising avenue of research revolves around the modulation of cortisol through targeting receptors, with dexamethasone emerging as a critical agent capable of reducing cortisol levels, thus potentially aiding in the extinction of fear. In this study, we emphasize the need for innovative interventions in the neuropharmacological treatment of PTSD, focusing on cortisol modulation and its impact on fear regulation mechanisms. The complex interplay between the HPA axis, cortisol modulation, and fear dysregulation not only broadens our comprehension but also reveals promising paths to enhance therapeutic outcomes for individuals struggling with PTSD, underscoring a crucial need for more effective treatment strategies.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666250123142526
2025-01-23
2025-05-18
Loading full text...

Full text loading...

References

  1. KesslerR.C. SonnegaA. BrometE. HughesM. NelsonC.B. Posttraumatic stress disorder in the national comorbidity survey.Arch. Gen. Psychiatry199552121048106010.1001/archpsyc.1995.03950240066012 7492257
    [Google Scholar]
  2. IribarrenJ. ProloP. NeagosN. ChiappelliF. Post-traumatic stress disorder: Evidence-based research for the third millennium.Evid. Based Complement. Alternat. Med.20052450351210.1093/ecam/neh127 16322808
    [Google Scholar]
  3. BissonJ.I. EhlersA. MatthewsR. PillingS. RichardsD. TurnerS. Psychological treatments for chronic post-traumatic stress disorder.Br. J. Psychiatry200719029710410.1192/bjp.bp.106.021402 17267924
    [Google Scholar]
  4. CareagaM.B.L. GirardiC.E.N. SucheckiD. Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation.Neurosci. Biobehav. Rev.201671485710.1016/j.neubiorev.2016.08.023 27590828
    [Google Scholar]
  5. ParedesD. MorilakD.A. A rodent model of exposure therapy: The use of fear extinction as a therapeutic intervention for PTSD.Front. Behav. Neurosci.2019134610.3389/fnbeh.2019.00046 30914932
    [Google Scholar]
  6. TanakaM. SzabóÁ. VécseiL. Preclinical modeling in depression and anxiety: Current challenges and future research directions.Adv. Clin. Exp. Med.202332550550910.17219/acem/165944 37212773
    [Google Scholar]
  7. TanakaM. SzabóÁ. VécseiL. Giménez-LlortL. Emerging translational research in neurological and psychiatric diseases: From in vitro to in vivo models.Int. J. Mol. Sci.202324211573910.3390/ijms242115739 37958722
    [Google Scholar]
  8. LonsdorfT.B. MenzM.M. AndreattaM. FullanaM.A. GolkarA. HaakerJ. HeitlandI. HermannA. KuhnM. KruseO. Meir DrexlerS. MeuldersA. NeesF. PittigA. RichterJ. RömerS. ShibanY. SchmitzA. StraubeB. VervlietB. WendtJ. BaasJ.M.P. MerzC.J. Don’t fear ‘fear conditioning’: Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear.Neurosci. Biobehav. Rev.20177724728510.1016/j.neubiorev.2017.02.026 28263758
    [Google Scholar]
  9. LonsdorfT.B. Klingelhöfer-JensM. AndreattaM. BeckersT. ChalkiaA. GerlicherA. JentschV.L. Meir DrexlerS. MertensG. RichterJ. SjouwermanR. WendtJ. MerzC.J. Navigating the garden of forking paths for data exclusions in fear conditioning research.eLife20198e5246510.7554/eLife.52465 31841112
    [Google Scholar]
  10. BremnerJ.D. Traumatic stress: Effects on the brain.Dialogues Clin. Neurosci.20068444546110.31887/DCNS.2006.8.4/jbremner 17290802
    [Google Scholar]
  11. JovanovicT. ResslerK.J. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD.Am. J. Psychiatry2010167664866210.1176/appi.ajp.2009.09071074 20231322
    [Google Scholar]
  12. ShinL.M. LiberzonI. The neurocircuitry of fear, stress, and anxiety disorders.Neuropsychopharmacology201035116919110.1038/npp.2009.83 19625997
    [Google Scholar]
  13. MahanA.L. ResslerK.J. Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder.Trends Neurosci.2012351243510.1016/j.tins.2011.06.007 21798604
    [Google Scholar]
  14. SchillerD. MonfilsM.H. RaioC.M. JohnsonD.C. LeDouxJ.E. PhelpsE.A. Preventing the return of fear in humans using reconsolidation update mechanisms.Nature20104637277495310.1038/nature08637 20010606
    [Google Scholar]
