Skip to content
2000
image of Mitochondrial and Antioxidant Activity as the Basis of the Neuroprotective Effect of Potential Multitarget Drugs for the Treatment of Neurodegenerative Diseases

Abstract

Background

The mechanisms of neurodegeneration common to many neurodegenerative diseases include oxidative stress, mitochondrial dysfunctions, excitotoxicity, and others. Beyond the broad spectrum of strategies for developing neuroprotective agents that target stage-specific mechanisms in each neurodegenerative disease, considerable attention is also being given to approaches aimed at developing compounds that can effectively modulate general pathogenic mechanisms and enhance the overall resilience of neuronal cells to cell death induction.

Objective

This review discusses some of the results on new multitarget multipharmacophore agents with neuroprotective effects, particularly through their influence on mitochondrial permeability transition and antioxidant properties. We conducted comprehensive online searches on PubMed to gather the latest data on multitarget multipharmacophore agents consisting of pre-defined pharmacophores that have already demonstrated neuroprotective properties.

Results and Discussion

To create compounds with a desirable spectrum of biological activity, an approach based on the conjugation of specific structural fragments of pharmacologically active substances into a single molecular entity could be used. Core fragments of compounds that have already demonstrated neuroprotective properties due to mitochondrial and antioxidant mechanisms of action can be used as neuroactive scaffolds.

Conclusion

The combination of several pharmacophores in one molecule may not only result in the mere addition of the useful properties of each component, but may also give rise to new types of biological activity. The examples of the appearance of new properties in such multipharmacophore compounds, not inherent in the reference agents, discussed in our review, may be considered a prospective approach for creating a novel generation of neuroprotective agents.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X409525251027064739
2026-01-19
2026-02-05
Loading full text...

Full text loading...

References

  1. Jeong S. Molecular and cellular basis of neurodegeneration in alzheimer’s disease. Mol. Cells 2017 40 9 613 620 10.14348/molcells.2017.0096 28927263 PMC5638769
    [Google Scholar]
