Skip to content
2000
image of Unraveling the Role of Perivascular Macrophages in Alzheimer's Disease: Insights from the Crosstalk between Immunometabolism and Ferroptosis

Abstract

Introduction

Recent evidence increasingly supports a potential role of Perivascular Macrophages (PVMs), a unique subpopulation of brain immune cells, in the pathogenesis of Alzheimer’s disease (AD). Strategically positioned at the brain-vasculature interface, PVMs sense the redox status, modulate immunity, and potentially influence ferroptosis—an iron-dependent form of regulated cell death increasingly implicated in AD. However, whether the involvement of PVMs in AD pathology specifically entails mechanisms related to the crosstalk between immunometabolism and ferroptosis, and the precise molecular pathways linking PVMs, immunometabolism, and ferroptosis to AD, remains unclear.

Methods

We first obtained single-cell RNA sequencing data of PVMs from AD patients and control subjects the GEO database, identified Differentially Expressed Genes (DEGs), and applied Mendelian Randomization (MR), with robustness validated leave-one-out analysis to pinpoint key genes among the DEGs with causal relevance to AD. Next, we identified ferroptosis-related genes within these key genes and examined their associations with immune cell infiltration and immunometabolic signaling pathways, while also predicting their regulatory transcription factors to inform potential therapeutic strategies.

Results

We identified 149 DEGs in PVMs between AD and control groups, which were primarily enriched in immune and metabolic pathways. MR analysis established eight genes (, , , , , , , and ) as causally and negatively associated with AD risk (IVW analysis identified all < 0.05, with robustness confirmed by leave-one-out analysis), with being recognized as a known ferroptosis driver. Immune cell infiltration analysis revealed significant differences in monocyte and neutrophil proportions in AD, with identified as the sole gene significantly correlated with monocyte abundance. The Key genes demonstrated distinct associations with immunometabolic pathways: expression was positively associated with PI3K/AKT/mTOR signaling, whereas both and showed enrichment in cells with high Notch signaling activity. exhibited robust associations with multiple pathways implicated in ferroptosis, including the IL-6/JAK/STAT3, interferon-γ, TGF-β, bile acid metabolism, and cholesterol homeostasis pathways, suggesting potential mechanisms that mediate the crosstalk between immunometabolism and ferroptosis. Transcription factor analysis highlighted shared regulation by CEBPD and the SP1/2/3/4 family, indicating convergent transcriptional control of these genes.

Conclusion

This study identifies eight key genes in PVMs that may protect against AD through mechanisms involving the interplay between immunometabolism and ferroptosis. Our findings provide novel insights into the function of PVMs in AD pathophysiology and suggest potential therapeutic targets for this devastating neurodegenerative disease.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X417328250908080404
2025-09-18
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X417328250908080404/BMS-CN-2025-HT22-7194-6.html?itemId=/content/journals/cn/10.2174/011570159X417328250908080404&mimeType=html&fmt=ahah

References