  15. BorgomaneriS. BattagliaS. GarofaloS. TortoraF. AvenantiA. di PellegrinoG. State-dependent tms over prefrontal cortex disrupts fear-memory reconsolidation and prevents the return of fear.Curr. Biol.2020301836723679.e410.1016/j.cub.2020.06.091 32735813
    [Google Scholar]
  16. BorgomaneriS. BattagliaS. SciamannaG. TortoraF. LaricchiutaD. Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations.Neurosci. Biobehav. Rev.202112733435210.1016/j.neubiorev.2021.04.036 33964307
    [Google Scholar]
  17. TortoraF. HadipourA.L. BattagliaS. FalzoneA. AvenantiA. VicarioC.M. The role of serotonin in fear learning and Memory: A systematic review of human studies.Brain Sci.2023138119710.3390/brainsci13081197 37626553
    [Google Scholar]
  18. de QuervainD.J.F. MargrafJ. Glucocorticoids for the treatment of post-traumatic stress disorder and phobias: A novel therapeutic approach.Eur. J. Pharmacol.20085832-336537110.1016/j.ejphar.2007.11.068 18275950
    [Google Scholar]
  19. ter HeegdeF. De RijkR.H. VinkersC.H. The brain mineralocorticoid receptor and stress resilience.Psychoneuroendocrinol.2015529211010.1016/j.psyneuen.2014.10.022 25459896
    [Google Scholar]
  20. RoozendaalB. McEwenB.S. ChattarjiS. Stress, memory and the amygdala.Nat. Rev. Neurosci.200910642343310.1038/nrn2651 19469026
    [Google Scholar]
  21. InoueR. AbdouK. Hayashi-TanakaA. MuramatsuS. MinoK. InokuchiK. MoriH. Glucocorticoid receptor-mediated amygdalar metaplasticity underlies adaptive modulation of fear memory by stress.eLife20187e3413510.7554/eLife.34135 29941090
    [Google Scholar]
  22. KaouaneN. DucourneauE.G. MarighettoA. SegalM. DesmedtA. False opposing fear memories are produced as a function of the hippocampal sector where glucocorticoid receptors are activated.Front. Behav. Neurosci.20201414410.3389/fnbeh.2020.00144 33005133
    [Google Scholar]
  23. ZimmermanA. HalliganS. SkeenS. MorganB. FraserA. FearonP. TomlinsonM. PTSD symptoms and cortisol stress reactivity in adolescence: Findings from a high adversity cohort in South Africa.Psychoneuroendocrinol.202012110484610.1016/j.psyneuen.2020.104846 32919210
    [Google Scholar]
  24. TanakaM. TóthF. PolyákH. SzabóÁ. MándiY. VécseiL. Immune influencers in action: Metabolites and enzymes of the tryptophan-kynurenine metabolic pathway.Biomedicines20219773410.3390/biomedicines9070734 34202246
    [Google Scholar]
  25. MartosD. TukaB. TanakaM. VécseiL. TelegdyG. Memory enhancement with kynurenic acid and its mechanisms in neurotransmission.Biomedicines202210484910.3390/biomedicines10040849 35453599
    [Google Scholar]
  26. TanakaM. BohárZ. VécseiL. Are kynurenines accomplices or principal villains in dementia? Maintenance of kynurenine metabolism.Molecules202025356410.3390/molecules25030564 32012948
    [Google Scholar]
  27. TanakaM. BohárZ. MartosD. TelegdyG. VécseiL. Antidepressant-like effects of kynurenic acid in a modified forced swim test.Pharmacol. Rep.202072244945510.1007/s43440‑020‑00067‑5 32162182
    [Google Scholar]
  28. SpeerK.E. SempleS. NaumovskiN. D’CunhaN.M. McKuneA.J. HPA axis function and diurnal cortisol in post-traumatic stress disorder: A systematic review.Neurobiol. Stress20191110018010.1016/j.ynstr.2019.100180 31236437
    [Google Scholar]
  29. Steudte-SchmiedgenS. KirschbaumC. AlexanderN. StalderT. An integrative model linking traumatization, cortisol dysregulation and posttraumatic stress disorder: Insight from recent hair cortisol findings.Neurosci. Biobehav. Rev.20166912413510.1016/j.neubiorev.2016.07.015 27443960
    [Google Scholar]
  30. JászberényiM. ThurzóB. BagosiZ. VécseiL. TanakaM. The orexin/hypocretin system, the peptidergic regulator of vigilance, orchestrates adaptation to stress.Biomedicines202412244810.3390/biomedicines12020448 38398050
    [Google Scholar]
  31. LoerzC. MaserE. The cortisol-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 in skeletal muscle in the pathogenesis of the metabolic syndrome.J. Steroid Biochem. Mol. Biol.2017174657110.1016/j.jsbmb.2017.07.030 28765040
