Skip to content
2000
Volume 23, Issue 7
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases. Quite interestingly, besides these “ roles, evidence in the last two decades highlighted other “” role(s), thereby complementing modulates chemical transmission at central synapsis. It emerged that glutamate is the preferential target of these “” complement-induced effects, which include i) the control of the release of glutamate from neurons and astrocytes and ii) the control of the number and the functions of central glutamatergic receptor subtypes (., the NMDA receptors, the AMPA/kainate receptors, and the metabotropic glutamate receptors) in plasma membranes. This review summarizes some of the available results supporting the role of complement as a “ of central glutamate transmission, paying particular attention to those events that occur presynaptically. Taking into consideration the enormous progress in complement pharmacology and the increasing number of therapeutics in clinical trials, deepening our knowledge of these” ” role(s) could pave the road to new therapeutic approaches for the management of central neurological diseases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X327960240823065729
2025-01-14
2025-05-18
Loading full text...

Full text loading...

/deliver/fulltext/cn/23/7/CN-23-7-07.html?itemId=/content/journals/cn/10.2174/011570159X327960240823065729&mimeType=html&fmt=ahah

References

  1. YuzakiM. The C1q complement family of synaptic organizers: Not just complementary.Curr. Opin. Neurobiol.20174591510.1016/j.conb.2017.02.002
    [Google Scholar]
  2. YuzakiM. Synapse formation and maintenance by C1q family proteins: A new class of secreted synapse organizers.Eur. J. Neurosci.201032219119710.1111/j.1460‑9568.2010.07346.x 20646056
    [Google Scholar]
  3. VeerhuisR. NielsenH.M. TennerA.J. Complement in the brain.Mol. Immunol.201148141592160310.1016/j.molimm.2011.04.003 21546088
    [Google Scholar]
  4. KettenmannH. KirchhoffF. VerkhratskyA. Microglia: new roles for the synaptic stripper.Neuron2013771101810.1016/j.neuron.2012.12.023 23312512
    [Google Scholar]
  5. SpejoA.B. OliveiraA.L.R. Synaptic rearrangement following axonal injury: Old and new players.Neuropharmacology2015961132310.1016/j.neuropharm.2014.11.002
    [Google Scholar]
  6. SeveranceE.G. GressittK.L. BukaS.L. CannonT.D. YolkenR.H. Maternal complement C1q and increased odds for psychosis in adult offspring.Schizophr. Res.20141591141910.1016/j.schres.2014.07.053 25195065
    [Google Scholar]
  7. MagdalonJ. MansurF. Teles e SilvaA.L. de GoesV.A. ReinerO. SertiéA.L. Complement system in brain architecture and neurodevelopmental disorders.Front Neurosci.2020142310.3389/fnins.2020.00023
    [Google Scholar]
  8. SchartzN.D. TennerA.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease.J. Neuroinflammation.202017135410.1186/s12974‑020‑02024‑8
    [Google Scholar]
  9. GasqueP. Complement: A unique innate immune sensor for danger signals.Mol Immunol.2004411110899810.1016/j.molimm.2004.06.01115476920
    [Google Scholar]
  10. AlexanderJ.J. AndersonA.J. BarnumS.R. StevensB. TennerA.J. The complement cascade: Yin-Yang in neuroinflammation - neuro‐protection and ‐degeneration.J. Neurochem.200810751169118710.1111/j.1471‑4159.2008.05668.x 18786171
    [Google Scholar]
