Skip to content
2000
image of Investigating the Multiple Regulatory Mechanisms and Therapeutic Targets of PHLDA1 in Neurological Diseases

Abstract

PHLDA1 (pleckstrin homology-like domain family A member 1) is a pleiotropic regulatory protein that affects key biological processes such as apoptosis, pyroptosis, immune inflammation, autophagy, metabolism, and oxidative stress. PHLDA1 plays a significant role in the pathological mechanisms of neurological diseases. This article systematically reviews the molecular characteristics of PHLDA1 and its core role in cerebrovascular diseases such as cerebral ischemia/
reperfusion injury, cerebral hemorrhage, subarachnoid hemorrhage, epilepsy, amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Studies have shown that PHLDA1 promotes disease progression by regulating signalling pathways such as the NF-κB, MAPK, NLRP3 inflammasome, PPARγ, and Nrf2 pathways, thereby exacerbating neuroinflammation, mitochondrial dysfunction, endoplasmic reticulum stress, and pyroptosis in neurons. Its expression is regulated by the dynamic balance of miRNAs (such as miR-194 and miR-101), transcription factors (Egr1 and BHLHE40), and heat shock proteins (HSPs/HSF1). In addition, PHLDA1 has become a potential target for intervention in neurodegenerative and ischemic injuries by inhibiting FundC1-mediated mitochondrial autophagy, regulating microglial polarization, and activating TRAF6-dependent neuroinflammation. This article not only clarifies the pathogenic mechanism of PHLDA1 but also summarizes the relevant intervention strategies targeting PHLDA1, hoping to provide a corresponding theoretical basis and reference for the development of precision therapies for neurological diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X413561251125064110
2026-01-13
2026-02-05
Loading full text...

Full text loading...

References

  1. Park C.G. Lee S.Y. Kandala G. Lee S.Y. Choi Y. A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity 1996 4 6 583 591 10.1016/S1074‑7613(00)80484‑7 8673705
    [Google Scholar]
  2. Duan Y. Du Y. Gu Z. Zheng X. Wang C. Prognostic value, immune signature, and molecular mechanisms of the PHLDA family in pancreatic adenocarcinoma. Int. J. Mol. Sci. 2022 23 18 10316 10.3390/ijms231810316 36142223
    [Google Scholar]
  3. Wang X. Li G. Koul S. Ohki R. Maurer M. Borczuk A. Halmos B. PHLDA2 is a key oncogene-induced negative feedback inhibitor of EGFR/ErbB2 signaling via interference with AKT signaling. Oncotarget 2018 9 38 24914 24926 10.18632/oncotarget.3674 29861842
    [Google Scholar]
  4. Neef R. Kuske M.A. Pröls E. Johnson J.P. Identification of the human PHLDA1/TDAG51 gene: Down-regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation. Cancer Res. 2002 62 20 5920 5929 12384558
    [Google Scholar]
  5. Fearon A.E. Carter E.P. Clayton N.S. Wilkes E.H. Baker A.M. Kapitonova E. Bakhouche B.A. Tanner Y. Wang J. Gadaleta E. Chelala C. Moore K.M. Marshall J.F. Chupin J. Schmid P. Jones J.L. Lockley M. Cutillas P.R. Grose R.P. PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Rep. 2018 22 9 2469 2481 10.1016/j.celrep.2018.02.028 29490281
    [Google Scholar]
  6. Chen Y. Takikawa M. Tsutsumi S. Yamaguchi Y. Okabe A. Shimada M. Kawase T. Sada A. Ezawa I. Takano Y. Nagata K. Suzuki Y. Semba K. Aburatani H. Ohki R. PHLDA1, another PHLDA family protein that inhibits Akt. Cancer Sci. 2018 109 11 3532 3542 10.1111/cas.13796 30207029
    [Google Scholar]
  7. Xing Y. Liu H. Cui Y. Wang X. Tong X. Abundances of placental imprinted genes CDKN1C, PHLDA2 and IGF-2 are related to low birth weight and early catch-up growth in full-term infants born small for gestational age. PLoS One 2019 14 6 e0218278 10.1371/journal.pone.0218278 31194812
    [Google Scholar]
  8. Ding L. Blitz M.J. Wing D.A. Epstein A.J. Gjessing H.K. Wilson M.L. PHLDA2 gene polymorphisms and risk of HELLP syndrome and severe preeclampsia. Pregnancy Hypertens. 2020 19 190 194 10.1016/j.preghy.2020.01.013 32062476
    [Google Scholar]