    [Google Scholar]
  32. LeeD.H. LeeJ.Y. HongD.Y. LeeE.C. ParkS.W. LeeM.R. OhJ.S. Neuroinflammation in post-traumatic stress disorder.Biomedicines202210595310.3390/biomedicines10050953 35625690
    [Google Scholar]
  33. TanakaM. SzabóÁ. SpekkerE. PolyákH. TóthF. VécseiL. Mitochondrial impairment: A common motif in neuropsychiatric presentation? The link to the tryptophan–kynurenine metabolic system.Cells20221116260710.3390/cells11162607 36010683
    [Google Scholar]
  34. YehudaR. Status of glucocorticoid alterations in post-traumatic stress disorder.Ann. N. Y. Acad. Sci.200911791566910.1111/j.1749‑6632.2009.04979.x 19906232
    [Google Scholar]
  35. HinojosaC.A. VanElzakkerM.B. KaurN. FelicioneJ.M. CharneyM.E. BuiE. MarquesL. SummergradP. RauchS.L. SimonN.M. ShinL.M. Pre-treatment amygdala activation and habituation predict symptom change in post-traumatic stress disorder.Front. Behav. Neurosci.202317119824410.3389/fnbeh.2023.1198244 37492481
    [Google Scholar]
  36. BruceS.E. BuchholzK.R. BrownW.J. YanL. DurbinA. ShelineY.I. Altered emotional interference processing in the amygdala and insula in women with Post-Traumatic Stress Disorder.Neuroimage Clin.20132434910.1016/j.nicl.2012.11.003 24179757
    [Google Scholar]
  37. TanakaM. ChenC. Editorial: Towards a mechanistic understanding of depression, anxiety, and their comorbidity: Perspectives from cognitive neuroscience.Front. Behav. Neurosci.202317126815610.3389/fnbeh.2023.1268156 37654442
    [Google Scholar]
  38. MansourM. JosephG.R. JoyG.K. KhanalS. DasireddyR.R. MenonA. Barrie MasonI. KatariaJ. PatelT. ModiS. Post-traumatic stress disorder: A narrative review of pharmacological and psychotherapeutic interventions.Cureus2023159e4490510.7759/cureus.44905 37814755
    [Google Scholar]
  39. SoraviaL.M. HeinrichsM. AerniA. MaroniC. SchellingG. EhlertU. RoozendaalB. de QuervainD.J.F. Glucocorticoids reduce phobic fear in humans.Proc. Natl. Acad. Sci. USA2006103145585559010.1073/pnas.0509184103 16567641
    [Google Scholar]
  40. HilberdinkC.E. van ZuidenM. SchranteeA. KorosiA. KaiserA. ZhutovskyP. GintyA.T. EnsinkJ.B.M. LindauerR.J.L. VrijkotteT.G.M. de RooijS.R. Dysregulated functional brain connectivity in response to acute social-evaluative stress in adolescents with PTSD symptoms.Eur. J. Psychotraumatol.2021121188072710.1080/20008198.2021.1880727 33968316
    [Google Scholar]
  41. MaengL.Y. MiladM.R. Post-traumatic stress disorder: The relationship between the fear response and chronic stress.Chro. Stress20171247054701771329710.1177/2470547017713297 32440579
    [Google Scholar]
  42. AerniA. TraberR. HockC. RoozendaalB. SchellingG. PapassotiropoulosA. NitschR.M. SchnyderU. de QuervainD.J.F. Low-dose cortisol for symptoms of posttraumatic stress disorder.Am. J. Psychiatry200416181488149010.1176/appi.ajp.161.8.1488 15285979
    [Google Scholar]
  43. QuinonesM.M. GallegosA.M. LinF.V. HeffnerK. Dysregulation of inflammation, neurobiology, and cognitive function in PTSD: An integrative review.Cogn. Affect. Behav. Neurosci.202020345548010.3758/s13415‑020‑00782‑9 32170605
    [Google Scholar]
  44. SawamuraT. KlengelT. ArmarioA. JovanovicT. NorrholmS.D. ResslerK.J. AnderoR. Dexamethasone treatment leads to enhanced fear extinction and dynamic fkbp5 regulation in amygdala.Neuropsychopharmacology201641383284610.1038/npp.2015.210 26174596
    [Google Scholar]
  45. YehudaR. CaiG. GolierJ.A. SarapasC. GaleaS. IsingM. ReinT. SchmeidlerJ. Müller-MyhsokB. HolsboerF. BuxbaumJ.D. Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks.Biol. Psychiatry200966770871110.1016/j.biopsych.2009.02.034 19393990
    [Google Scholar]
  46. MalekpourM. ShekouhD. SafaviniaM.E. ShiralipourS. JalouliM. MortezanejadS. AzarpiraN. EbrahimiN.D. Role of FKBP5 and its genetic mutations in stress-induced psychiatric disorders: An opportunity for drug discovery.Front. Psychiatry202314118234510.3389/fpsyt.2023.1182345 37398599
    [Google Scholar]