  11. WoodruffT.M. AgerR.R. TennerA.J. NoakesP.G. TaylorS.M. The role of the complement system and the activation fragment C5a in the central nervous system.Neuromolecular Med.201012217919210.1007/s12017‑009‑8085‑y 19763906
    [Google Scholar]
  12. KanmogneM. KleinR.S. Neuroprotective versus neuroinflammatory roles of complement: From development to disease.Trends Neurosci.20214429710910.1016/j.tins.2020.10.003
    [Google Scholar]
  13. EhrnthallerC. IgnatiusA. GebhardF. Huber-LangM. New insights of an old defense system: structure, function, and clinical relevance of the complement system.Mol. Med.2011173-431732910.2119/molmed.2010.00149 21046060
    [Google Scholar]
  14. Saez-CalverasN. StuveO. The role of the complement system in multiple sclerosis: A review.Front Immunol.20221397048610.3389/fimmu.2022.970486
    [Google Scholar]
  15. GarredP. TennerA.J. MollnesT.E. Therapeutic targeting of the complement system: From rare diseases to pandemics.Pharmacol. Rev.202173279282710.1124/pharmrev.120.000072 33687995
    [Google Scholar]
  16. RollenhagenA. LübkeJ.H.R. The morphology of excitatory central synapses: From structure to function.Cell Tissue Res.2006326222123710.1007/s00441‑006‑0288‑z 16932936
    [Google Scholar]
  17. AraqueA. ParpuraV. SanzgiriR.P. HaydonP.G. Tripartite synapses: Glia, the unacknowledged partner.Trends Neurosci.199922520821510.1016/S0166‑2236(98)01349‑6 10322493
    [Google Scholar]
  18. RusakovD.A. StewartM.G. Synaptic environment and extrasynaptic glutamate signals: The quest continues.Neuropharmacology.202119510868810.1016/j.neuropharm.2021.108688
    [Google Scholar]
  19. LaloU. KohW. LeeC.J. PankratovY. The tripartite glutamatergic synapse.Neuropharmacology.202119910875810.1016/j.neuropharm.2021.108758
    [Google Scholar]
  20. SaitoA. CavalliV. Signaling over distances.Mol. Cell. Proteomics201615238239310.1074/mcp.R115.052753 26297514
    [Google Scholar]
  21. NicolettiF. Di MennaL. IacovelliL. OrlandoR. ZuenaA.R. ConnP.J. DograS. JoffeM.E. GPCR interactions involving metabotropic glutamate receptors and their relevance to the pathophysiology and treatment of CNS disorders.Neuropharmacology202323510956910.1016/j.neuropharm.2023.109569
    [Google Scholar]
  22. BrunoV. CaraciF. CopaniA. MatriscianoF. NicolettiF. BattagliaG. The impact of metabotropic glutamate receptors into active neurodegenerative processes: A “dark side” in the development of new symptomatic treatments for neurologic and psychiatric disorders.Neuropharmacology201711518019210.1016/j.neuropharm.2016.04.044
    [Google Scholar]
  23. JohnsonS.A. Lampert-EtchellsM. PasinettiG.M. RozovskyI. FinchC.E. Complement mRNA in the mammalian brain: Responses to Alzheimer’s disease and experimental brain lesioning.Neurobiol. Aging199213664164810.1016/0197‑4580(92)90086‑D 1362796
    [Google Scholar]
  24. PasinettiG.M. ChengH.W. MorganD.G. Lampert-EtchellsM. McneillT.H. FinchC.E. Astrocytic messenger RNA responses to striatal deafferentation in male rat.Neuroscience199353119921110.1016/0306‑4522(93)90298‑t
    [Google Scholar]
  25. VeerhuisR. JanssenI. Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor.Exp. Neurol.199916012899910.1006/exnr.1999.7199
    [Google Scholar]
  26. LiddelowS.A. GuttenplanK.A. ClarkeL.E. BennettF.C. BohlenC.J. SchirmerL. BennettM.L. MünchA.E. ChungW.S. PetersonT.C. WiltonD.K. FrouinA. NapierB.A. PanickerN. KumarM. BuckwalterM.S. RowitchD.H. DawsonV.L. DawsonT.M. StevensB. BarresB.A. Neurotoxic reactive astrocytes are induced by activated microglia.Nature2017541763848148710.1038/nature21029 28099414