  9. Li Y. Song X. Liu Z. Li Q. Huang M. Su B. Mao Y. Wang Y. Mo W. Chen H. Upregulation of miR-214 induced radioresistance of osteosarcoma by targeting PHLDA2 via PI3K/Akt signaling. Front. Oncol. 2019 9 298 10.3389/fonc.2019.00298 31058093
    [Google Scholar]
  10. Wang X. Li J. Yang Z. Wang L. Li L. Deng W. Zhou J. Wang L. Xu C. Chen Q. Wang Q.K. PHLDA3 overexpression impairs specification of hemangioblasts and vascular development. FEBS J. 2018 285 21 4071 4081 10.1111/febs.14653 30188605
    [Google Scholar]
  11. Takikawa M. Ohki R. A vicious partnership between AKT and PHLDA 3 to facilitate neuroendocrine tumors. Cancer Sci. 2017 108 6 1101 1108 10.1111/cas.13235 28295876
    [Google Scholar]
  12. Ohki R. Saito K. Chen Y. Kawase T. Hiraoka N. Saigawa R. Minegishi M. Aita Y. Yanai G. Shimizu H. Yachida S. Sakata N. Doi R. Kosuge T. Shimada K. Tycko B. Tsukada T. Kanai Y. Sumi S. Namiki H. Taya Y. Shibata T. Nakagama H. PHLDA3 is a novel tumor suppressor of pancreatic neuroendocrine tumors. Proc. Natl. Acad. Sci. USA 2014 111 23 E2404 E2413 10.1073/pnas.1319962111 24912192
    [Google Scholar]
  13. Kojima M. Chen Y. Ikeda K. Tsukada Y. Takahashi D. Kawano S. Amemiya K. Ito M. Ohki R. Ochiai A. Recommendation of long-term and systemic management according to the risk factors in rectal NETs patients. Sci. Rep. 2019 9 1 2404 10.1038/s41598‑018‑37707‑z 30787304
    [Google Scholar]
  14. Scheffzek K. Welti S. Pleckstrin homology (PH) like domains – versatile modules in protein–protein interaction platforms. FEBS Lett. 2012 586 17 2662 2673 10.1016/j.febslet.2012.06.006 22728242
    [Google Scholar]
  15. Peng H. Wang J. Song X. Huang J. Hua H. Wang F. Xu Z. Ma J. Gao J. Zhao J. Nong A. Huang D. Liang B. PHLDA1 suppresses TLR4-triggered proinflammatory cytokine production by interaction with tollip. Front. Immunol. 2022 13 731500 10.3389/fimmu.2022.731500 35237256
    [Google Scholar]
  16. Nagai M.A. Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and cancer. Biomed. Rep. 2016 4 3 275 281 10.3892/br.2016.580 26998263
    [Google Scholar]
  17. Lyu J.H. Huang B. Park D.W. Baek S.H. Regulation of PHLDA1 expression by JAK2-ERK1/2-STAT3 signaling pathway. J. Cell. Biochem. 2016 117 2 483 490 10.1002/jcb.25296 26239656
    [Google Scholar]
  18. Kerr J F R. Wyllie A.H. Currie A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972 26 4 239 257 10.1038/bjc.1972.33 4561027
    [Google Scholar]
  19. Li P. Nijhawan D. Wang X. Mitochondrial activation of apoptosis. Cell 2004 116 2 Suppl. S57 S61, 2, S59 10.1016/S0092‑8674(04)00031‑5 15055583
    [Google Scholar]
  20. Guo Y. Jia P. Chen Y. Yu H. Xin X. Bao Y. Yang H. Wu N. Sun Y. Jia D. PHLDA1 is a new therapeutic target of oxidative stress and ischemia reperfusion-induced myocardial injury. Life Sci. 2020 245 117347 10.1016/j.lfs.2020.117347 31981628
    [Google Scholar]
  21. Oberg H-H. Sipos B. Kalthoff H. Janssen O. Kabelitz D. Regulation of T-cell death-associated gene 51 (TDAG51) expression in human T-cells. Cell Death Differ. 2004 11 6 674 684 10.1038/sj.cdd.4401407 15002043
    [Google Scholar]
  22. Wang J. Wang F. Zhu J. Song M. An J. Li W. Transcriptome profiling reveals PHLDA1 as a novel molecular marker for ischemic cardiomyopathy. J. Mol. Neurosci. 2018 65 1 102 109 10.1007/s12031‑018‑1066‑6 29736818
    [Google Scholar]
  23. Song X. Zhou L. Yang W. Li X. Ma J. Qi K. Liang R. Li M. Xie L. Su T. Huang D. Liang B. PHLDA1 is a P53 target gene involved in P53-mediated cell apoptosis. Mol. Cell. Biochem. 2024 479 3 653 664 10.1007/s11010‑023‑04752‑w 37155089
    [Google Scholar]
  24. Chen K. Li X. Chen D. Qian S. Mei R. Li Q. Yu X. He X. PPARγ inhibitors enhance the efficacy of statin therapy for steroid-induced osteonecrosis of the femoral head by directly inhibiting apoptosis and indirectly modulating lipoprotein subfractions. PLoS One 2025 20 6 e0325190 10.1371/journal.pone.0325190 40540523
    [Google Scholar]
  25. Liu Y. Zhao H. Chen N. Li Y. Zheng Z. Sun Z. Zhang Z. PHLDA1 knockdown alleviates mitochondrial dysfunction and endoplasmic reticulum stress-induced neuronal apoptosis via activating PPARγ in cerebral ischemia-reperfusion injury. Brain Res. Bull. 2023 194 23 34 10.1016/j.brainresbull.2023.01.007 36681251