  47. MehtaD. GonikM. KlengelT. Rex-HaffnerM. MenkeA. RubelJ. MercerK.B. PützB. BradleyB. HolsboerF. ResslerK.J. Müller-MyhsokB. BinderE.B. Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: Evidence from endocrine and gene expression studies.Arch. Gen. Psychiatry201168990191010.1001/archgenpsychiatry.2011.50 21536970
    [Google Scholar]
  48. RamppC. EichelkrautA. BestJ. CzamaraD. Rex-HaffnerM. UhrM. BinderE.B. MenkeA. Sex-related differential response to dexamethasone in endocrine and immune measures in depressed in-patients and healthy controls.J. Psychiatr. Res.20189810711510.1016/j.jpsychires.2017.12.020 29331929
    [Google Scholar]
  49. BöhnkeR. BertschK. KrukM.R. RichterS. NaumannE. Exogenous cortisol enhances aggressive behavior in females, but not in males.Psychoneuroendocrinol.20103571034104410.1016/j.psyneuen.2010.01.004 20129738
    [Google Scholar]
  50. GjerstadJ.K. LightmanS.L. SpigaF. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility.Stress201821540341610.1080/10253890.2018.1470238 29764284
    [Google Scholar]
  51. AnackerC. ZunszainP.A. CarvalhoL.A. ParianteC.M. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment?Psychoneuroendocrinol.201136341542510.1016/j.psyneuen.2010.03.007 20399565
    [Google Scholar]
  52. MarquesA.H. SilvermanM.N. SternbergE.M. Glucocorticoid dysregulations and their clinical correlates. From receptors to therapeutics.Ann. N. Y. Acad. Sci.20091179111810.1111/j.1749‑6632.2009.04987.x 19906229
    [Google Scholar]
  53. InslichtS.S. NilesA.N. MetzlerT.J. LipshitzS.L. OtteC. MiladM.R. OrrS.P. MarmarC.R. NeylanT.C. Randomized controlled experimental study of hydrocortisone and D-cycloserine effects on fear extinction in PTSD.Neuropsychopharmacology202247111945195210.1038/s41386‑021‑01222‑z 34799682
    [Google Scholar]
  54. MerzC.J. WolfO.T. How stress hormones shape memories of fear and anxiety in humans.Neurosci. Biobehav. Rev.202214210490110.1016/j.neubiorev.2022.104901 36228925
    [Google Scholar]
  55. HagedornB. WolfO.T. MerzC.J. Cortisol before extinction generalization alters its neural correlates during retrieval.Psychoneuroendocrinol.202213610560710.1016/j.psyneuen.2021.105607 34864329
    [Google Scholar]
  56. HofmannS.G. PapiniS. CarpenterJ.K. OttoM.W. RosenfieldD. DutcherC.D. DowdS. LewisM. WitcraftS. PollackM.H. SmitsJ.A.J. Effect of d-cycloserine on fear extinction training in adults with social anxiety disorder.PLoS One20191410e022372910.1371/journal.pone.0223729 31622374
    [Google Scholar]
  57. DavisM. MyersK.M. ChhatwalJ. ResslerK.J. Pharmacological treatments that facilitate extinction of fear: Relevance to psychotherapy.NeuroRx200631829610.1016/j.nurx.2005.12.008 16490415
    [Google Scholar]
  58. EbrahimiC. GechterJ. LuekenU. SchlagenhaufF. WittchenH.U. HammA.O. StröhleA. Augmenting extinction learning with d-cycloserine reduces return of fear: A randomized, placebo-controlled fMRI study.Neuropsychopharmacology202045349950610.1038/s41386‑019‑0552‑z 31634897
    [Google Scholar]
  59. EbrahimiC. KochS.P. FriedelE. CrespoI. FydrichT. StröhleA. Combining D-cycloserine with appetitive extinction learning modulates amygdala activity during recall.Neurobiol. Learn Mem.2017142Pt B20921710.1016/j.nlm.2017.05.00828512009
    [Google Scholar]
  60. JovanovicT. PhiferJ.E. SickingK. WeissT. NorrholmS.D. BradleyB. ResslerK.J. Cortisol suppression by dexamethasone reduces exaggerated fear responses in posttraumatic stress disorder.Psychoneuroendocrinol.201136101540155210.1016/j.psyneuen.2011.04.008 21601366
    [Google Scholar]
  61. MichopoulosV. NorrholmS.D. StevensJ.S. GloverE.M. RothbaumB.O. GillespieC.F. SchwartzA.C. ResslerK.J. JovanovicT. Dexamethasone facilitates fear extinction and safety discrimination in PTSD: A placebo-controlled, double-blind study.Psychoneuroendocrinolo.201783657110.1016/j.psyneuen.2017.05.023 28595089
    [Google Scholar]
  62. KothgassnerO.D. PellegriniM. GoreisA. GiordanoV. EdoborJ. FischerS. PlenerP.L. HuscsavaM.M. Hydrocortisone administration for reducing post-traumatic stress symptoms: A systematic review and meta-analysis.Psychoneuroendocrinol.202112610516810.1016/j.psyneuen.2021.105168 33626392