    [Google Scholar]
  27. AcharjeeS. VerbeekM. GomezC.D. BishtK. LeeB. BenoitL. SharkeyK.A. BenediktssonA. TremblayM.E. PittmanQ.J. Reduced microglial activity and enhanced glutamate transmission in the basolateral amygdala in early CNS autoimmunity.J. Neurosci.201838429019903310.1523/JNEUROSCI.0398‑18.2018 30185466
    [Google Scholar]
  28. WeinhardL. di BartolomeiG. BolascoG. MachadoP. SchieberN.L. NeniskyteU. ExigaM. VadisiuteA. RaggioliA. SchertelA. SchwabY. GrossC.T. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction.Nat. Commun.201891122810.1038/s41467‑018‑03566‑5 29581545
    [Google Scholar]
  29. CardozoP.L. de LimaI.B.Q. MacielE.M.A. SilvaN.C. DobranskyT. RibeiroF.M. Synaptic elimination in neurological disorders.Curr. Neuropharmacol.201917111071109510.2174/1570159X17666190603170511 31161981
    [Google Scholar]
  30. StephanA.H. MadisonD.V. MateosJ.M. FraserD.A. LovelettE.A. CoutellierL. KimL. TsaiH.H. HuangE.J. RowitchD.H. BernsD.S. TennerA.J. ShamlooM. BarresB.A. A dramatic increase of C1q protein in the CNS during normal aging.J. Neurosci.20133333134601347410.1523/JNEUROSCI.1333‑13.2013 23946404
    [Google Scholar]
  31. MichailidouI. WillemsJ.G.P. KooiE.J. van EdenC. GoldS.M. GeurtsJ.J.G. BaasF. HuitingaI. RamagliaV. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus.Ann. Neurol.20157761007102610.1002/ana.24398 25727254
    [Google Scholar]
  32. BergA. ZelanoJ. StephanA. ThamsS. BarresB.A. PeknyM. PeknaM. CullheimS. Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3.Exp. Neurol.2012237181710.1016/j.expneurol.2012.06.008 22721768
    [Google Scholar]
  33. GyörffyB.A. KunJ. TörökG. BulyákiÉ. BorhegyiZ. GulyássyP. KisV. SzocsicsP. MicsonaiA. MatkóJ. DrahosL. JuhászG. KékesiK.A. KardosJ. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning.Proc. Natl. Acad. Sci. USA2018115246303630810.1073/pnas.1722613115 29844190
    [Google Scholar]
  34. WerneburgS. JungJ. KunjammaR.B. HaS.K. LucianoN.J. WillisC.M. GaoG. BiscolaN.P. HavtonL.A. CrockerS.J. PopkoB. ReichD.S. SchaferD.P. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease.Immunity2020521167182.e710.1016/j.immuni.2019.12.004 31883839
    [Google Scholar]
  35. Scott-HewittN. PerrucciF. MoriniR. ErreniM. MahoneyM. WitkowskaA. CareyA. FaggianiE. SchuetzL.T. MasonS. TamboriniM. BizzottoM. PassoniL. FilipelloF. JahnR. StevensB. MatteoliM. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia.EMBO J.20203916e10538010.15252/embj.2020105380 32657463
    [Google Scholar]
  36. StevensB. AllenN.J. VazquezL.E. HowellG.R. ChristophersonK.S. NouriN. MichevaK.D. MehalowA.K. HubermanA.D. StaffordB. SherA. LitkeA.M. LambrisJ.D. SmithS.J. JohnS.W.M. BarresB.A. The classical complement cascade mediates CNS synapse elimination.Cell200713161164117810.1016/j.cell.2007.10.036 18083105
    [Google Scholar]
  37. MatsudaK. KondoT. IijimaT. MatsudaS. WatanabeM. YuzakiM. Cbln1 binds to specific postsynaptic sites at parallel fiber–Purkinje cell synapses in the cerebellum.Eur. J. Neurosci.200929470771710.1111/j.1460‑9568.2009.06639.x 19200061
    [Google Scholar]
  38. MatsudaK. BudisantosoT. MitakidisN. SugayaY. MiuraE. KakegawaW. YamasakiM. KonnoK. UchigashimaM. AbeM. WatanabeI. KanoM. WatanabeM. SakimuraK. AricescuA.R. YuzakiM. Transsynaptic modulation of kainate receptor functions by C1q-like proteins.Neuron201690475276710.1016/j.neuron.2016.04.001 27133466