  2. SteinmetzJ.D. SeeherK.M. SchiessN. NicholsE. CaoB. ServiliC. CavalleraV. CousinE. HaginsH. MobergM.E. MehlmanM.L. AbateY.H. AbbasJ. AbbasiM.A. AbbasianM. AbbastabarH. AbdelmassehM. AbdollahiM. AbdollahiM. AbdollahifarM-A. Abd-RabuR. AbdulahD.M. AbdullahiA. AbediA. AbediV. AbeldańoZ.R.A. AbidiH. AbiodunO. AboagyeR.G. AbolhassaniH. AboyansV. AbrhaW.A. AbualhasanA. Abu-GharbiehE. AburuzS. AdamuL.H. AddoI.Y. AdebayoO.M. AdekanmbiV. AdekiyaT.A. AdikusumaW. AdnaniQ.E.S. AdraS. AfeworkT. AfolabiA.A. AfrazA. AfzalS. AghamiriS. AgodiA. Agyemang- DuahW. AhinkorahB.O. AhmadA. AhmadD. AhmadS. AhmadzadeA.M. AhmedA. AhmedA. AhmedH. AhmedJ.Q. AhmedL.A. AhmedM.B. AhmedS.A. AjamiM. AjiB. AjumobiO. AkadeS.E. AkbariM. AkbarialiabadH. AkhlaghiS. AkinosoglouK. AkinyemiR.O. AkondeM. Al HasanS.M. AlahdabF. AL-AhdalT.M.A. Al-amerR.M. AlbashtawyM. AlBatainehM.T. AldawsariK.A. AlemiH. AlemiS. AlgammalA.M. Al-GheethiA.A.S. AlhalaiqaF.A.N. AlhassanR.K. AliA. AliE.A. AliL. AliM.U. AliM.M. AliR. AliS. AliS.S.S. AliZ. AlifS.M. AlimohamadiY. AliyiA.A. AljofanM. AljunidS.M. AlladiS. AlmazanJ.U. AlmustanyirS. Al-OmariB. AlqahtaniJ.S. AlqasmiI. AlqutaibiA.Y. Al-Shahi SalmanR. AltaanyZ. Al-TawfiqJ.A. AltirkawiK.A. Alvis-GuzmanN. Al-WorafiY.M. AlyH. AlyS. AlzoubiK.H. AmaniR. AmindarolzarbiA. AmiriS. Amirzade-IranaqM.H. AmuH. AmugsiD.A. AmusaG.A. AmzatJ. AncuceanuR. AnderliniD. AndersonD.B. AndreiC.L. AndroudiS. AngappanD. AngesomT.W. AnilA. Ansari- MoghaddamA. AnwerR. ArafatM. AravkinA.Y. AredaD. AriffinH. ArifinH. ArkewM. ÄrnlövJ. AroojM. ArtamonovA.A. ArtantiK.D. ArulebaR.T. Asadi-PooyaA.A. AsenaT.F. Asghari-JafarabadiM. AshrafM. AshrafT. AtalellK.A. AthariS.S. AtinafuB.T.T. AtorkeyP. AtoutM.M.W. AtreyaA. AujayebA. AvanA. AyalaQ.B.P. AyatollahiH. AyindeO.O. AyyoubzadehS.M. AzadnajafabadS. AziziZ. AzizianK. AzzamA.Y. BabaeiM. BadarM. BadiyeA.D. BaghdadiS. BagheriehS. BaiR. BaigA.A. BalakrishnanS. BalallaS. BaltatuO.C. BanachM. BandyopadhyayS. BanerjeeI. BaranM.F. BarbozaM.A. BarchittaM. BardhanM. Barker-ColloS.L. BärnighausenT.W. BarrowA. BashashD. BashiriH. BashiruH.A. BasiruA. BassoJ.D. BasuS. BatihaA-M.M. BatraK. BauneB.T. BediN. BegdeA. BegumT. BehnamB. BehnoushA.H. BeiranvandM. BéjotY. BekeleA. BeleteM.A. BelgaumiU.I. BemanalizadehM. BenderR.G. BenforB. BennettD.A. BensenorI.M. BericeB. BettencourtP.J.G. BeyeneK.A. BhadraA. BhagatD.S. BhangdiaK. BhardwajN. BhardwajP. BhargavaA. BhaskarS. BhatA.N. BhatV. BhattiG.K. BhattiJ.S. BhattiR. BijaniA. BikbovB. BilalagaM.M. BiswasA. BitarafS. BitraV.R. BjørgeT. BodolicaV. BodunrinA.O. BoloorA. BraithwaiteD. BrayneC. BrennerH. BrikoA. Bringas VegaM.L. BrownJ. BudkeC.M. BuonsensoD. BurkartK. BurnsR.A. BustanjiY. ButtM.H. ButtN.S. ButtZ.A. CabralL.S. Caetano dos SantosF.L. CalinaD. Campos- NonatoI.R. CaoC. CarabinH. CárdenasR. CarrerasG. CarvalhoA.F. Castańeda-OrjuelaC.A. CasulliA. Catalá- LópezF. CatapanoA.L. CayeA. CegolonL. CenderadewiM. CerinE. Chacón-UscamaitaP.R. ChanJ.S.K. ChanieG.S. CharanJ. ChattuV.K. Chekol AbebeE. ChenH. ChenJ. ChiG. ChichagiF. ChidambaramS.B. ChimoriyaR. ChingP.R. ChitheerA. ChongY.Y. ChopraH. ChoudhariS.G. ChowdhuryE.K. ChowdhuryR. ChristensenH. ChuD-T. ChukwuI.S. ChungE. CoberlyK. ColumbusA. ComachioJ. CondeJ. CortesiP.A. CostaV.M. CoutoR.A.S. CriquiM.H. Cruz-MartinsN. Dabbagh