  1. Aye S. Johansson G. Hock C. Lannfelt L. Sims J.R. Blennow K. Frederiksen K.S. Graff C. Molinuevo J.L. Scheltens P. Palmqvist S. Schöll M. Wimo A. Kivipelto M. Handels R. Frölich L. Zilka N. Tolar M. Johannsen P. Jönsson L. Winblad B. Point of view: Challenges in implementation of new immunotherapies for Alzheimer’s disease. J. Prev. Alzheimers Dis. 2025 12 1 100022 10.1016/j.tjpad.2024.100022 39800469
    [Google Scholar]
  2. Iqubal A. Iqubal M.K. Fazal S.A. Pottoo F.H. Haque S.E. Nutraceuticals and their derived nano-formulations for the prevention and treatment of Alzheimer’s disease. Curr. Mol. Pharmacol. 2022 15 1 23 50 33687906
    [Google Scholar]
  3. Self W.K. Holtzman D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med. 2023 29 9 2187 2199 10.1038/s41591‑023‑02505‑2 37667136
    [Google Scholar]
  4. Khedraoui M. Guerguer F.Z. Karim E.M. Errougui A. Chtita S. In silico exploration of Aloe vera leaf compounds as dual AChE and BChE inhibitors for Alzheimer’s disease therapy. Curr. Pharm. Anal. 2025 21 4 238 248 10.1016/j.cpan.2025.03.005
    [Google Scholar]
  5. Mir R.H. Masoodi M.H. Shah A.J. Mohi-ud-din R. Sabreen S. Wani T.U. Jan R. Javed M.N. Mir P.A. Clinical biomarkers and novel drug targets to cut gordian knots of Alzheimer’s disease. Curr. Mol. Pharmacol. 2023 16 3 254 279 10.2174/1874467215666220903095837 36056834
    [Google Scholar]
  6. Chen X. Holtzman D.M. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 2022 55 12 2236 2254 10.1016/j.immuni.2022.10.016 36351425
    [Google Scholar]
  7. Valiukas Z. Tangalakis K. Apostolopoulos V. Feehan J. Microglial activation states and their implications for Alzheimer’s disease. J. Prev. Alzheimers Dis. 2025 12 1 100013 10.1016/j.tjpad.2024.100013 39800461
    [Google Scholar]
  8. Bijnen M. Sridhar S. Keller A. Greter M. Brain macrophages in vascular health and dysfunction. Trends Immunol. 2025 46 1 46 60 [Jan
    [Google Scholar]
  9. Rubio C. Serrano-García N. Taddei E. Castañeda E. Romo H. Rubio-Osornio M. Rotenone-induced mitochondrial dysfunction, neuroinflammation, oxidative stress, and glial activation in Parkinson’s and Alzheimer’s diseases. Biocell 2025 49 8 1391 1412 10.32604/biocell.2025.066320
    [Google Scholar]
  10. Mary A. Mancuso R. Heneka M.T. Immune activation in Alzheimer disease. Annu. Rev. Immunol. 2024 42 1 585 613 10.1146/annurev‑immunol‑101921‑035222 38424470
    [Google Scholar]
  11. Zhao J-F. Jiang Y-R. Guo T-L. Jiao Y-Q. Wang X. Exploring the vital role of microglial membrane receptors in Alzheimer’s disease pathogenesis: A comprehensive review. Biocell 2024 48 7 1011 1022 10.32604/biocell.2024.050120
    [Google Scholar]
  12. Wen W. Cheng J. Tang Y. Brain perivascular macrophages: Current understanding and future prospects. Brain 2024 147 1 39 55 10.1093/brain/awad304 37691438
    [Google Scholar]
  13. Yang T. Guo R. Zhang F. Brain perivascular macrophages: Recent advances and implications in health and diseases. CNS Neurosci. Ther. 2019 25 12 1318 1328 10.1111/cns.13263 31749316
    [Google Scholar]
  14. Faraco G. Park L. Anrather J. Iadecola C. Brain perivascular macrophages: Characterization and functional roles in health and disease. J. Mol. Med. 2017 95 11 1143 1152 10.1007/s00109‑017‑1573‑x 28782084
    [Google Scholar]
  15. García-Culebras A. Cuartero M.I. Peña-Martínez C. Moraga A. Vázquez-Reyes S. de Castro-Millán F.J. Cortes-Canteli M. Lizasoain I. Moro M.Á. Myeloid cells in vascular dementia and Alzheimer’s disease: Possible therapeutic targets? Br. J. Pharmacol. 2024 181 6 777 798 10.1111/bph.16159 37282844
    [Google Scholar]