    [Google Scholar]
  39. MatsudaK. YuzakiM. Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions.Eur. J. Neurosci.20113381447146110.1111/j.1460‑9568.2011.07638.x 21410790
    [Google Scholar]
  40. MatsudaK. Synapse organization and modulation via C1q family proteins and their receptors in the central nervous system.Neurosci Res.2017116465310.1016/j.neures.2016.11.004
    [Google Scholar]
  41. IijimaT. MiuraE. WatanabeM. YuzakiM. Distinct expression of C1q‐like family mRNAs in mouse brain and biochemical characterization of their encoded proteins.Eur. J. Neurosci.20103191606161510.1111/j.1460‑9568.2010.07202.x 20525073
    [Google Scholar]
  42. GyörffyB.A. TóthV. TörökG. GulyássyP. KovácsR.Á. VadásziH. MicsonaiA. TóthM.E. SánthaM. HomolyaL. DrahosL. JuhászG. KékesiK.A. KardosJ. Synaptic mitochondrial dysfunction and septin accumulation are linked to complement-mediated synapse loss in an Alzheimer’s disease animal model.Cell. Mol. Life Sci.202077245243525810.1007/s00018‑020‑03468‑0 32034429
    [Google Scholar]
  43. KovácsR.Á. VadásziH. BulyákiÉ. TörökG. TóthV. MátyásD. KunJ. Hunyadi-GulyásÉ. FedorF.Z. CsincsiÁ. MedzihradszkyK. HomolyaL. JuhászG. KékesiK.A. JózsiM. GyörffyB.A. KardosJ. Identification of neuronal pentraxins as synaptic binding partners of C1q and the involvement of NP1 in synaptic pruning in adult mice.Front. Immunol.20211159977110.3389/fimmu.2020.599771 33628204
    [Google Scholar]
  44. KawaiY. KawabataC. SakaguchiM. TamuraT. Protection of baculovirus vectors expressing complement regulatory proteins against serum complement attack.Biol. Pharm. Bull.201841101600160510.1248/bpb.b18‑00451
    [Google Scholar]
  45. OliveroG. RoggeriA. PittalugaA. Anti-NMDA and Anti-AMPA receptor antibodies in central disorders: Preclinical approaches to assess their pathological role and translatability to clinic.Int. J. Mol. Sci.202324191490510.3390/ijms241914905
    [Google Scholar]
  46. ThomasA. GasqueP. VaudryD. GonzalezB. FontaineM. Expression of a complete and functional complement system by human neuronal cells in vitro.Int. Immunol.20001271015102310.1093/intimm/12.7.1015 10882413
    [Google Scholar]
  47. OliveroG. TaddeucciA. VallarinoG. TrebesovaH. RoggeriA. GaglianiM.C. CorteseK. GrilliM. PittalugaA. Complement tunes glutamate release and supports synaptic impairments in an animal model of multiple sclerosis.Br. J. Pharmacol.2024181121812182810.1111/bph.16328 38369641
    [Google Scholar]
  48. O’BarrS.A. CaguioaJ. GruolD. PerkinsG. EmberJ.A. HugliT. CooperN.R. Neuronal expression of a functional receptor for the C5a complement activation fragment.J. Immunol.200116664154416210.4049/jimmunol.166.6.4154 11238666
    [Google Scholar]
  49. FarkasI. TakahashiM. FukudaA. YamamotoN. AkatsuH. BaranyiL. TateyamaH. YamamotoT. OkadaN. OkadaH. Complement C5a receptor-mediated signaling may be involved in neurodegeneration in Alzheimer’s disease.J. Immunol.2003170115764577110.4049/jimmunol.170.11.5764 12759460
    [Google Scholar]
  50. FarkasI. VarjuP. SzaboE. HrabovszkyE. OkadaN. OkadaH. LipositsZ. Estrogen enhances expression of the complement C5a receptor and the C5a-agonist evoked calcium influx in hormone secreting neurons of the hypothalamus.Neurochem. Int.2008524-584685610.1016/j.neuint.2007.09.014 17996333
    [Google Scholar]