OhadiM.A. DadanaS. DadrasO. DaiX. DaiZ. D’AmicoE. DanawiH.A. DandonaL. DandonaR. DarwishA.H. DasS. DasS. DascaluA.M. DashN.R. DashtiM. De la HozF.P. de la Torre-LuqueA. De LeoD. DeanF.E. DehghanA. DehghanA. DejeneH. DemantD. DemetriadesA.K. DemissieS. DengX. DesaiH.D. DevanbuV.G.C. DhamaK. DharmaratneS.D. DhimalM. Dias da SilvaD. DiazD. DibasM. DingD.D. DinuM. DiracM.A. DiressM. DoT.C. DoT.H.P. DoanK.D.K. DodangehM. DoheimM.F. DokovaK.G. DongarwarD. DsouzaH.L. DubeJ. DuraisamyS. DurojaiyeO.C. DuttaS. DziedzicA.M. EdinurH.A. EissazadeN. EkholuenetaleM. EkundayoT.C. El NahasN. El SayedI. Elahi NajafiM.A. ElbaraziI. ElemamN.M. ElgarF.J. ElgendyI.Y. ElhabashyH.R. ElhadiM. EliloL.T. EllenbogenR.G. ElmeligyO.A.A. ElmonemM.A. ElshaerM. ElsohabyI. EmamverdiM. EmetoT.I. EndresM. EsezoborC.I. EskandariehS. FadaeiA. FagbamigbeA.F. FahimA. FaramarziA. FaresJ. Farjoud KouhanjaniM. FaroA. FarzadfarF. FatehizadehA. FathiM. FathiS. FatimaS.A.F. FeizkhahA. FereshtehnejadS-M. FerrariA.J. FerreiraN. FetensaG. FirouraghiN. FischerF. FonsecaA.C. ForceL.M. FornariA. ForoutanB. FukumotoT. GadanyaM.A. GaidhaneA.M. GalaliY. GalehdarN. GanQ. GandhiA.P. GanesanB. GardnerW.M. GargN. GauS-Y. GautamR.K. GebreT. GebrehiwotM. GebremeskelG.G. GebreslassieH.G. GetacherL. GhaderiY.B. GhadirianF. GhaffarpasandF. GhanbariR. GhasemiM.R. GhazyR.M. GhimireS. GholamiA. GholamrezanezhadA. GhotbiE. GhozyS. GialluisiA. GillP.S. GlasstetterL.M. GnedovskayaE.V. GolchinA. GolechhaM. GoleijP. GolinelliD. Gomes- NetoM. GoulartA.C. GoyalA. GrayR.J. GrivnaM. GuadieH.A. GuanB. GuarducciG. GuicciardiS. GunawardaneD.A. GuoH. GuptaB. GuptaR. GuptaS. GuptaV.B. GuptaV.K. GutiérrezR.A. HabibzadehF. HachinskiV. HaddadiR. HadeiM. HadiN.R. HaepN. HaileT.G. Haj-MirzaianA. HallB.J. HalwaniR. HameedS. HamiduzzamanM. HammoudA. HanH. HanifiN. HankeyG.J. HannanM.A. HaoJ. HarapanH. HareruH.E. HargonoA. HarliantoN.I. HaroJ.M. HartmanN.N. HasaballahA.I. HasanF. HasaniH. HasanianM. HassanA. HassanS. HassanipourS. HassankhaniH. HassenM.B. HauboldJ. HayS.I. HayatK. HegazyM.I. HeidariG. HeidariM. Heidari-SoureshjaniR. HesamiH. HezamK. HiraikeY. HoffmanH.J. HollaR. HopfK.P. HoritaN. HossainM.M. HossainM.B. HossainS. HosseinzadehH. HosseinzadehM. HostiucS. HuC. HuangJ. HudaM.N. HussainJ. HusseinN.R. HuynhH-H. HwangB-F. IbitoyeS.E. IlaghiM. IlesanmiO.S. IlicI.M. IlicM.D. ImmuranaM. IravanpourF. IslamS.M.S. IsmailF. IsoH. IsolaG. IwagamiM. IwuC.C.D. IyerM. JaanA. JacobL. Jadidi-NiaraghF. JafariM. JafariniaM. JafarzadehA. JahankhaniK. JahanmehrN. JahramiH. JaiswalA. JakovljevicM. JamoraR.D.G. JanaS. JavadiN. JavedS. JaveedS. JayapalS.K. JayaramS. JiangH. JohnsonC.O. JohnsonW.D. JokarM. JonasJ.B. JosephA. JosephN. JoshuaC.E. JürissonM. KabirA. KabirZ. KabitoG.G. KadashettiV. KafiF. KalaniR. KalantarF. KaliyadanF. KamathA. KamathS. KanchanT. KandelA. KandelH. KanmodiK.K. KarajizadehM. KaramiJ. KaranthS.D. KarayeI.M. KarchA. KarimiA. KarimiH. KarimiB.A. KasraeiH. KassebaumN.J. KauppilaJ.H. KaurH. KaurN. KayodeG.A. KazemiF. Keikavoosi- AraniL. KellerC. KeykhaeiM. KhadembashiriM.A. KhaderY.S. KhafaieM.A. KhajuriaH. KhalajiA. KhamesipourF. KhammarniaM. KhanM. KhanM.A.B. KhanY.H. Khan SuhebM.Z. KhanmohammadiS. KhannaT. KhatabK. KhatatbehH. KhatatbehM.M. KhateriS. KhatibM.N. KhayatK.H.R. KhonjiM.S. khorashadizadehF. KhormaliM. KhubchandaniJ. KianS. KimG. KimJ. KimM.S. KimY.J. KimokotiR.W. KisaA. KisaS. KivimäkiM. KochharS. KolahiA-A. KolyK.N. KompaniF. KoroshetzW.J. KosenS. Kourosh AramiM. KoyanagiA. KravchenkoM.A. KrishanK. KrishnamoorthyV. Kuate DefoB. KuddusM.A. KumarA. KumarG.A. KumarM. KumarN. KumsaN.B. KunduS. KurniasariM.D. KusumaD. KuttikkattuA. KyuH.H. La VecchiaC. LadanM.A. LahariyaC. LaksonoT. LalD.K. LallukkaT. LámJ. LamiF.H. LandiresI. LangguthB. LasradoS. LatiefK. LatifinaibinK. LauK.M-M. LaurensM.B. LawalB.K. LeL.K.D. LeT.T.T. LeddaC. LeeM. LeeS. LeeS.W. LeeW-C. LeeY.H. LeonardiM. LerangoT.L. LiM-C. LiW. LigadeV.S. LimS.S. LinehanC. LiuC. LiuJ. LiuW. LoC-H. LoW.D. LoboS.W. LogroscinoG. LopesG. LopukhovP.D. LorenzoviciL. LorkowskiS. LoureiroJ.A. LubindaJ. LucchettiG. Lutzky SauteR. MaZ.F. MabrokM. MachoyM. MadadizadehF. Magdy Abd El RazekM. MaghazachiA.A. MaghbouliN. MahjoubS. MahmoudiM. MajeedA. Malagón-RojasJ.N. Malakan RadE. MalhotraK. MalikA.A. MalikI. MallhiT.H. MaltaD.C. ManilalA. MansouriV. MansourniaM.A. MarasiniB.P. MaratebH.R. MaroufiS.F. Martinez-RagaJ. MartiniS. Martins- MeloF.R. MartorellM. MärzW. MarzoR.R. MassanoJ. MathangasingheY. MathewsE. MaudeR.J. MaugeriA. MaulikP.K. MayeliM. MazaheriM. McAlindenC. McGrathJ.J. MeenaJ.K. MehndirattaM.M. Mendez-LopezM.A.M. MendozaW. Mendoza-CanoO. MenezesR.G. MeratiM. MeretojaA. MerkinA. MershaA.M. MestrovicT. MiT. MiazgowskiT. MichalekI.M. MihretieE.T. MinhL.H.N. MirfakhraieR. MiricaA. MirrakhimovE.M. MirzaeiM. MisganawA. MisraS. MithraP. MizanaB.A. MohamadkhaniA. MohamedN.S. MohammadiE. MohammadiH. MohammadiS. MohammadiS. MohammadshahiM. MohammedM. MohammedS. MohammedS. MohanS. Mojiri-forushaniH. MokaN. MokdadA.H. MolinaroS. MöllerH. MonastaL. MoniruzzamanM. MontazeriF. MoradiM. MoradiY. Moradi- LakehM. MoragaP. MorovatdarN. MorrisonS.D. MosapourA. MosserJ.F. MossialosE. MotaghinejadM. MousaviP. MousaviS.E. MubarikS. MuccioliL. MughalF. MukoroG.D. MulitaA. MulitaF. MusaigwaF. MustafaA. MustafaG. MuthuS. NagarajanA.J. NaghaviP. NaikG.R. NainuF. NairT.S. NajmuldeenH.H.R. Nakhostin