  16. Wu X. Saito T. Saido T.C. Barron A.M. Ruedl C. Microglia and CD206+ border-associated mouse macrophages maintain their embryonic origin during Alzheimer’s disease. eLife 2021 10 e71879 10.7554/eLife.71879 34609281
    [Google Scholar]
  17. Zheng F. Dong T. Chen Y. Wang L. Peng G. Border-associated macrophages: From physiology to therapeutic targets in Alzheimer’s disease. Exp. Neurol. 2025 383 115021 10.1016/j.expneurol.2024.115021 39461707
    [Google Scholar]
  18. Heneka M.T. Morgan D. Jessen F. Passive anti-amyloid β immunotherapy in Alzheimer’s disease—opportunities and challenges. Lancet 2024 404 10468 2198 2208 10.1016/S0140‑6736(24)01883‑X 39549715
    [Google Scholar]
  19. Smith E.E. Phillips N.A. Feldman H.H. Borrie M. Ganesh A. Henri-Bhargava A. Desmarais P. Frank A. Badhwar A. Barlow L. Bartha R. Best S. Bethell J. Bhangu J. Black S.E. Bocti C. Bronskill S.E. Burhan A.M. Calon F. Camicioli R. Campbell B. Collins D.L. Dadar M. DeMarco M.L. Ducharme S. Duchesne S. Einstein G. Fisk J.D. Gawryluk J.R. Grossman L. Ismail Z. Itzhak I. Joshi M. Harrison A. Kröger E. Kumar S. Laforce R. Lanctot K.L. Lau M. Lee L. Masellis M. Massoud F. Mitchell S.B. Montero-Odasso M. Myers Barnett K. Nygaard H.B. Pasternak S.H. Peters J. Rajah M.N. Robillard J.M. Rockwood K. Rosa-Neto P. Seitz D.P. Soucy J.P. Trenaman S.C. Wellington C.L. Zadem A. Chertkow H. Use of lecanemab and donanemab in the Canadian healthcare system: evidence, challenges, and areas for future research. J. Prev. Alzheimers Dis. 2025 12 3 100068 10.1016/j.tjpad.2025.100068 39893139
    [Google Scholar]
  20. Taylor X. Noristani H.N. Fitzgerald G.J. Oluoch H. Babb N. McGathey T. Carter L. Hole J.T. Lacor P.N. DeMattos R.B. Wang Y. Amyloid-β (Aβ) immunotherapy induced microhemorrhages are linked to vascular inflammation and cerebrovascular damage in a mouse model of Alzheimer’s disease. Mol. Neurodegener. 2024 19 1 77 10.1186/s13024‑024‑00758‑0 39434125
    [Google Scholar]
  21. Barakos J. Purcell D. Suhy J. Chalkias S. Burkett P. Grassi C.M. Castrillo-Viguera C. Rubino I. Vijverberg E. Detection and management of amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with anti-amyloid beta therapy. J. Prev. Alzheimers Dis. 2022 9 2 211 220 10.14283/jpad.2022.21 35542992
    [Google Scholar]
  22. Castellani R.J. Shanes E.D. McCord M. Reish N.J. Flanagan M.E. Mesulam M.M. Jamshidi P. Neuropathology of anti-Amyloid-β immunotherapy: A case report. J. Alzheimers Dis. 2023 93 2 803 813 10.3233/JAD‑221305 37125554
    [Google Scholar]
  23. Taylor X. Clark I.M. Fitzgerald G.J. Oluoch H. Hole J.T. DeMattos R.B. Wang Y. Pan F. Amyloid-β (Aβ) immunotherapy induced microhemorrhages are associated with activated perivascular macrophages and peripheral monocyte recruitment in Alzheimer’s disease mice. Mol. Neurodegener. 2023 18 1 59 10.1186/s13024‑023‑00649‑w 37649100
    [Google Scholar]
  24. Jin Z.L. Gao W.Y. Liao S.J. Yu T. Shi Q. Yu S.Z. Cai Y.F. Paeonol inhibits the progression of intracerebral haemorrhage by mediating the HOTAIR/UPF1/ACSL4 axis. ASN Neuro 2021 13 1 17590914211010647 10.1177/17590914211010647 33906483
    [Google Scholar]
  25. Qu X. Liang T. Wu D. Lai N. Deng R. Ma C. Li X. Li H. Liu Y. Shen H. Chen G. Acyl‐CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS Neurosci. Ther. 2021 27 4 449 463 10.1111/cns.13548 33314758
    [Google Scholar]
  26. Lei P. Walker T. Ayton S. Neuroferroptosis in health and diseases. Nat. Rev. Neurosci. 2025 26 8 497 511 10.1038/s41583‑025‑00930‑5 40389615
    [Google Scholar]