  51. MaS.X. SeoB.A. KimD. XiongY. KwonS.H. BrahmachariS. KimS. KamT.I. NirujogiR.S. KwonS.H. DawsonV.L. DawsonT.M. PandeyA. NaC.H. KoH.S. Complement and coagulation cascades are potentially involved in dopaminergic neurodegeneration in α-synuclein-based mouse models of parkinson’s disease.J. Proteome Res.20212073428344310.1021/acs.jproteome.0c01002 34061533
    [Google Scholar]
  52. FinehoutE.J. FranckZ. LeeK.H. Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease.Dis. Markers20052129310110.1155/2005/806573
    [Google Scholar]
  53. GregersenE. BetzerC. KimW.S. KovacsG. ReimerL. HallidayG.M. ThielS. JensenP.H. Alpha-synuclein activates the classical complement pathway and mediates complement-dependent cell toxicity.J. Neuroinflammation202118117710.1186/s12974‑021‑02225‑9 34399786
    [Google Scholar]
  54. ZhouY. GongB. LinF. RotherR.P. MedofM.E. KaminskiH.J. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis.J. Immunol.2007179128562856710.4049/jimmunol.179.12.8562 18056404
    [Google Scholar]
  55. GongB. PanY. ZhaoW. KnableL. VempatiP. BegumS. HoL. WangJ. YemulS. BarnumS. BilskiA. GongB.Y. PasinettiG.M. IVIG immunotherapy protects against synaptic dysfunction in Alzheimer’s disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway.Mol. Immunol.201356461962910.1016/j.molimm.2013.06.016 23911420
    [Google Scholar]
  56. PitmanR.M. The versatile synapse.J. Exp. Biol.1984112119922410.1242/jeb.112.1.199
    [Google Scholar]
  57. ColbranR.J. Thematic minireview series: Molecular mechanisms of synaptic plasticity.J. Biol. Chem.20152904828594510.1074/jbc.R115.696468
    [Google Scholar]
  58. PittalugaA. Acute functional adaptations in isolated presynaptic terminals unveil synaptosomal learning and memory.Int. J. Mol. Sci.201920364110.3390/ijms20153641
    [Google Scholar]
  59. ViziE.S. KissJ.P. LendvaiB. Nonsynaptic communication in the central nervous system.Neurochem. Int.200445444345110.1016/j.neuint.2003.11.016 15186910
    [Google Scholar]
  60. ViziE.S. FeketeA. KarolyR. MikeA. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment.Br. J. Pharmacol.2010160478580910.1111/j.1476‑5381.2009.00624.x
    [Google Scholar]
  61. WeiZ. WeiM. YangX. XuY. GaoS. RenK. Synaptic secretion and beyond: Targeting synapse and neurotransmitters to treat neurodegenerative diseases.Oxid Med Cell Longev.20222022917692310.1155/2022/9176923
    [Google Scholar]
  62. GianniG. PasqualettiM. Wiring and volume transmission: An overview of the dual modality for serotonin neurotransmission.ACS Chem Neurosci.202314234093410410.1021/acschemneuro.3c00648
    [Google Scholar]
  63. SykováE. Extrasynaptic volume transmission and diffusion parameters of the extracellular space.Neuroscience2004129486187610.1016/j.neuroscience.2004.06.077 15561404
    [Google Scholar]
  64. Perez-AlcazarM. DaborgJ. StokowskaA. WaslingP. BjörefeldtA. KalmM. ZetterbergH. CarlströmK.E. BlomgrenK. EkdahlC.T. HanseE. PeknaM. Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3.Exp. Neurol.201425315416410.1016/j.expneurol.2013.12.013 24378428
    [Google Scholar]
  65. TangM. PelkeyK.A. NgD. IvakineE. McBainC.J. SalterM.W. McInnesR.R. Neto1 is an auxiliary subunit of native synaptic kainate receptors.J. Neurosci.20113127100091001810.1523/JNEUROSCI.6617‑10.2011 21734292
    [Google Scholar]
  66. PittalugaA. GrilliM. OliveroG. Progress in metamodulation and receptor-receptor interaction: From physiology to pathology and therapy.Neuropharmacology202323710963910.1016/j.neuropharm.2023.109639