AnsariN. NambiG. NamdarA.H. NargusS. NascimentoB.R. NaserA.Y. NashwanA.J.J. NasooriH. NasreldeinA. NattoZ.S. NaumanJ. NayakB.P. Nazri-PanjakiA. NegareshM. NegashH. NegoiI. NegoiR.I. NegruS.M. NejadghaderiS.A. NematollahiM.H. NesbitO.D. NewtonC.R.J. NguyenD.H. NguyenH.T.H. NguyenH.Q. NguyenN-T.T. NguyenP.T. NguyenV.T. NiaziR.K. NikolouzakisT.K. NiranjanV. NnyanziL.A. NomanE.A. NorooziN. NorrvingB. NoubiapJ.J. Nri-EzediC.A. NtaiosG. Nuńez-SamudioV. NurrikaD. OanceaB. OdetokunI.A. O’DonnellM.J. OgunsakinR.E. OgutaJ.O. OhI-H. Okati-AliabadH. OkekeS.R. OkekunleA.P. OkonjiO.C. OkwuteP.G. OlagunjuA.T. OlaiyaM.T. OlanaM.D. OlatubiM.I. OliveiraG.M.M. OlufadewaI.I. OlusanyaB.O. OmarB.A. OngS. OnwujekweO.E. OrdakM. OrjiA.U. Ortega- AltamiranoD.V. OsuagwuU.L. OtstavnovN. OtstavnovS.S. OuyahiaA. OwolabiM.O. P AM.P. Pacheco-BarriosK. PadubidriJ.R. PalP.K. PalangeP.N. PalladinoC. PalladinoR. Palma-AlvarezR.F. PanF. PanagiotakosD. Panda-JonasS. PandeyA. PandeyA. PandianJ.D. PangaribuanH.U. PantazopoulosI. PardhanS. ParijaP.P. ParikhR.R. ParkS. ParthasarathiA. PashaeiA. PatelJ. PatilS. PatouliasD. PawarS. PedersiniP. PensatoU. PereiraD.M. PereiraJ. PereiraM.O. PeresM.F.P. PericoN. PernaS. PetcuI-R. Petermann- RochaF.E. PhamH.T. PhillipsM.R. Pinilla-MonsalveG.D. PiradovM.A. PlotnikovE. PoddigheD. PolatB. PoluruR. PondC.D. PoudelG.R. PouraminiA. Pourbagher-ShahriA.M. PourfridoniM. PourtaheriN. PrakashP.Y. PrakashS. PrakashV. PratesE.J.S. PritchettN. PurnobasukiH. QasimN.H. QatteaI. QianG. RadhakrishnanV. RaeeP. RaeisiS.H. RafiqueI. RaggiA. RaghavP.R. RahatiM.M. RahimF. RahimiZ. RahimifardM. RahmanM.O. RahmanM.H.U. RahmanM. RahmanM.A. RahmaniA.M. RahmaniS. Rahmani YoushanloueiH. RahmatiM. Raj MoolamballyS. Rajabpour- SanatiA. RamadanH. RamasamyS.K. RamasubramaniP. RamazanuS. RancicN. RaoI.R. RaoS.J. RapakaD. RashediV. RashidA.M. RashidiM-M. RashidiA.M. Rasouli- SaravaniA. RawafS. RazoC. RedwanE.M.M. RekabiB.A. RemuzziG. RezaeiN. RezaeiN. RezaeiN. RezaeianM. RheeT.G. RiadA. RobinsonS.R. RodriguesM. RodriguezJ.A.B. RoeverL. RogowskiE.L.B. RomoliM. RonfaniL. RoyP. Roy PramanikK. RubagottiE. RuizM.A. RussT.C. S SunnerhagenK. SaadA.M.A. SaadatianZ. SaberK. SaberiK.M. SaccoS. SaddikB. SadeghiE. SadeghianS. SaeedU. SaeedU. SafdarianM. SafiS.Z. SagarR. SagoeD. Saheb Sharif-AskariF. Saheb Sharif-AskariN. SahebkarA. SahooS.S. SahraianM.A. SajediS.A. SakshaugJ.W. SalehM.A. SalehiO.H. SalemM.R. SalimiS. SamadiK.H. SamadzadehS. SamargandyS. SamodraY.L. SamuelV.P. SamyA.M. SanadgolN. SanjeevR.K. SanmarchiF. SantomauroD.F. SantriI.N. Santric-MilicevicM.M. SaravananA. SarveazadA. SatpathyM. SaylanM. SayyahM. ScarmeasN. SchlaichM.P. SchuermansA. SchwarzingerM. SchwebelD.C. SelvarajS. SendekieA.K. SenguptaP. SenthilkumaranS. SerbanD. SergindoM.T. SethiY. SeyedAlinaghiS.A. SeylaniA. ShabaniM. ShabanyM. ShafieM. ShahabiS. ShahbandiA. ShahidS. Shahraki-SanaviF. ShahsavariH.R. ShahwanM.J. ShaikhM.A. ShajiK.S. ShamS. ShamaA.T.T. ShamimM.A. Shams-BeyranvandM. ShamsiM.A. ShanawazM. SharathM. SharfaeiS. SharifanA. SharmaM. SharmaR. ShashamoB.B. ShayanM. SheikhiR.A. ShekharS. ShenJ. ShenoyS.M. ShettyP.H. ShiferawD.S. ShigematsuM. ShiriR. ShittuA. ShivakumarK.M. ShokriF. ShoolS. ShorofiS.A. ShresthaS. SiankamT.A.B. SiddigE.E. SigfusdottirI.D. SilvaJ.P. SilvaL.M.L.R. SinaeiE. SinghB.B. SinghG. SinghP. SinghS. SirotaS.B. SivakumarS. SohagA.A.M. SolankiR. SoleimaniH. SolikhahS. SolomonY. SolomonY. SongS. SongY. SotoudehH. SpartalisM. StarkB.A. StarnesJ.R. StarodubovaA.V. SteinD.J. SteinerT.J. StovnerL.J. TabatabaeiS.M. TabatabaiS. TabishM. TaheriM. TahvildariA. TajbakhshA. TampaM. TamuziJ.J.L.L. TanK-K. TangH. TarekeM. TariganI.U. TatN.Y. TatV.Y. Tavakoli OliaeeR. TavangarS.M. TavasolA. TeferaY.M. Tehrani- BanihashemiA. TemesgenW.A. TemsahM-H. TeramotoM. TesfayeA.H. TesfayeE.G. TeslerR. ThakaliO. ThangarajuP. ThapaR. ThaparR. ThomasN.K. ThriftA.G. TicoaluJ.H.V. TillawiT. ToghroliR. TonelliM. Tovani-PaloneM.R. TrainiE. TranN.M. TranN-H. TranP.V. TromansS.J. TruelsenT.C. TruyenT.T.T.T. TsatsakisA. TsegayG.M. TsermpiniE.E. TualekaA.R. TufaD.G. UbahC.S. UdoakangA.J. UlhaqI. UmairM. UmakanthanS. UmapathiK.K. UnimB. UnnikrishnanB. VaithinathanA.G. VakilianA. Valadan TahbazS. ValizadehR. Van den EyndeJ. VartP. VarthyaS.B. VasankariT.J. VaziriS. VellingiriB. VenketasubramanianN. VerrasG-I. VervoortD. VillafańeJ.H. VillaniL. Vinueza VelozA.F. ViskadourouM. VladimirovS.K. VlassovV. VolovatS.R. VuL.T. VujcicI.S. WagayeB. WaheedY. WahoodW. WaldeM.T. WangF. WangS. WangY. WangY-P. WaqasM. WarisA. WeerakoonK.G. WeintraubR.G. WeldemariamA.H. WestermanR. WhisnantJ.L. WickramasingheD.P. WickramasingheN.D. WillekensB. WilnerL.B. WinklerA.S. WolfeC.D.A. WuA-M. Wulf HansonS. XuS. XuX. YadollahpourA. YaghoubiS. YahyaG. YamagishiK. YangL. YanoY. YaoY. YehualashetS.S. YeshanehA. YesiltepeM. YiS. YiğitA. YiğitV. YonD.K. YonemotoN. YouY. YounisM.Z. YuC. YusufH. ZadeyS. ZahediM. ZakhamF. ZakiN. ZaliA. ZamagniG. ZandR. ZandiehG.G.Z. ZangiabadianM. ZarghamiA. ZastrozhinM.S. ZeariyaM.G.M. ZegeyeZ.B. ZeukengF. ZhaiC. ZhangC. ZhangH. ZhangY. ZhangZ-J. ZhaoH. ZhaoY. ZhengP. ZhouH. ZhuB. ZhumagaliulyA. ZielińskaM. ZikargY.T. ZoladlM. MurrayC.J.L. OngK.L. FeiginV.L. VosT. DuaT. Molecular and cellular basis of neurodegeneration in alzheimer’s disease. Mol. Cells 2017 40 9 613 620 10.14348/molcells.2017.0096 28927263 PMC5638769
    [Google Scholar]
  3. Cummings J. Zhou Y. Lee G. Zhong K. Fonseca J. Cheng F. Alzheimer’s disease drug development pipeline: 2024. Alzheimers Dement. 2024 10 2 e12465 10.1002/trc2.12465 38659717
    [Google Scholar]
  4. Bradford D. Rodgers K.E. Advancements and challenges in amyotrophic lateral sclerosis. Front. Neurosci. 2024 18 1401706 10.3389/fnins.2024.1401706 38846716