    [Google Scholar]
  26. Zhang D. Chen S. Peng W. Liu G. Zhang Q. Ghani M.U. Zhou P. Zhao H. Liang P. Cui H. The E3 ubiquitin ligase STUB1 inhibits glioblastoma progression though promoting IKKα ubiquitination and blocking NF-κB signaling pathway. Int. J. Biol. Macromol. 2025 321 Pt 2 146064 10.1016/j.ijbiomac.2025.146064 40675300
    [Google Scholar]
  27. Lee S. Lee D.W. Lee Y. Mayer U. Stierhof Y.D. Lee S. Jürgens G. Hwang I. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 2010 21 12 3984 4001 10.1105/tpc.109.071548 20028838
    [Google Scholar]
  28. Yao B. Niu Y. Li Y. Chen T. Wei X. Liu Q. High-matrix-stiffness induces promotion of hepatocellular carcinoma proliferation and suppression of apoptosis via miR-3682-3p-PHLDA1-FAS pathway. J. Cancer 2020 11 21 6188 6203 10.7150/jca.45998 33033502
    [Google Scholar]
  29. Rahnama S. Tehrankhah Z.M. Mohajerani F. Mohammadi F.S. Yeganeh Z.Y. Najafi F. Babashah S. Sadeghizadeh M. Milk thistle nano-micelle formulation promotes cell cycle arrest and apoptosis in hepatocellular carcinoma cells through modulating miR-155-3p /SOCS2 /PHLDA1 signaling axis. BMC Complement. Med. Ther. 2023 23 1 337 10.1186/s12906‑023‑04168‑5 37749575
    [Google Scholar]
  30. Wang L. Shen J. Jiang Y. Circ_0027599/PHDLA1 suppresses gastric cancer progression by sponging miR-101-3p.1. Cell Biosci. 2018 8 1 58 10.1186/s13578‑018‑0252‑0 30410722
    [Google Scholar]
  31. Liu P. Liu W. Gao H. Zhang Y. Yan M. Wang X. Circ0085539 promotes osteosarcoma progression by suppressing miR-526b-5p and PHLDA1 axis. Front. Oncol. 2020 10 1250 10.3389/fonc.2020.01250 32983961
    [Google Scholar]
  32. Bai S. Shi P. miR‐365a‐3p alleviates isoflurane‐induced neuroinflammation and cognitive impairment by targeting MyD88 to inhibit NF‐κB signaling. Synapse 2025 79 5 e70025 10.1002/syn.70025 40772452
    [Google Scholar]
  33. Kastrati I. Canestrari E. Frasor J. PHLDA1 expression is controlled by an estrogen receptor-NFκB-miR-181 regulatory loop and is essential for formation of ER+ mammospheres. Oncogene 2015 34 18 2309 2316 10.1038/onc.2014.180 24954507
    [Google Scholar]
  34. Park E.S. Jeon H. Lee N. Yu J. Park H.W. Satoh T. Akira S. Furuyama T. Lee C.H. Choi J.S. Rho J. TDAG51 promotes transcription factor FoxO1 activity during LPS‐induced inflammatory responses. EMBO J. 2023 42 13 e111867 10.15252/embj.2022111867 37203866
    [Google Scholar]
  35. Han C. Yan P. He T. Cheng J. Zheng W. Zheng L.T. Zhen X. PHLDA1 promotes microglia-mediated neuroinflammation via regulating K63-linked ubiquitination of TRAF6. Brain Behav. Immun. 2020 88 640 653 10.1016/j.bbi.2020.04.064 32353516
    [Google Scholar]
  36. Ishijima T. Nakajima K. Inflammatory cytokines TNFα, IL-1β, and IL-6 are induced in endotoxin- stimulated microglia through different signaling cascades. Sci. Prog. 2021 104 4 00368504211054985 10.1177/00368504211054985 34821182
    [Google Scholar]
  37. Gong M. Wenmei Liang Qinju Lu Jing Zhang PHLDA1 knockdown inhibits inflammation and oxidative stress by regulating JNK/ERK pathway, and plays a protective role in sepsis-induced acute kidney injury. Allergol. Immunopathol. 2022 50 6 1 9 10.15586/aei.v50i6.671 36335439
    [Google Scholar]
  38. Wang S. Zhang H. Wang A. Huang D. Fan J. Lu L. Chen X. PHLDA1 promotes lung contusion by regulating the Toll-like receptor 2 signaling pathway. Cell Physiol. Biochem. 2016 40 5 1198 1206 10.1159/000453173 27960185
    [Google Scholar]
  39. Deepagan V.G. Ma X. Bazregari F. Pang J. Schaefer J. Hildebrand J.M. Dempsey R.K. Doerflinger M. Baldwin C.A. Schmidt F.I. Murphy J.M. Salvamoser R. Vince J.E. Lipid nanoparticle-delivered intrabodies for inhibiting necroptosis and pyroptosis. Biochem. J. 2025 482 16 1197 1208 10.1042/BCJ20253191 40785595
    [Google Scholar]
  40. Lai J. Chen G. Wu Z. Yu S. Huang R. Zeng Y. Lin W. Fan C. Chen X. PHLDA1 modulates microglial response and NLRP3 inflammasome signaling following experimental subarachnoid hemorrhage. Front. Immunol. 2023 14 1105973 10.3389/fimmu.2023.1105973 36875102
    [Google Scholar]