  27. Liu Y. Jia G. Zhang S. Guo Y. Ma X. Xu H. Xie J. The role of microglia in neurodegenerative diseases: from the perspective of ferroptosis. Acta Pharmacol. Sin. 2025 10.1038/s41401‑025‑01560‑4 40307457
    [Google Scholar]
  28. Podleśny-Drabiniok A. Marcora E. Goate A.M. Microglial phagocytosis: A disease-associated process emerging from Alzheimer’s disease genetics. Trends Neurosci. 2020 43 12 965 979 10.1016/j.tins.2020.10.002 33127097
    [Google Scholar]
  29. Zhao T. Zhong T. Zhang M. Xu Y. Zhang M. Chen L. Alzheimer’s disease: Causal effect between obesity and apoe gene polymorphisms. Int. J. Mol. Sci. 2023 24 17 13531 10.3390/ijms241713531 37686334
    [Google Scholar]
  30. Feng X. Zhang L. Hou Y. Ma W. Ma J. Chang X. Yang L. Mendelian randomization analysis reveals causal factors behind Alzheimer’s disease risk: Evidence, opportunities, and challenges. J. Prev. Alzheimers Dis. 2024 11 3 749 758 10.14283/jpad.2024.30 38706291
    [Google Scholar]
  31. Park L. Uekawa K. Garcia-Bonilla L. Koizumi K. Murphy M. Pistik R. Younkin L. Younkin S. Zhou P. Carlson G. Anrather J. Iadecola C. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides. Circ. Res. 2017 121 3 258 269 10.1161/CIRCRESAHA.117.311054 28515043
    [Google Scholar]
  32. Wang L. Zhang S. Investigating the causal effects of exercise-induced genes on Sarcopenia. Int. J. Mol. Sci. 2024 25 19 10773 10.3390/ijms251910773 39409102
    [Google Scholar]
  33. Su W.M. Gu X.J. Dou M. Duan Q.Q. Jiang Z. Yin K.F. Cai W.C. Cao B. Wang Y. Chen Y.P. Systematic druggable genome-wide mendelian randomisation identifies therapeutic targets for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2023 94 11 954 961 10.1136/jnnp‑2023‑331142 37349091
    [Google Scholar]
  34. Davey Smith G. Hemani G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014 23 R1 R89 R98 10.1093/hmg/ddu328 25064373
    [Google Scholar]
  35. Yavorska O.O. Burgess S. MendelianRandomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017 46 6 1734 1739 10.1093/ije/dyx034 28398548
    [Google Scholar]
  36. Patel A. Ye T. Xue H. Lin Z. Xu S. Woolf B. Mason A.M. Burgess S. MendelianRandomization v0.9.0: Updates to an R package for performing mendelian randomization analyses using summarized data. Wellcome Open Res. 2023 8 449 10.12688/wellcomeopenres.19995.2 37915953
    [Google Scholar]
  37. Barrett T. Wilhite S.E. Ledoux P. Evangelista C. Kim I.F. Tomashevsky M. Marshall K.A. Phillippy K.H. Sherman P.M. Holko M. Yefanov A. Lee H. Zhang N. Robertson C.L. Serova N. Davis S. Soboleva A. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 2013 41 Database issue D991 D995 23193258
    [Google Scholar]
  38. Võsa U. Claringbould A. Westra H.J. Bonder M.J. Deelen P. Zeng B. Kirsten H. Saha A. Kreuzhuber R. Yazar S. Brugge H. Oelen R. de Vries D.H. van der Wijst M.G.P. Kasela S. Pervjakova N. Alves I. Favé M.J. Agbessi M. Christiansen M.W. Jansen R. Seppälä I. Tong L. Teumer A. Schramm K. Hemani G. Verlouw J. Yaghootkar H. Sönmez Flitman R. Brown A. Kukushkina V. Kalnapenkis A. Rüeger S. Porcu E. Kronberg J. Kettunen J. Lee B. Zhang F. Qi T. Hernandez J.A. Arindrarto W. Beutner F. ‘t Hoen, P.A.C.; van Meurs, J.; van Dongen, J.; van Iterson, M.; Swertz, M.A.; Jan Bonder, M.; Dmitrieva, J.; Elansary, M.; Fairfax, B.P.; Georges, M.; Heijmans, B.T.; Hewitt, A.W.; Kähönen, M.; Kim, Y.; Knight, J.C.; Kovacs, P.; Krohn, K.; Li, S.; Loeffler, M.; Marigorta, U.M.; Mei, H.; Momozawa, Y.; Müller-Nurasyid, M.; Nauck, M.; Nivard, M.G.; Penninx, B.W.J.H.; Pritchard, J.K.; Raitakari, O.T.; Rotzschke, O.; Slagboom, E.P.; Stehouwer, C.D.A.; Stumvoll, M.; Sullivan, P.; ’t