    [Google Scholar]
  63. DifedeJ. CukorJ. WykaK. OldenM. HoffmanH. LeeF.S. AltemusM. D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: A pilot randomized clinical trial.Neuropsychopharmacol.20143951052105810.1038/npp.2013.317 24217129
    [Google Scholar]
  64. KoningA.S.C.A.M. SatoerD.D. VinkersC.H. Zamanipoor NajafabadiA.H. BiermaszN.R. Nandoe TewarieR.D.S. MoojenW.A. van RossumE.F.C. DirvenC.M.F. PereiraA.M. van FurthW.R. MeijerO.C. The DEXA-CORT trial: Study protocol of a randomised placebo-controlled trial of hydrocortisone in patients with brain tumour on the prevention of neuropsychiatric adverse effects caused by perioperative dexamethasone.BMJ Open20211112e05440510.1136/bmjopen‑2021‑054405 37057711
    [Google Scholar]
  65. BertoliniF. RobertsonL. BissonJ.I. MeaderN. ChurchillR. OstuzziG. SteinD.J. WilliamsT. BarbuiC. Early pharmacological interventions for universal prevention of post-traumatic stress disorder (PTSD).Cochrane Database Syst. Rev.202222CD013443 35141873
    [Google Scholar]
  66. RoqueA.P. Pharmacotherapy as prophylactic treatment of post-traumatic stress disorder: A review of the literature.Issues Ment. Health Nurs.201536974075110.3109/01612840.2015.1057785 26440879
    [Google Scholar]
  67. AstillW.L. SijbrandijM. SinnertonR. LewisC. RobertsN.P. BissonJ.I. Pharmacological prevention and early treatment of post-traumatic stress disorder and acute stress disorder: A systematic review and meta-analysis.Transl. Psychiatry20199133410.1038/s41398‑019‑0673‑5 31819037
    [Google Scholar]
  68. ZannasA.S. WiechmannT. GassenN.C. BinderE.B. Gene–stress–epigenetic regulation of FKBP5: Clinical and translational implications.Neuropsychopharmacolo.201641126127410.1038/npp.2015.235 26250598
    [Google Scholar]
  69. QiR. LuoY. ZhangL. WengY. SurentoW. JahanshadN. XuQ. YinY. LiL. CaoZ. ThompsonP.M. LuG.M. FKBP5 haplotypes and PTSD modulate the resting-state brain activity in Han Chinese adults who lost their only child.Transl. Psychiatry20201019110.1038/s41398‑020‑0770‑5 32170058
    [Google Scholar]
  70. WatkinsL.E. HanS. Harpaz-RotemI. MotaN.P. SouthwickS.M. KrystalJ.H. GelernterJ. PietrzakR.H. FKBP5 polymorphisms, childhood abuse, and PTSD symptoms: Results from the National Health and Resilience in Veterans Study.Psychoneuroendocrinol.2016699810510.1016/j.psyneuen.2016.04.001 27078785
    [Google Scholar]
  71. HawnS.E. SheerinC.M. LindM.J. HicksT.A. MarracciniM.E. BountressK. BacanuS.A. NugentN.R. AmstadterA.B. GxE effects of FKBP5 and traumatic life events on PTSD: A meta-analysis.J. Affect. Disord.201924345546210.1016/j.jad.2018.09.058 30273884
    [Google Scholar]
  72. BattagliaS. NazziC. ThayerJ.F. Fear-induced bradycardia in mental disorders: Foundations, current advances, future perspectives.Neurosci. Biobehav. Rev.202314910516310.1016/j.neubiorev.2023.105163 37028578
    [Google Scholar]
  73. BattagliaS. NazziC. ThayerJ.F. Heart’s tale of trauma: Fear‐conditioned heart rate changes in post‐traumatic stress disorder.Acta Psychiatr. Scand.2023148546346610.1111/acps.13602 37548028
    [Google Scholar]
  74. BattagliaS. NazziC. ThayerJ.F. Genetic differences associated with dopamine and serotonin release mediate fear-induced bradycardia in the human brain.Transl. Psychiatry20241412410.1038/s41398‑024‑02737‑x 38225222
    [Google Scholar]
  75. BattagliaS. GarofaloS. di PellegrinoG. StaritaF. Revaluing the role of vmPFC in the acquisition of pavlovian threat conditioning in humans.J. Neurosci.202040448491850010.1523/jneurosci.0304‑20.2020 33020217
    [Google Scholar]
  76. BattagliaS. OrsoliniS. BorgomaneriS. BarbieriR. DiciottiS. di PellegrinoG. Characterizing cardiac autonomic dynamics of fear learning in humans.Psychophysiology20225912e1412210.1111/psyp.14122 35671393
    [Google Scholar]