  41. Jiang H. Liu Y. Yu Y. Yan Y. Sirtuin 1 suppresses hydrogen peroxide‐induced senescence and promotes viability and migration in lens epithelial cells by inhibiting forkhead box protein o1/toll‐like receptor 4 pathway. J. Biochem. Mol. Toxicol. 2025 39 2 e70150 10.1002/jbt.70150 39866090
    [Google Scholar]
  42. Luo Y.H. Huang Z.T. Zong K.Z. Cao Z.R. Peng D.D. Zhou B.Y. Shen A. Yan P. Wu Z.J. miR-194 ameliorates hepatic ischemia/reperfusion injury via targeting PHLDA1 in a TRAF6-dependent manner. Int. Immunopharmacol. 2021 96 107604 10.1016/j.intimp.2021.107604 33839577
    [Google Scholar]
  43. Heo M.J. Kim T.H. You J.S. Blaya D. Sancho-Bru P. Kim S.G. Alcohol dysregulates miR-148a in hepatocytes through FoxO1, facilitating pyroptosis via TXNIP overexpression. Gut 2019 68 4 708 720 10.1136/gutjnl‑2017‑315123 29475852
    [Google Scholar]
  44. Narayanan M. Huynh J.L. Wang K. Yang X. Yoo S. McElwee J. Zhang B. Zhang C. Lamb J.R. Xie T. Suver C. Molony C. Melquist S. Johnson A.D. Fan G. Stone D.J. Schadt E.E. Casaccia P. Emilsson V. Zhu J. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol. 2014 10 7 743 10.15252/msb.20145304 25080494
    [Google Scholar]
  45. Meng L. Gu T. Wang J. Zhang H. Nan C. Knockdown of PHLDA1 alleviates sepsis-induced acute lung injury by downregulating NLRP3 inflammasome activation. Allergol. Immunopathol. 2023 51 5 41 47 10.15586/aei.v51i5.940 37695229
    [Google Scholar]
  46. Gu T. Dai F. Cai M. Zhang X. Xie D. Jiang H. Tian L. Yan L. Lan W. Lv H. Tang L. Li H. Liu Z. Temporal changes of hepatic drug-metabolizing enzymes mediated by hepatic ischemia-reperfusion injury and the protective effect of Oridonin. Sci. Rep. 2025 15 1 28552 10.1038/s41598‑025‑06179‑3 40764617
    [Google Scholar]
  47. Yang X. Li X. Wu C. Zhang F. Knockdown of PHLDA1 alleviates necrotizing enterocolitis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Immunol. Invest. 2023 52 3 257 269 10.1080/08820139.2022.2161910 36576246
    [Google Scholar]
  48. Raulien N. Friedrich K. Strobel S. Raps S. Hecker F. Pierer M. Schilling E. Lainka E. Kallinich T. Baumann S. Fritz-Wallace K. Rolle-Kampczyk U. von Bergen M. Aigner A. Ewe A. Schett G. Cross M. Rossol M. Wagner U. Glucose-oxygen deprivation constrains HMGCR function and Rac1 prenylation and activates the NLRP3 inflammasome in human monocytes. Sci. Signal. 2024 17 845 eadd8913 10.1126/scisignal.add8913 39012939
    [Google Scholar]
  49. Shu L. Du C. PHLDA1 promotes sevoflurane-induced pyroptosis of neuronal cells in developing rats through TRAF6-mediated activation of Rac1. Neurotoxicology 2022 93 140 151 10.1016/j.neuro.2022.09.007 36155068
    [Google Scholar]
  50. Liu C. Li Y. Wang X. TDAG51-deficiency podocytes are protected from high-glucose-induced damage through Nrf2 activation via the AKT–GSK-3β pathway. Inflammation 2022 45 4 1520 1533 10.1007/s10753‑022‑01638‑9 35175494
    [Google Scholar]
  51. Li J. Yu X. Zhou Z. Polydatin prevents cholesterol gallstone formation by regulating cholesterol metabolism via PPAR-γ signaling. Open Life Sci. 2025 20 1 20221009 10.1515/biol‑2022‑1009 40756571
    [Google Scholar]
  52. Kim S. Lee N. Park E.S. Yun H. Ha T.U. Jeon H. Yu J. Choi S. Shin B. Yu J. Rhee S.D. Choi Y. Rho J. T-cell death-associated gene 51 is a novel negative regulator of PPARγ that inhibits PPARγ-RXRα heterodimer formation in adipogenesis. Mol. Cells 2021 44 1 1 12 10.14348/molcells.2020.0143 33335079
    [Google Scholar]
  53. Shimano H. Sato R. SREBP-regulated lipid metabolism: Convergent physiology — divergent pathophysiology. Nat. Rev. Endocrinol. 2017 13 12 710 730 10.1038/nrendo.2017.91 28849786
    [Google Scholar]
  54. Yousof T.R. Bouchard C.C. Alb M. Lynn E.G. Lhoták S. Jiang H. MacDonald M. Li H. Byun J.H. Makda Y. Athanasopoulos M. Maclean K.N. Cherrington N.J. Naqvi A. Igdoura S.A. Krepinsky J.C. Steinberg G.R. Austin R.C. Restoration of the ER stress response protein TDAG51 in hepatocytes mitigates NAFLD in mice. J. Biol. Chem. 2024 300 2 105655 10.1016/j.jbc.2024.105655 38237682
    [Google Scholar]