Hoen, P.A.C.; Thiery, J.; Tönjes, A.; van Dongen, J.; van Iterson, M.; Veldink, J.H.; Völker, U.; Warmerdam, R.; Wijmenga, C.; Swertz, M.; Andiappan, A.; Montgomery, G.W.; Ripatti, S.; Perola, M.; Kutalik, Z.; Dermitzakis, E.; Bergmann, S.; Frayling, T.; van Meurs, J.; Prokisch, H.; Ahsan, H.; Pierce, B.L.; Lehtimäki, T.; Boomsma, D.I.; Psaty, B.M.; Gharib, S.A.; Awadalla, P.; Milani, L.; Ouwehand, W.H.; Downes, K.; Stegle, O.; Battle, A.; Visscher, P.M.; Yang, J.; Scholz, M.; Powell, J.; Gibson, G.; Esko, T.; Franke, L. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 2021 53 9 1300 1310 10.1038/s41588‑021‑00913‑z 34475573
    [Google Scholar]
  39. Stuart T. Butler A. Hoffman P. Hafemeister C. Papalexi E. Mauck W.M. Hao Y. Stoeckius M. Smibert P. Satija R. Comprehensive integration of single-cell data. Cell 2019 177 7 1888 1902.e21 10.1016/j.cell.2019.05.031 31178118
    [Google Scholar]
  40. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  41. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 45 D1 D353 D361 10.1093/nar/gkw1092 27899662
    [Google Scholar]
  42. Sudmant P.H. Rausch T. Gardner E.J. Handsaker R.E. Abyzov A. Huddleston J. Zhang Y. Ye K. Jun G. Hsi-Yang Fritz M. Konkel M.K. Malhotra A. Stütz A.M. Shi X. Paolo Casale F. Chen J. Hormozdiari F. Dayama G. Chen K. Malig M. Chaisson M.J.P. Walter K. Meiers S. Kashin S. Garrison E. Auton A. Lam H.Y.K. Jasmine Mu X. Alkan C. Antaki D. Bae T. Cerveira E. Chines P. Chong Z. Clarke L. Dal E. Ding L. Emery S. Fan X. Gujral M. Kahveci F. Kidd J.M. Kong Y. Lameijer E.W. McCarthy S. Flicek P. Gibbs R.A. Marth G. Mason C.E. Menelaou A. Muzny D.M. Nelson B.J. Noor A. Marchini J.L. McCarthy S. McVean G.A. Abecasis G.R. A global reference for human genetic variation. Nature 2015 526 7571 68 74 10.1038/nature15393 26432245
    [Google Scholar]
  43. Pierce B.L. Ahsan H. VanderWeele T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 2011 40 3 740 752 10.1093/ije/dyq151 20813862
    [Google Scholar]
  44. Aibar S. González-Blas C.B. Moerman T. Huynh-Thu V.A. Imrichova H. Hulselmans G. Rambow F. Marine J.C. Geurts P. Aerts J. van den Oord J. Atak Z.K. Wouters J. Aerts S. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 2017 14 11 1083 1086 10.1038/nmeth.4463 28991892
    [Google Scholar]
  45. Agarwal U. Tonk K.R. Bhutani R. The potential of emerging medicinal plants and their phytoconstituents in treating Alzheimer’s disease. Curr. Pharm. Anal. 2024 20 672 697 10.2174/0115734129331572240910084315
    [Google Scholar]
  46. Zhou N. Yuan X. Du Q. Zhang Z. Shi X. Bao J. Ning Y. Peng L. FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2023 51 D1 D571 D582 10.1093/nar/gkac935 36305834
    [Google Scholar]
  47. Quan J. Bode A.M. Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur. J. Pharmacol. 2021 909 174397 10.1016/j.ejphar.2021.174397 34332918
    [Google Scholar]
  48. Hong J. Li X. Hao Y. Xu H. Yu L. Meng Z. Zhang J. Zhu M. The PRMT6/STAT1/ACSL1 axis promotes ferroptosis in diabetic nephropathy. Cell Death Differ. 2024 31 11 1561 1575 10.1038/s41418‑024‑01357‑8 39134684
    [Google Scholar]
  49. Zhou L. Jia X. Shang Y. Sun Y. Liu Z. Liu J. Jiang W. Deng S. Yao Q. Chen J. Li H. PRMT1 inhibition promotes ferroptosis sensitivity via ACSL1 upregulation in acute myeloid leukemia. Mol. Carcinog. 2023 62 8 1119 1135 10.1002/mc.23550 37144835
    [Google Scholar]