  77. BreenM.S. BiererL.M. DaskalakisN.P. BaderH.N. MakotkineI. ChattopadhyayM. XuC. BuxbaumG.A. TochevaA.S. FloryJ.D. BuxbaumJ.D. MeaneyM.J. BrennandK. YehudaR. Differential transcriptional response following glucocorticoid activation in cultured blood immune cells: A novel approach to PTSD biomarker development.Transl. Psychia.20199120110.1038/s41398‑019‑0539‑x 31434874
    [Google Scholar]
  78. BattagliaS. Di FazioC. MazzàM. TamiettoM. AvenantiA. Targeting human glucocorticoid receptors in fear learning: A multiscale integrated approach to study functional connectivity.Int. J. Mol. Sci.202425286410.3390/ijms25020864 38255937
    [Google Scholar]
  79. BattagliaS. AvenantiA. VécseiL. TanakaM. Neural correlates and molecular mechanisms of memory and learning.Int. J. Mol. Sci.2024255272410.3390/ijms25052724 38473973
    [Google Scholar]
  80. BattagliaS. AvenantiA. VécseiL. TanakaM. Neurodegeneration in cognitive impairment and mood disorders for experimental, clinical and translational neuropsychiatry.Biomedicines202412357410.3390/biomedicines12030574 38540187
    [Google Scholar]
  81. BattagliaS. NazziC. LonsdorfT.B. ThayerJ.F. Neuropsychobiology of fear-induced bradycardia in humans: Progress and pitfalls.Mol. Psychiatry202429123826384010.1038/s41380‑024‑02600‑x 38862673
    [Google Scholar]
  82. FloridoA. VelascoE.R. MonariS. CanoM. CardonerN. SandiC. AnderoR. Perez-CaballeroL. Glucocorticoid-based pharmacotherapies preventing PTSD.Neuropharmacology202322410934410.1016/j.neuropharm.2022.109344 36402246
    [Google Scholar]
  83. GuastellaA.J. RichardsonR. LovibondP.F. RapeeR.M. GastonJ.E. MitchellP. DaddsM.R. A randomized controlled trial of D-cycloserine enhancement of exposure therapy for social anxiety disorder.Biol. Psychiatry200863654454910.1016/j.biopsych.2007.11.011 18179785
    [Google Scholar]
  84. SchäckeH. DöckeW.D. AsadullahK. Mechanisms involved in the side effects of glucocorticoids.Pharmacol. Ther.2002961234310.1016/S0163‑7258(02)00297‑8 12441176
    [Google Scholar]
  85. SchoenfeldF.B. MarmarC.R. NeylanT.C. Current concepts in pharmacotherapy for posttraumatic stress disorder.Psychiatr. Serv.200455551953110.1176/appi.ps.55.5.519 15128960
    [Google Scholar]
  86. SchwabeL. HaddadL. SchachingerH. HPA axis activation by a socially evaluated cold-pressor test.Psychoneuroendocrinol.200833689089510.1016/j.psyneuen.2008.03.001 18403130
    [Google Scholar]
  87. SkolarikiK. VrahatisA.G. KrokidisM.G. ExarchosT.P. VlamosP. Assessing and modelling of post-traumatic stress disorder using molecular and functional biomarkers.Biology2023128105010.3390/biology12081050 37626936
    [Google Scholar]
  88. GillJ.L. SchneidersJ.A. StanglM. AghajanZ.M. VallejoM. HillerS. TopalovicU. InmanC.S. VillaromanD. BariA. AdhikariA. RaoV.R. FanselowM.S. CraskeM.G. KrahlS.E. ChenJ.W.Y. VickM. HasulakN.R. KaoJ.C. KoekR.J. SuthanaN. LangevinJ.P. A pilot study of closed-loop neuromodulation for treatment-resistant post-traumatic stress disorder.Nat. Commun.2023141299710.1038/s41467‑023‑38712‑1 37225710
    [Google Scholar]
  89. FlorianG. SingierA. AouizerateB. SalvoF. BienvenuT.C.M. Neuromodulation treatments of pathological anxiety in anxiety disorders, stressor-related disorders, and major depressive disorder: A dimensional systematic review and meta-analysis.Front. Psychiatry202213910897
    [Google Scholar]
  90. FreireR.C. Cabrera-AbreuC. MilevR. Neurostimulation in anxiety disorders, post-traumatic stress disorder, and obsessive-compulsive disorder.Adv. Exp. Med. Biol.2020119133134610.1007/978‑981‑32‑9705‑0_18 32002936
    [Google Scholar]
  91. HuangY.Z. SommerM. ThickbroomG. HamadaM. Pascual-LeonneA. PaulusW. ClassenJ. PeterchevA.V. ZangenA. UgawaY. Consensus: New methodologies for brain stimulation.Brain Stimul.20092121310.1016/j.brs.2008.09.007 20633398
    [Google Scholar]
  92. HallettM. Transcranial magnetic stimulation: A primer.Neuron200755218719910.1016/j.neuron.2007.06.026 17640522
    [Google Scholar]
  93. TurriniS. BevacquaN. CataneoA. ChiappiniE. FioriF. BattagliaS. RomeiV. AvenantiA. Neurophysiological markers of premotor–motor network plasticity predict motor performance in young and older adults.Biomedicines2023115146410.3390/biomedicines11051464 37239135