  55. Basseri S. Lhoták Š. Fullerton M.D. Palanivel R. Jiang H. Lynn E.G. Ford R.J. Maclean K.N. Steinberg G.R. Austin R.C. Loss of TDAG51 results in mature-onset obesity, hepatic steatosis, and insulin resistance by regulating lipogenesis. Diabetes 2013 62 1 158 169 10.2337/db12‑0256 22961087
    [Google Scholar]
  56. Youm Y.H. Gliniak C. Zhang Y. Dlugos T. Scherer P.E. Dixit V.D. Enhanced paracrine action of FGF21 in stromal cells delays thymic aging. Nat. Aging 2025 5 4 576 587 10.1038/s43587‑025‑00813‑5 39972172
    [Google Scholar]
  57. Zhou D. Deng L. Feng X. Xu H. Tian Y. Yang W. Zeng P. Zou L. Yan X. Zhu X. Shu D. Guo Q. Huang X. Bellusci S. Lou Z. Li X. Zhang J.S. FGF10 mitigates doxorubicin-induced myocardial toxicity in mice via activation of FGFR2b/PHLDA1/AKT axis. Acta Pharmacol. Sin. 2023 44 10 2004 2018 10.1038/s41401‑023‑01101‑x 37225844
    [Google Scholar]
  58. Carlisle R.E. Mohammed-Ali Z. Lu C. Yousof T. Tat V. Nademi S. MacDonald M.E. Austin R.C. Dickhout J.G. TDAG51 induces renal interstitial fibrosis through modulation of TGF-β receptor 1 in chronic kidney disease. Cell Death Dis. 2021 12 10 921 10.1038/s41419‑021‑04197‑3 34625532
    [Google Scholar]
  59. Qiu C. Zhang Z. Wang H. Liu N. Li R. Wei Z. Wang B. Zhang N. Identification and verification of XDH genes in ROS induced oxidative stress response of osteoarthritis based on bioinformatics analysis. Sci. Rep. 2025 15 1 29759 10.1038/s41598‑025‑11667‑7 40804350
    [Google Scholar]
  60. Tana M. Piccinini R. Moffa L. Porreca E. Tana F. Tana C. Cardiovascular aging. Rev. Cardiovasc. Med. 2025 26 7 27437 10.31083/RCM27437 40776937
    [Google Scholar]
  61. Zhang K. Wen M. Nan X. Zhao S. Li H. Ai Y. Zhu H. NMDA receptors in neurodegenerative diseases: Mechanisms and emerging therapeutic strategies. Front. Aging Neurosci. 2025 17 1604378 10.3389/fnagi.2025.1604378 40778304
    [Google Scholar]
  62. Nigam M. Punia B. Dimri D.B. Mishra A.P. Radu A.F. Bungau G. Reactive oxygen species: A double-edged sword in the modulation of cancer signaling pathway dynamics. Cells 2025 14 15 1207 10.3390/cells14151207 40801639
    [Google Scholar]
  63. Magesh S. Chen Y. Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med. Res. Rev. 2012 32 4 687 726 10.1002/med.21257 22549716
    [Google Scholar]
  64. Yang F. Chen R. Loss of PHLDA1 has a protective role in OGD/R-injured neurons via regulation of the GSK-3β/Nrf2 pathway. Hum. Exp. Toxicol. 2021 40 11 1909 1920 10.1177/09603271211014596 33938317
    [Google Scholar]
  65. Jiang X. Zhang Z. Feng C. Lin C. Yang H. Tan L. Ding X. Xu L. Li G. Pan T. Qin Z. Sun B. Feng X. Li M. PHLDA1 contributes to hypoxic ischemic brain injury in neonatal rats via inhibiting FUNDC1-mediated mitophagy. Acta Pharmacol. Sin. 2024 45 9 1809 1820 10.1038/s41401‑024‑01292‑x 38750074
    [Google Scholar]
  66. Xie Y. Chen K. Song D. The function of the JNK signaling pathway in cornea: Recent advances. Exp. Eye Res. 2025 259 110521 10.1016/j.exer.2025.110521 40675434
    [Google Scholar]
  67. Zhang L. Wang C. Jia Q. Li H. Wang F. Jiang L. The significance of glycemic variability in conjunction with lactate metabolism levels in the clinical assessment of neonatal hypoxic-ischemic encephalopathy. Sci. Rep. 2025 15 1 29072 10.1038/s41598‑025‑14871‑7 40781472
    [Google Scholar]
  68. Fang F. Tang J. Geng J. Fang C. Zhang B. N-acetylserotonin derivative ameliorates hypoxic-ischemic brain damage by promoting PINK1/Parkin-dependent mitophagy to inhibit NLRP3 inflammasome-induced pyroptosis. Int. Immunopharmacol. 2025 153 114469 10.1016/j.intimp.2025.114469 40106901
    [Google Scholar]
  69. Wu H. Wang Y. Li W. Chen H. Du L. Liu D. Wang X. Xu T. Liu L. Chen Q. Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome. Autophagy 2019 15 11 1882 1898 10.1080/15548627.2019.1596482 30898010
    [Google Scholar]
  70. Hamilton K.A. Wang Y. Raefsky S.M. Berkowitz S. Spangler R. Suire C.N. Camandola S. Lipsky R.H. Mattson M.P. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus. PLoS One 2018 13 5 e0196223 10.1371/journal.pone.0196223 29715265
    [Google Scholar]