    [Google Scholar]
  5. McFarthing K. Rafaloff G. Baptista M. Mursaleen L. Fuest R. Wyse R.K. Stott S.R.W. Parkinson’s disease drug therapies in the clinical trial pipeline: 2022 update. J. Parkinsons Dis. 2022 12 4 1073 1082 10.3233/JPD‑229002 35527571
    [Google Scholar]
  6. Bachurin S.O. Bovina E.V. Ustyugov A.A. Drugs in clinical trials for alzheimer’s disease: The major trends. Med. Res. Rev. 2017 37 5 1186 1225 10.1002/med.21434 28084618
    [Google Scholar]
  7. Binvignat O. Olloquequi J. Excitotoxicity as a target against neurodegenerative processes. Curr. Pharm. Des. 2020 26 12 1251 1262 10.2174/1381612826666200113162641 31931694
    [Google Scholar]
  8. Bukke V.N. Archana M. Villani R. Romano A.D. Wawrzyniak A. Balawender K. Orkisz S. Beggiato S. Serviddio G. Cassano T. The dual role of glutamatergic neurotransmission in alzheimer’s disease: From pathophysiology to pharmacotherapy. Int. J. Mol. Sci. 2020 21 20 7452 10.3390/ijms21207452 33050345
    [Google Scholar]
  9. Buccellato F.R. D’Anca M. Fenoglio C. Scarpini E. Galimberti D. Role of oxidative damage in alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants 2021 10 9 1353 10.3390/antiox10091353 34572985
    [Google Scholar]
  10. Baev A.Y. Vinokurov A.Y. Potapova E.V. Dunaev A.V. Angelova P.R. Abramov A.Y. Mitochondrial permeability transition, cell death and neurodegeneration. Cells 2024 13 7 648 10.3390/cells13070648 38607087
    [Google Scholar]
  11. Houldsworth A. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Commun. 2023 6 1 fcad356 10.1093/braincomms/fcad356 38214013
    [Google Scholar]
  12. Rottenberg H. Hoek J.B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 2017 16 5 943 955 10.1111/acel.12650 28758328
    [Google Scholar]
  13. Rottenberg H. Hoek J.B. The mitochondrial permeability transition: Nexus of aging, disease and longevity. Cells 2021 10 1 79 10.3390/cells10010079 33418876
    [Google Scholar]
  14. Shevtsova E.F. Vinogradova D.V. Neganova M.E. Avila-Rodriguez M. Ashraf G.M. Barreto G.E. Bachurin S.O. Aliev G. Mitochondrial permeability transition pore as a suitable targ e t for neuroprotective agents against alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2017 16 6 677 685 10.2174/1871527316666170424114444 28440192
    [Google Scholar]
  15. Antonenko Y.N. Veselov I.M. Rokitskaya T.I. Vinogradova D.V. Khailova L.S. Kotova E.A. Maltsev A.V. Bachurin S.O. Shevtsova E.F. Neuroprotective thiourea derivative uncouples mitochondria and exerts weak protonophoric action on lipid membranes. Chem. Biol. Interact. 2024 402 111190 10.1016/j.cbi.2024.111190 39121899
    [Google Scholar]