    [Google Scholar]
  94. TurriniS. FioriF. BevacquaN. SaraciniC. LuceroB. CandidiM. AvenantiA. Spike-timing-dependent plasticity induction reveals dissociable supplementary– and premotor–motor pathways to automatic imitation.Proc. Natl. Acad. Sci. USA202412127e240492512110.1073/pnas.2404925121 38917006
    [Google Scholar]
  95. TurriniS. FioriF. ChiappiniE. LuceroB. SantarnecchiE. AvenantiA. Cortico-cortical paired associative stimulation (ccPAS) over premotor-motor areas affects local circuitries in the human motor cortex via Hebbian plasticity.Neuroimage202327112002710.1016/j.neuroimage.2023.120027 36925088
    [Google Scholar]
  96. BattagliaS. NazziC. Di FazioC. BorgomaneriS. The role of pre-supplementary motor cortex in action control with emotional stimuli: A repetitive transcranial magnetic stimulation study.Ann. N. Y. Acad. Sci.20241536115116610.1111/nyas.15145 38751225
    [Google Scholar]
  97. LefaucheurJ.P. André-ObadiaN. AntalA. AyacheS.S. BaekenC. BenningerD.H. CantelloR.M. CincottaM. de CarvalhoM. De RidderD. DevanneH. Di LazzaroV. FilipovićS.R. HummelF.C. JääskeläinenS.K. KimiskidisV.K. KochG. LangguthB. NyffelerT. OlivieroA. PadbergF. PouletE. RossiS. RossiniP.M. RothwellJ.C. Schönfeldt-LecuonaC. SiebnerH.R. SlotemaC.W. StaggC.J. Valls-SoleJ. ZiemannU. PaulusW. Garcia-LarreaL. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS).Clin. Neurophysiol.2014125112150220610.1016/j.clinph.2014.05.021 25034472
    [Google Scholar]
  98. LefaucheurJ.P. AlemanA. BaekenC. BenningerD.H. BrunelinJ. Di LazzaroV. FilipovićS.R. GrefkesC. HasanA. HummelF.C. JääskeläinenS.K. LangguthB. LeocaniL. LonderoA. NardoneR. NguyenJ.P. NyffelerT. Oliveira-MaiaA.J. OlivieroA. PadbergF. PalmU. PaulusW. PouletE. QuartaroneA. RachidF. RektorováI. RossiS. SahlstenH. SchecklmannM. SzekelyD. ZiemannU. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018).Clin. Neurophysiol.2020131247452810.1016/j.clinph.2019.11.002 31901449
    [Google Scholar]
  99. ChervyakovA.V. ChernyavskyA.Y. SinitsynD.O. PiradovM.A. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation.Front. Hum. Neurosci.2015930310.3389/fnhum.2015.00303 26136672
    [Google Scholar]
  100. GroppaS. OlivieroA. EisenA. QuartaroneA. CohenL.G. MallV. Kaelin-LangA. MimaT. RossiS. ThickbroomG.W. RossiniP.M. ZiemannU. Valls-SoléJ. SiebnerH.R. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee.Clin. Neurophysiol.2012123585888210.1016/j.clinph.2012.01.010 22349304
    [Google Scholar]
  101. RossiniP.M. BurkeD. ChenR. CohenL.G. DaskalakisZ. Di IorioR. Di LazzaroV. FerreriF. FitzgeraldP.B. GeorgeM.S. HallettM. LefaucheurJ.P. LangguthB. MatsumotoH. MiniussiC. NitscheM.A. Pascual-LeoneA. PaulusW. RossiS. RothwellJ.C. SiebnerH.R. UgawaY. WalshV. ZiemannU. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.Clin. Neurophysiol.201512661071110710.1016/j.clinph.2015.02.001 25797650
    [Google Scholar]
  102. ThomsonA.C. KenisG. TielensS. de GraafT.A. SchuhmannT. RuttenB.P.F. SackA.T. Transcranial magnetic stimulation-induced plasticity mechanisms: TMS-related gene expression and morphology changes in a human neuron-like cell model.Front. Mol. Neurosci.20201352839610.3389/fnmol.2020.528396 33192288
    [Google Scholar]
  103. EtiévantA. MantaS. LatapyC. MagnoL.A.V. FecteauS. BeaulieuJ.M. Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation.Sci. Rep.2015511687310.1038/srep16873 26585834
    [Google Scholar]
  104. EdinoffA.N. HegefeldT.L. PetersenM. PattersonJ.C.II YossiC. SlizewskiJ. OsumiA. CornettE.M. KayeA. KayeJ.S. JavalkarV. ViswanathO. UritsI. KayeA.D. Transcranial magnetic stimulation for post-traumatic stress disorder.Front. Psychiatry202213701348
    [Google Scholar]
  105. BattagliaS. NazziC. FullanaM.A. di PellegrinoG. BorgomaneriS. ‘Nip it in the bud’: Low-frequency rTMS of the prefrontal cortex disrupts threat memory consolidation in humans.Behav. Res. Ther.2024178104548