  71. Liao J. Chen H. Liao Y. Luo C. Wang Z. Zhang F. Fu C. Neuroprotective effects of hirudin against cerebral ischemia-reperfusion injury via inhibition of CCL2-mediated ferroptosis and inflammatory pathways. Brain Res. Bull. 2025 224 111293 10.1016/j.brainresbull.2025.111293 40064243
    [Google Scholar]
  72. Liu Q. Wu Y. Yoshizawa T. Yan X. Morohashi S. Seino H. Kato Y. Kijima H. Basic helix-loop-helix transcription factor DEC2 functions as an anti-apoptotic factor during paclitaxel-induced apoptosis in human prostate cancer cells. Int. J. Mol. Med. 2016 38 6 1727 1733 10.3892/ijmm.2016.2798 27840924
    [Google Scholar]
  73. Li Y. Sun L. Gao G. Wang X. Zhang X. Protective effect of basic helix-loop-helix family member e40 on cerebral ischemia/reperfusion injury: Inhibition of apoptosis via repressing the transcription of pleckstrin homology-like domain family A, member 1. Adv. Clin. Exp. Med. 2023 32 6 655 666 10.17219/acem/157071 36881362
    [Google Scholar]
  74. Xu B. Liu Z. Chen K. Zhao Q. Wen H. Lin J. Xu J. Wang H. Wang H. Wang Y. Mitofusin 2 mediates the protective effect of NR6A1 silencing against neuronal injury in experimental stroke models. Mol. Neurobiol. 2025 62 6 6811 6826 10.1007/s12035‑024‑04466‑0 39259438
    [Google Scholar]
  75. Li Y. Pan Y. Zhao X. Wu S. Li F. Wang Y. Liu B. Zhang Y. Gao X. Wang Y. Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin. Nutr. 2024 43 2 332 345 10.1016/j.clnu.2023.12.005 38142478
    [Google Scholar]
  76. Ding Y. Kang J. Liu S. Xu Y. Shao B. The protective effects of peroxisome proliferator-activated receptor gamma in cerebral ischemia-reperfusion injury. Front. Neurol. 2020 11 588516 10.3389/fneur.2020.588516 33281727
    [Google Scholar]
  77. Huang R. Zhang C. Wang X. Hu H. PPARγ in ischemia-reperfusion injury: Overview of the biology and therapy. Front. Pharmacol. 2021 12 600618 10.3389/fphar.2021.600618 33995008
    [Google Scholar]
  78. Zhao H. Liu Y. Chen N. Yu H. Liu S. Qian M. Zhang Z. PHLDA1 blockade alleviates cerebral ischemia/reperfusion injury by affecting microglial M1/M2 polarization and NLRP3 inflammasome activation. Neuroscience 2022 487 66 77 10.1016/j.neuroscience.2022.01.018 35093445
    [Google Scholar]
  79. Li Q. Shen Y. Yu Z. Wang Y. Shen Y. Guo C. Gao S. Yang H. Gao A. Liang H. Exploring the causal relationships and underlying mechanisms of genetically linked immune cells with hemorrhagic stroke. Curr. Neurovasc. Res. 2025 22 10.2174/0115672026373219250730071202 40798972
    [Google Scholar]
  80. Yue T. Li X. Chen X. Zhu T. Li W. Wang B. Hang C. Hemoglobin derived from subarachnoid hemorrhage-induced pyroptosis of neural stem cells via ROS/NLRP3/GSDMD pathway. Oxid. Med. Cell. Longev. 2023 2023 1 16 10.1155/2023/4383332 36703912
    [Google Scholar]
  81. Fang Y. Gao S. Wang X. Cao Y. Lu J. Chen S. Lenahan C. Zhang J.H. Shao A. Zhang J. Programmed cell deaths and potential crosstalk with blood–brain barrier dysfunction after hemorrhagic stroke. Front. Cell. Neurosci. 2020 14 68 10.3389/fncel.2020.00068 32317935
    [Google Scholar]
  82. Chen S. Zuo Y. Huang L. Sherchan P. Zhang J. Yu Z. Peng J. Zhang J. Zhao L. Doycheva D. Liu F. Zhang J.H. Xia Y. Tang J. The MC4 receptor agonist RO27‐3225 inhibits NLRP1‐dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br. J. Pharmacol. 2019 176 9 1341 1356 10.1111/bph.14639 30811584
    [Google Scholar]
  83. Sun B. Liu X. Peng H. Xiang X. Yang H. Circular RNA _NLRP1 targets mouse microRNA-199b-3p to regulate apoptosis and pyroptosis of hippocampal neuron under oxygen-glucose deprivation exposure. Bioengineered 2021 12 1 3455 3466 10.1080/21655979.2021.1947443 34227902
    [Google Scholar]
  84. Wang J. Gu D. Jin K. Shen H. Qian Y. Egr1 promotes Nlrc4-dependent neuronal pyroptosis through phlda1 in an in-vitro model of intracerebral hemorrhage. Neuroreport 2024 35 9 590 600 10.1097/WNR.0000000000002035 38652514
    [Google Scholar]
  85. Kälin V. Maschke S. Germans M.R. Bijlenga P. Maduri R. Daniel R.T. Robert T. Goldberg J. Bervini D. Zeitlberger A.M. Bozinov O. Keller E. Regli L. Stienen M.N. Hostettler I.C. Impact of acute hydrocephalus after aneurysmal SAH on longitudinal cognitive outcome– post-hoc analysis of the MoCA-DCI study. Neurosurg. Rev. 2025 48 1 476 10.1007/s10143‑025‑03635‑6 40457131