  50. Liu F. Tang L. Li Q. Chen L. Pan Y. Yin Z. He J. Tian J. Single-cell transcriptomics uncover the key ferroptosis regulators contribute to cancer progression in head and neck squamous cell carcinoma. Front. Mol. Biosci. 2022 9 962742 10.3389/fmolb.2022.962742 36003082
    [Google Scholar]
  51. Zhang Q. Li N. Deng L. Jiang X. Zhang Y. Lee L.T.O. Zhang H. ACSL1-induced ferroptosis and platinum resistance in ovarian cancer by increasing FSP1 N-myristylation and stability. Cell Death Discov. 2023 9 1 83 10.1038/s41420‑023‑01385‑2 36882396
    [Google Scholar]
  52. Haney M.S. Pálovics R. Munson C.N. Long C. Johansson P.K. Yip O. Dong W. Rawat E. West E. Schlachetzki J.C.M. Tsai A. Guldner I.H. Lamichhane B.S. Smith A. Schaum N. Calcuttawala K. Shin A. Wang Y.H. Wang C. Koutsodendris N. Serrano G.E. Beach T.G. Reiman E.M. Glass C.K. Abu-Remaileh M. Enejder A. Huang Y. Wyss-Coray T. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature 2024 628 8006 154 161 10.1038/s41586‑024‑07185‑7 38480892
    [Google Scholar]
  53. Dong X.Q. Chu L.K. Cao X. Xiong Q.W. Mao Y.M. Chen C.H. Bi Y.L. Liu J. Yan X.M. Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis. Redox Rep. 2023 28 1 2152607 10.1080/13510002.2022.2152607 36692085
    [Google Scholar]
  54. Zitvogel L. Kroemer G. Interferon-γ induces cancer cell ferroptosis. Cell Res. 2019 29 9 692 693 10.1038/s41422‑019‑0186‑z 31160718
    [Google Scholar]
  55. Bao W. Wang J. Fan K. Gao Y. Chen J. PIAS3 promotes ferroptosis by regulating TXNIP via TGF-β signaling pathway in hepatocellular carcinoma. Pharmacol. Res. 2023 196 106915 10.1016/j.phrs.2023.106915 37689128
    [Google Scholar]
  56. Wang Y. Zheng L. Shang W. Yang Z. Li T. Liu F. Shao W. Lv L. Chai L. Qu L. Xu Q. Du J. Liang X. Zeng J. Jia J. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 2022 29 11 2190 2202 10.1038/s41418‑022‑01008‑w 35534546
    [Google Scholar]
  57. Sando R. Gounko N. Pieraut S. Liao L. Yates J. Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 2012 151 4 821 834 10.1016/j.cell.2012.09.037 23141539
    [Google Scholar]
  58. Kong Q. Hao Y. Li X. Wang X. Ji B. Wu Y. HDAC4 in ischemic stroke: Mechanisms and therapeutic potential. Clin. Epigenetics 2018 10 1 117 10.1186/s13148‑018‑0549‑1 30208931
    [Google Scholar]
  59. Martin S.D. Connor T. Sanigorski A. McEwen K.A. Henstridge D.C. Nijagal B. De Souza D. Tull D.L. Meikle P.J. Kowalski G.M. Bruce C.R. Gregorevic P. Febbraio M.A. Collier F.M. Walder K.R. McGee S.L. Class IIa HDACs inhibit cell death pathways and protect muscle integrity in response to lipotoxicity. Cell Death Dis. 2023 14 12 787 10.1038/s41419‑023‑06319‑5 38040704
    [Google Scholar]
  60. Chen W. Kullmann S. Rhea E.M. Expanding the understanding of insulin resistance in brain and periphery. Trends Endocrinol. Metab. 2025 S1043 2760(25)00099-2 10.1016/j.tem.2025.04.010 40393910
    [Google Scholar]
  61. Naito T. Yang H. Koh D.H.Z. Mahajan D. Lu L. Saheki Y. Regulation of cellular cholesterol distribution via non-vesicular lipid transport at ER-Golgi contact sites. Nat. Commun. 2023 14 1 5867 10.1038/s41467‑023‑41213‑w 37735529
    [Google Scholar]
  62. Leventhal M.J. Zanella C.A. Kang B. Peng J. Gritsch D. Liao Z. Bukhari H. Wang T. Pao P.C. Danquah S. Benetatos J. Nehme R. Farhi S. Tsai L.H. Dong X. Scherzer C.R. Feany M.B. Fraenkel E. An integrative systems-biology approach defines mechanisms of Alzheimer’s disease neurodegeneration. Nat. Commun. 2025 16 1 4441 10.1038/s41467‑025‑59654‑w 40393985
    [Google Scholar]