    [Google Scholar]
  106. QuettierT. IppolitoG. CardellicchioP. PeròL. BattagliaS. BorgomaneriS. Individual differences in intracortical inhibition predict action control when facing emotional stimuli.Frontiers in Psychol.202415139172310.3389/fpsyg.2024.1391723
    [Google Scholar]
  107. BorgomaneriS. VitaleF. BattagliaS. de VegaM. AvenantiA. Task-related modulation of motor response to emotional bodies: A TMS motor-evoked potential study.Cortex202417123524610.1016/j.cortex.2023.10.013
    [Google Scholar]
  108. BattagliaS. SerioG. ScarpazzaC. D’AusilioA. BorgomaneriS. Frozen in emotion: How reactive motor inhibition is influenced by the emotional content of stimuli in healthy and psychiatric populations.Behav. Res. Ther.202114610396310.1016/j.brat.2021.103963 34530318
    [Google Scholar]
  109. BorgomaneriS. SerioG. BattagliaS. Please, don’t do it! Fifteen years of progress of non-invasive brain stimulation in action inhibition.Cortex202013240442210.1016/j.cortex.2020.09.002 33045520
    [Google Scholar]
  110. BorgomaneriS. BattagliaS. AvenantiA. PellegrinoG. Don’t hurt me no more: State-dependent transcranial magnetic stimulation for the treatment of specific phobia.J. Affect. Disord.2021286787910.1016/j.jad.2021.02.076 33714173
    [Google Scholar]
  111. Alexandra KredlowM. FensterR.J. LaurentE.S. ResslerK.J. PhelpsE.A. Prefrontal cortex, amygdala, and threat processing: Implications for PTSD.Neuropsychopharmacology202247124725910.1038/s41386‑021‑01155‑7 34545196
    [Google Scholar]
  112. CirilloP. GoldA.K. NardiA.E. OrnelasA.C. NierenbergA.A. CamprodonJ. KinrysG. Transcranial magnetic stimulation in anxiety and trauma‐related disorders: A systematic review and meta‐analysis.Brain Behav.201996e0128410.1002/brb3.1284 31066227
    [Google Scholar]
  113. HarrisA. ReeceJ. Transcranial magnetic stimulation as a treatment for posttraumatic stress disorder: A meta-analysis.J. Affect. Disord.2021289556510.1016/j.jad.2021.04.003 33940319
    [Google Scholar]
  114. RossonS. de FilippisR. CroattoG. CollantoniE. PallottinoS. GuinartD. BrunoniA.R. Dell’OssoB. PigatoG. HydeJ. BrandtV. CorteseS. FiedorowiczJ.G. PetridesG. CorrellC.U. SolmiM. Brain stimulation and other biological nonpharmacological interventions in mental disorders: An umbrella review.Neurosci. Biobehav. Rev.202213910474310.1016/j.neubiorev.2022.104743 35714757
    [Google Scholar]
  115. PetrosinoN.J. CosmoC. BerlowY.A. ZandvakiliA. van ’t Wout-FrankM. PhilipN.S. Transcranial magnetic stimulation for post-traumatic stress disorder.Ther. Adv. Psychopharmacol.2021112045125321104992110.1177/20451253211049921 34733479
    [Google Scholar]
  116. BattagliaM.R. Di FazioC. BattagliaS. Activated Tryptophan- Kynurenine metabolic system in the human brain is associated with learned fear.Front. Mol. Neurosci.202316121709010.3389/fnmol.2023.1217090 37575966
    [Google Scholar]
  117. Di GregorioF. SteinhauserM. MaierM.E. ThayerJ.F. BattagliaS. Error-related cardiac deceleration: Functional interplay between error-related brain activity and autonomic nervous system in performance monitoring.Neurosci. Biobehav. Rev.202415710554210.1016/j.neubiorev.2024.105542 38215803
    [Google Scholar]
  118. Di GregorioF. BattagliaS. Advances in EEG-based functional connectivity approaches to the study of the central nervous system in health and disease.Adv. Clin. Exp. Med.202332660761210.17219/acem/166476 37278106
    [Google Scholar]
  119. NazziC. AvenantiA. BattagliaS. The involvement of antioxidants in cognitive decline and neurodegeneration: Mens Sana in Corpore Sano.Antioxidants202413670110.3390/antiox13060701 38929140
    [Google Scholar]
  120. Di GregorioF. BattagliaS. The intricate brain-body interaction in psychiatric and neurological diseases.Adv. Clin. Exp. Med.202433432132610.17219/acem/185689 38515256
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666250123142526
Loading
/content/journals/cn/10.2174/1570159X23666250123142526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test