    [Google Scholar]
  86. Xia D.Y. Yuan J.L. Jiang X.C. Qi M. Lai N.S. Wu L.Y. Zhang X.S. SIRT1 promotes M2 microglia polarization via reducing ROS-mediated NLRP3 inflammasome signaling after subarachnoid hemorrhage. Front. Immunol. 2021 12 770744 10.3389/fimmu.2021.770744 34899720
    [Google Scholar]
  87. Heinz R. Brandenburg S. Nieminen-Kelhä M. Kremenetskaia I. Boehm-Sturm P. Vajkoczy P. Schneider U.C. Microglia as target for anti-inflammatory approaches to prevent secondary brain injury after subarachnoid hemorrhage (SAH). J. Neuroinflammation 2021 18 1 36 10.1186/s12974‑021‑02085‑3 33516246
    [Google Scholar]
  88. Wang L. Fan Z. Wang H. Xiang S. Propofol alleviates M1 polarization and neuroinflammation of microglia in a subarachnoid hemorrhage model in vitro, by targeting the miR-140-5p/TREM-1/NF-κB signaling axis. Eur. J. Histochem. 2024 68 3 4034 10.4081/ejh.2024.4034 39287134
    [Google Scholar]
  89. Su Z. Lu J. Shi Y. Qi B. Guo Z. Global, regional, and national children and adolescent epilepsy burden, 1990–2021: An analysis based on the global burden of disease study 2021. Ann. Med. 2025 57 1 2534087 10.1080/07853890.2025.2534087 40676900
    [Google Scholar]
  90. Oota-Ishigaki A. Suzuki N. Iijima K. Takayama Y. Kimura Y. Hattori K. Iwasaki M. Hayashi T. Chronic reduction of synaptic proteins in the epileptogenic lesion of patients with hippocampal sclerosis. Front. Mol. Neurosci. 2025 18 1635852 10.3389/fnmol.2025.1635852 40771360
    [Google Scholar]
  91. Xi Z. Wang L. Sun J. Liu X. Zhu X. Xiao F. Guan L. Li J. Wang L. Wang X. TDAG51 in the anterior temporal neocortex of patients with intractable epilepsy. Neurosci. Lett. 2007 425 1 53 58 10.1016/j.neulet.2007.08.016 17870236
    [Google Scholar]
  92. Özbas-Gerçeker F. Gorter J.A. Redeker S. Ramkema M. Van Der Valk P. Baayen J.C. Özgüç M. Saygi S. Soylemezoglu F. Akalin N. Troost D. Aronica E. Neurotrophin receptor immunoreactivity in the hippocampus of patients with mesial temporal lobe epilepsy. Neuropathol. Appl. Neurobiol. 2004 30 6 651 664 10.1111/j.1365‑2990.2004.00582.x 15541005
    [Google Scholar]
  93. Yamamoto A. Murphy N. Schindler C.K. So N.K. Stohr S. Taki W. Prehn J.H.M. Henshall D.C. Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 2006 65 3 217 225 10.1097/01.jnen.0000202886.22082.2a 16651883
    [Google Scholar]
  94. Manavi M.A. Mohammad Jafari R. Shafaroodi H. Dehpour A.R. The Keap1/Nrf2/ARE/HO-1 axis in epilepsy: Crosstalk between oxidative stress and neuroinflammation. Int. Immunopharmacol. 2025 153 114304 10.1016/j.intimp.2025.114304 40117806
    [Google Scholar]
  95. Jiang W. Van Cleemput J. Sheerin A.H. Ji S.P. Zhang Y. Saucier D.M. Corcoran M.E. Zhang X. Involvement of extracellular regulated kinase and p38 kinase in hippocampal seizure tolerance. J. Neurosci. Res. 2005 81 4 581 588 10.1002/jnr.20566 15948190
    [Google Scholar]
  96. Koistinaho M. Koistinaho J. Role of p38 and p44/42 mitogen‐activated protein kinases in microglia. Glia 2002 40 2 175 183 10.1002/glia.10151 12379905
    [Google Scholar]
  97. Delaye J.B. Lanznaster D. Veyrat-Durebex C. Fontaine A. Bacle G. Lefevre A. Hergesheimer R. Lecron J.C. Vourc’h P. Andres C.R. Maillot F. Corcia P. Emond P. Blasco H. Behavioral, hormonal, inflammatory, and metabolic effects associated with FGF21-pathway activation in an ALS mouse model. Neurotherapeutics 2021 18 1 297 308 10.1007/s13311‑020‑00933‑3 33021723
    [Google Scholar]
  98. Tabuchi R. Momozawa Y. Hayashi Y. Noma H. Ichijo H. Fujisawa T. SoDCoD: A comprehensive database of Cu/Zn superoxide dismutase conformational diversity caused by ALS-linked gene mutations and other perturbations. Database 2024 2024 0 10.1093/database/baae064 39126203
    [Google Scholar]
  99. Mimoto T. Morimoto N. Miyazaki K. Kurata T. Sato K. Ikeda Y. Abe K. Expression of heat shock transcription factor 1 and its downstream target protein T-cell death associated gene 51 in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Brain Res. 2012 1488 123 131 10.1016/j.brainres.2012.10.012 23063459