  63. Wei D. Zhan W. Gao Y. Huang L. Gong R. Wang W. Zhang R. Wu Y. Gao S. Kang T. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 2021 31 2 157 177 10.1038/s41422‑020‑00409‑1 32958903
    [Google Scholar]
  64. Sardar Sinha M. Ansell-Schultz A. Civitelli L. Hildesjö C. Larsson M. Lannfelt L. Ingelsson M. Hallbeck M. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol. 2018 136 1 41 56 10.1007/s00401‑018‑1868‑1 29934873
    [Google Scholar]
  65. Rajendran L. Honsho M. Zahn T.R. Keller P. Geiger K.D. Verkade P. Simons K. Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA 2006 103 30 11172 11177 10.1073/pnas.0603838103 16837572
    [Google Scholar]
  66. Johansson L. Reyes J.F. Ali T. Lack of cellular prion protein causes Amyloid beta accumulation, increased extracellular vesicle abundance, and changes to exosome biogenesis proteins. Mol. Cell. Biochem. 2024 38970706
    [Google Scholar]
  67. Liang J.W. Fang Z.Y. Huang Y. Liuyang Z. Zhang X.L. Wang J.L. Wei H. Wang J.Z. Wang X.C. Zeng J. Liu R. Application of weighted gene co-expression network analysis to explore the key genes in Alzheimer’s disease. J. Alzheimers Dis. 2018 65 4 1353 1364 10.3233/JAD‑180400 30124448
    [Google Scholar]
  68. Xu J. Fotouhi M. McPherson P.S. Phosphorylation of the exchange factor DENND 3 by ULK in response to starvation activates Rab12 and induces autophagy. EMBO Rep. 2015 16 6 709 718 10.15252/embr.201440006 25925668
    [Google Scholar]
  69. Li W. Zhao X. Fu J. Cheng L. Identification of lysosome-related hub genes as potential biomarkers and immune infiltrations of moyamoya disease by multiple bioinformatics methods and machine-learning strategies. Heliyon 2024 10 14 e34432 10.1016/j.heliyon.2024.e34432 39104482
    [Google Scholar]
  70. Li Y. Xu A. Ouyang Q. Zhang W. Zhang C. Chen Z. Zhou D. Zhang B. Duan W. Zhao X. Wang X. You H. Ou X. Jia J. Huang J. DENND3 p.L708V activating variant is involved in the pathogenesis of hereditary hemochromatosis via the RAB12/] TFR2 signaling pathway. Hepatol. Int. 2023 17 3 648 661 10.1007/s12072‑022‑10474‑w 36729283
    [Google Scholar]
  71. Matsui T. Itoh T. Fukuda M. Small GTPase Rab12 regulates constitutive degradation of transferrin receptor. Traffic 2011 12 10 1432 1443 10.1111/j.1600‑0854.2011.01240.x 21718402
    [Google Scholar]
  72. Diana P. Carvalheira G.M.G. NIBAN1, exploring its roles in cell survival under stress context. Front. Cell Dev. Biol. 2022 10 867003 10.3389/fcell.2022.867003 35517496
    [Google Scholar]
  73. Valdivieso A. Ribas L. Piferrer F. Ovarian transcriptomic signatures of zebrafish females resistant to different environmental perturbations. J. Exp. Zoolog. B Mol. Dev. Evol. 2019 332 3-4 55 68 10.1002/jez.b.22848 30945804
    [Google Scholar]
  74. Xiang C. Wang Y. Zhang H. Han F. The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis 2017 22 1 1 26 10.1007/s10495‑016‑1296‑4 27815720
    [Google Scholar]
  75. Lim D. Tapella L. Dematteis G. Genazzani A.A. Corazzari M. Verkhratsky A. The endoplasmic reticulum stress and unfolded protein response in Alzheimer’s disease: A calcium dyshomeostasis perspective. Ageing Res. Rev. 2023 87 101914 10.1016/j.arr.2023.101914 36948230
    [Google Scholar]
  76. Wang Z. Qin G. Zhao T.C. HDAC4: Mechanism of regulation and biological functions. Epigenomics 2014 6 1 139 150 10.2217/epi.13.73 24579951
    [Google Scholar]
/content/journals/cn/10.2174/011570159X417328250908080404
Loading
/content/journals/cn/10.2174/011570159X417328250908080404
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test