    [Google Scholar]
  67. BenoitM.E. TennerA.J. Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression.J. Neurosci.20113193459346910.1523/JNEUROSCI.3932‑10.2011 21368058
    [Google Scholar]
  68. GrilliM. RaiteriL. PittalugaA. Somatostatin inhibits glutamate release from mouse cerebrocortical nerve endings through presynaptic sst2 receptors linked to the adenylyl cyclase-protein kinase A pathway.Neuropharmacology200446338839610.1016/j.neuropharm.2003.09.012 14975694
    [Google Scholar]
  69. BonfiglioT. OliveroG. MeregaE. Di PriscoS. PadolecchiaC. GrilliM. MilaneseM. Di Cesare MannelliL. GhelardiniC. BonannoG. MarchiM. PittalugaA. Prophylactic versus therapeutic fingolimod: Restoration of presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis.PLoS One2017121e017082510.1371/journal.pone.0170825 28125677
    [Google Scholar]
  70. MeregaE. PriscoS.D. LanfrancoM. SeveriP. PittalugaA. Complement selectively elicits glutamate release from nerve endings in different regions of mammal central nervous system.J. Neurochem.2014129347348310.1111/jnc.12650 24387009
    [Google Scholar]
  71. NorgauerJ. DobosG. KownatzkiE. DahindenC. BurgerR. KupperR. GierschikP. Complement fragment C3a stimulates Ca2+ influx in neutrophils via a pertussis‐toxin‐sensitive G protein.Eur. J. Biochem.1993217128929410.1111/j.1432‑1033.1993.tb18245.x 8223566
    [Google Scholar]
  72. DanboltN.C. FurnessD.N. ZhouY. Neuronal vs. glial glutamate uptake: Resolving the conundrum.Neurochem. Int.201698294510.1016/j.neuint.2016.05.009
    [Google Scholar]
  73. DunlopJ. Glutamate-based therapeutic approaches: Targeting the glutamate transport system.Curr. Opin. Pharmacol.200661103710.1016/j.coph.2005.09.004
    [Google Scholar]
  74. GadeaA. López-ColoméA.M. Glial transporters for glutamate, glycine and GABA I. Glutamate transporters.J. Neurosci. Res.200163645346010.1002/jnr.1039 11241580
    [Google Scholar]
  75. MarchiM. ZappettiniS. OliveroG. PittalugaA. GrilliM. Chronic nicotine exposure selectively activates a carrier-mediated release of endogenous glutamate and aspartate from rat hippocampal synaptosomes.Neurochem. Int.201260662263010.1016/j.neuint.2012.02.032 22417725
    [Google Scholar]
  76. GrewerC. GameiroA. RauenT. SLC1 glutamate transporters.Pflugers Arch.2014466132410.1007/s00424‑013‑1397‑7 24240778
    [Google Scholar]
  77. MusanteV. SummaM. CunhaR.A. RaiteriM. PittalugaA. Pre-synaptic glycine GlyT1 transporter - NMDA receptor interaction: Relevance to NMDA autoreceptor activation in the presence of Mg2+ ions.J. Neurochem.2011117351652710.1111/j.1471‑4159.2011.07223.x 21348870
    [Google Scholar]
  78. OliveroG. VergassolaM. CisaniF. UsaiC. PittalugaA. Immuno-pharmacological characterization of presynaptic GluN3A-containing NMDA autoreceptors: Relevance to anti-NMDA receptor autoimmune diseases.Mol. Neurobiol.20195696142615510.1007/s12035‑019‑1511‑8 30734226
    [Google Scholar]
  79. RaiteriM. LeviG. Antisynaptosome antibodies affect synaptosomal permeability to neurotransmitters.Nat. New Biol.1973245142899110.1038/newbio245089a0 4354014
    [Google Scholar]
  80. LuS.Y. FuC.L. LiangL. YangB. ShenW. WangQ.W. ChenY. ChenY.F. LiuY.N. ZhuL. ZhaoJ. ShiW. MiS. YaoJ. miR-218-2 regulates cognitive functions in the hippocampus through complement component 3-dependent modulation of synaptic vesicle release.Proc. Natl. Acad. Sci.202111814e202177011810.1073/pnas.2021770118