    [Google Scholar]
  100. Wu G. Lu Z.H. Wang J. Wang Y. Xie X. Meyenhofer M.F. Ledeen R.W. Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: Protection with LIGA 20, a membrane-permeant analog of GM1. J. Neurosci. 2005 25 47 11014 11022 10.1523/JNEUROSCI.3635‑05.2005 16306414
    [Google Scholar]
  101. Hayashida N. Inouye S. Fujimoto M. Tanaka Y. Izu H. Takaki E. Ichikawa H. Rho J. Nakai A. A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J. 2006 25 20 4773 4783 10.1038/sj.emboj.7601370 17024176
    [Google Scholar]
  102. Togawa K. Matsumoto S. Deng L. Jin M. Itoh Y. Hirotsune S. DOPAnization of α-synuclein exacerbates dopaminergic neurodegeneration in the substantia nigra. Neurosci. Lett. 2025 865 138354 10.1016/j.neulet.2025.138354 40803546
    [Google Scholar]
  103. Foster-Powell A. Rostami-Hodjegan A. Meno-Tetang G. Mager D.E. Ogungbenro K. Mathematical modeling of neuroinflammation in neurodegenerative diseases. CPT Pharmacometrics Syst. Pharmacol. 2025 psp4.70064 10.1002/psp4.70064 40801430
    [Google Scholar]
  104. Guo C. Liu S. Zhang T. Yang J. Liang Z. Lu S. Knockdown of PHLDA2 promotes apoptosis and autophagy of glioma cells through the AKT/mTOR pathway. J. Neurogenet. 2022 36 2-3 74 80 10.1080/01677063.2022.2096023 35894264
    [Google Scholar]
  105. Arnold D.R. Gaspar R.C. da Rocha C.V. Sangalli J.R. de Bem T.H.C. Corrêa C.A.P. Penteado J.C.T. Meirelles F.V. Lopes F.L. Nuclear transfer alters placental gene expression and associated histone modifications of the placental-specific imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2) in cattle. Reprod. Fertil. Dev. 2017 29 3 458 467 10.1071/RD15132 28442058
    [Google Scholar]
  106. Harrison D.J. Creeth H.D.J. Tyson H.R. Boque-Sastre R. Hunter S. Dwyer D.M. Isles A.R. John R.M. Placental endocrine insufficiency programs anxiety, deficits in cognition and atypical social behaviour in offspring. Hum. Mol. Genet. 2021 30 19 1863 1880 10.1093/hmg/ddab154 34100083
    [Google Scholar]
  107. Meng X. Zhang L. Han B. Zhang Z. PHLDA3 inhibition protects against myocardial ischemia/reperfusion injury by alleviating oxidative stress and inflammatory response via the Akt/Nrf2 axis. Environ. Toxicol. 2021 36 11 2266 2277 10.1002/tox.23340 34351043
    [Google Scholar]
  108. Chen Y. Ohki R. p53-PHLDA3-Akt network: The key regulators of neuroendocrine tumorigenesis. Int. J. Mol. Sci. 2020 21 11 4098 10.3390/ijms21114098 32521808
    [Google Scholar]
  109. Szebényi K. Vargová I. Petrova V. Turečková J. Gibbons G.M. Řehořová M. Abdelgawad M. Sándor A. Marekova D. Kwok J.C.F. Jendelová P. Fawcett J.W. Lakatos A. Inhibition of PHLDA3 expression in human superoxide dismutase 1-mutant amyotrophic lateral sclerosis astrocytes protects against neurotoxicity. Brain Commun. 2024 6 4 fcae244 10.1093/braincomms/fcae244 39144751
    [Google Scholar]
  110. Liu L. Shi Y. Shi J. Wang H. Sheng Y. Jiang Q. Chen H. Li X. Dong J. The long non-coding RNA SNHG1 promotes glioma progression by competitively binding to miR-194 to regulate PHLDA1 expression. Cell Death Dis. 2019 10 6 463 10.1038/s41419‑019‑1698‑7 31189920
    [Google Scholar]
  111. Durbas M. Pabisz P. Wawak K. Wiśniewska A. Boratyn E. Nowak I. Horwacik I. Woźnicka O. Rokita H. GD2 ganglioside-binding antibody 14G2a and specific aurora A kinase inhibitor MK-5108 induce autophagy in IMR-32 neuroblastoma cells. Apoptosis 2018 23 9-10 492 511 10.1007/s10495‑018‑1472‑9 30027525
    [Google Scholar]
  112. Bai S. Ye R. Wang C. Sun P. Wang D. Yue Y. Wang H. Wu S. Yu M. Xi S. Zhao L. Loss of Pleckstrin homology like domain, family A, member 1 promotes type Ⅱ alveolar epithelial cell apoptosis in chronic obstructive pulmonary disease emphysematous phenotype via interaction with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon. Int. J. Biochem. Cell Biol. 2022 151 106297 10.1016/j.biocel.2022.106297 36108948
    [Google Scholar]
/content/journals/cn/10.2174/011570159X413561251125064110
Loading
/content/journals/cn/10.2174/011570159X413561251125064110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test