    [Google Scholar]
  81. PedroniS.M.A. GonzalezJ.M. WadeJ. JansenM.A. SerioA. MarshallI. LennenR.J. GirardiG. Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth.Biochim. Biophys. Acta Mol. Basis Dis.20141842110711510.1016/j.bbadis.2013.10.011 24184716
    [Google Scholar]
  82. MarttinenM. KurkinenK.M. SoininenH. HaapasaloA. HiltunenM. Synaptic dysfunction and septin protein family members in neurodegenerative diseases.Mol. Neurodegener.2015101610.1186/s13024‑015‑0013‑z
    [Google Scholar]
  83. LianH. LitvinchukA. ChiangA.C.A. AithmittiN. JankowskyJ.L. ZhengH. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease.J. Neurosci.201636257758910.1523/JNEUROSCI.2117‑15.2016 26758846
    [Google Scholar]
  84. OliveroG. GrilliM. MarchiM. PittalugaA. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions.Neuropharmacology.202323410957010.1016/j.neuropharm.2023.109570
    [Google Scholar]
  85. KörtvelyessyP. BauerJ. StoppelC.M. BrückW. GerthI. VielhaberS. WiedemannF.R. HeinzeH.J. BartelsC. BienC.G. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis.Neurol. Neuroimmunol. Neuroinflamm.201522e7510.1212/NXI.0000000000000075 25738171
    [Google Scholar]
  86. NgA.N. SalterE.W. GeorgiouJ. BortolottoZ.A. CollingridgeG.L. Amyloid-β1-42 oligomers enhance mGlu5R-dependent synaptic weakening via NMDAR activation and complement C5aR1 signaling.iScience2023261210841210.1016/j.isci.2023.108412 38053635
    [Google Scholar]
  87. SpurrierJ. NicholsonL. FangX.T. StonerA.J. ToyonagaT. HoldenD. SiegertT.R. LairdW. AllnuttM.A. ChiasseuM. BrodyA.H. TakahashiH. NiesS.H. Pérez-CañamásA. SadasivamP. LeeS. LiS. ZhangL. HuangY.H. CarsonR.E. CaiZ. StrittmatterS.M. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q.Sci. Transl. Med.202214647eabi859310.1126/scitranslmed.abi8593 35648810
    [Google Scholar]
  88. DochertyM. BradfordH.F. AndertonB. WuJ.Y. Specific lysis of GABAergic synaptosomes by an antiserum to glutamate decarboxylase.FEBS Lett.19831521576110.1016/0014‑5793(83)80481‑5 6132835
    [Google Scholar]
  89. LeviteM. Glutamate receptor antibodies in neurological diseases: Anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti- NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or antimGluR5 antibodies are present in subpopulations of patients with either: Epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.J. Neural. Transm. (Vienna).201412181029107510.1007/s00702‑014‑1193‑3
    [Google Scholar]
  90. WhitneyKD McnamaraJO GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins.J. Neurosci.2000201973071610.1523/JNEUROSCI.20‑19‑07307.2000
    [Google Scholar]
  91. CisaniF. OliveroG. UsaiC. Van CampG. MaccariS. Morley-FletcherS. PittalugaA.M. Antibodies against the NH2-terminus of the GluA subunits affect the AMPA-evoked releasing activity: The role of complement.Front. Immunol.20211258652110.3389/fimmu.2021.586521 33717067
    [Google Scholar]
  92. PittalugaA. Presynaptic release-regulating NMDA receptors in isolated nerve terminals: A narrative review.Br. J. Pharmacol.202117851001101710.1111/bph.15349
    [Google Scholar]
  93. PittalugaA. CCL5-glutamate cross-talk in astrocyte-neuron communication in multiple sclerosis.Front Immunol.20178107910.3389/fimmu.2017.01079
    [Google Scholar]
  94. MeregaE. PriscoS.D. SeveriP. KalfasF. PittalugaA. Antibody/receptor protein immunocomplex in human and mouse cortical nerve endings amplifies complement-induced glutamate release.Neurosci. Lett.2015600505510.1016/j.neulet.2015.06.001 26049008
    [Google Scholar]
  95. VenutiA. PastoriC. SiracusanoG. PennisiR. RivaA. TommasinoM. SciortinoM. LopalcoL. The abrogation of phosphorylation plays a relevant role in the CCR5 signalosome formation with natural antibodies to CCR5.Viruses2017101910.3390/v10010009 29283386
    [Google Scholar]
  96. PittalugaA. BonfantiA. RaiteriM. Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function.Naunyn Schmiedebergs Arch. Pharmacol.19973561293810.1007/PL00005025 9228187
    [Google Scholar]
  97. DongX. FanJ. LinD. WangX. KuangH. GongL. ChenC. JiangJ. XiaN. HeD. ShenW. JiangP. KuangR. ZengL. XieY. Captopril alleviates epilepsy and cognitive impairment by attenuation of C3-mediated inflammation and synaptic phagocytosis.J. Neuroinflammation202219122610.1186/s12974‑022‑02587‑8 36104755
    [Google Scholar]
  98. AlberdiE. Sánchez-GómezM.V. TorreI. DomercqM. Pérez-SamartínA. Pérez-CerdáF. MatuteC. Activation of kainate receptors sensitizes oligodendrocytes to complement attack.J. Neurosci.200626123220322810.1523/JNEUROSCI.3780‑05.2006 16554473
    [Google Scholar]
  99. FossatiG. PozziD. CanziA. MirabellaF. ValentinoS. MoriniR. GhirardiniE. FilipelloF. MorettiM. GottiC. AnnisD.S. MosherD.F. GarlandaC. BottazziB. TarabolettiG. MantovaniA. MatteoliM. MennaE. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1‐integrin.EMBO J.2019381e9952910.15252/embj.201899529 30396995
    [Google Scholar]
  100. LiY. FangS.C. ZhouL. MoX.M. GuoH.D. DengY.B. YuH.H. GongW.Y. Complement receptor 3 pathway and NMDA receptor 2B subunit involve neuropathic pain associated with spinal cord injury.J. Pain Res.2022151813182310.2147/JPR.S366782 35784110
    [Google Scholar]
  101. BieB. WuJ. FossJ.F. NaguibM. Activation of mGluR1 mediates C1q-dependent microglial phagocytosis of glutamatergic synapses in Alzheimer’s rodent models.Mol. Neurobiol.20195685568558510.1007/s12035‑019‑1467‑8 30652266
    [Google Scholar]
  102. WuJ. XuJ. NaguibM. BieB. Blockade of Type 2A Protein phosphatase signaling attenuates complement C1q-Mediated microglial phagocytosis of glutamatergic synapses induced by amyloid fibrils.Mol. Neurobiol.20236031527153610.1007/s12035‑022‑03161‑2 36515857
    [Google Scholar]
  103. DalakasM.C. AlexopoulosH. SpaethP.J. Complement in neurological disorders and emerging complement-targeted therapeutics.Nat. Rev. Neurol2020161160161710.1038/s41582‑020‑0400‑0
    [Google Scholar]
  104. CarpaniniS.M. TorvellM. MorganB.P. Therapeutic inhibition of the complement system in diseases of the central nervous system.Front Immunol.20191036210.3389/fimmu.2019.00362
    [Google Scholar]
  105. CristianoC. GiorgioC. CocchiaroP. BoccellaS. CestaM.C. CastelliV. LiguoriF.M. CuozzoM.R. BrandoliniL. RussoR. AllegrettiM. Inhibition of C5aR1 as a promising approach to treat taxane-induced neuropathy.Cytokine202317115637010.1016/j.cyto.2023.156370 37722320
    [Google Scholar]
  106. PresumeyJ. BialasA.R. CarrollM.C. Complement system in neural synapse elimination in development and disease.Adv. Immunol.2017135537910.1016/bs.ai.2017.06.004
    [Google Scholar]
/content/journals/cn/10.2174/011570159X327960240823065729
Loading
/content/journals/cn/10.2174/011570159X327960240823065729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test