  16. Shevtsova E.F. Maltsev A.V. Vinogradova D.V. Shevtsov P.N. Bachurin S.O. Mitochondria as a promising target for developing novel agents for treating Alzheimer’s disease. Med. Res. Rev. 2021 41 2 803 827 10.1002/med.21715 32687230
    [Google Scholar]
  17. Bernardi P. The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim. Biophys. Acta Bioenerg. 1996 1275 1-2 5 9 10.1016/0005‑2728(96)00041‑2 8688451
    [Google Scholar]
  18. Amodeo G.F. Pavlov E.V. Amyloid β, α-synuclein and the c subunit of the ATP synthase: Can these peptides reveal an amyloidogenic pathway of the permeability transition pore? Biochim. Biophys. Acta Biomembr. 2021 1863 3 183531 10.1016/j.bbamem.2020.183531 33309700
    [Google Scholar]
  19. Bernardi P. Gerle C. Halestrap A.P. Jonas E.A. Karch J. Mnatsakanyan N. Pavlov E. Sheu S.S. Soukas A.A. Identity, structure, and function of the mitochondrial permeability transition pore: Controversies, consensus, recent advances, and future directions. Cell Death Differ. 2023 30 8 1869 1885 10.1038/s41418‑023‑01187‑0 37460667
    [Google Scholar]
  20. Brustovetsky N. The role of adenine nucleotide translocase in the mitochondrial permeability transition. Cells 2020 9 12 2686 10.3390/cells9122686 33333766
    [Google Scholar]
  21. Elustondo P.A. Nichols M. Negoda A. Thirumaran A. Zakharian E. Robertson G.S. Pavlov E.V. Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov. 2016 2 1 16070 10.1038/cddiscovery.2016.70 27924223
    [Google Scholar]
  22. Baines C.P. Gutiérrez-Aguilar M. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium 2018 73 121 130 10.1016/j.ceca.2018.05.003 29793100
    [Google Scholar]
  23. Solesio M.E. Elustondo P.A. Zakharian E. Pavlov E.V. Inorganic polyphosphate (polyP) as an activator and structural component of the mitochondrial permeability transition pore. Biochem. Soc. Trans. 2016 44 1 7 12 10.1042/BST20150206 26862181
    [Google Scholar]
  24. Amanakis G. Murphy E. Cyclophilin D. Cyclophilin D. An integrator of mitochondrial function. Front. Physiol. 2020 11 595 10.3389/fphys.2020.00595 32625108
    [Google Scholar]
  25. Zhou S. Yu Q. Zhang L. Jiang Z. Cyclophilin D-mediated mitochondrial permeability transition regulates mitochondrial function. Curr. Pharm. Des. 2023 29 8 620 629 10.2174/1381612829666230313111314 36915987
    [Google Scholar]
  26. D’Angelo D. Vecellio R.D. Raffaello A. Neither too much nor too little: Mitochondrial calcium concentration as a balance between physiological and pathological conditions. Front. Mol. Biosci. 2023 10 1336416 10.3389/fmolb.2023.1336416 38148906
    [Google Scholar]
  27. Angelova P.R. Abramov A.Y. Interplay of mitochondrial calcium signalling and reactive oxygen species production in the brain. Biochem. Soc. Trans. 2024 52 4 1939 1946 10.1042/BST20240261 39171662
    [Google Scholar]
  28. Seidlmayer L.K. Gomez-Garcia M.R. Blatter L.A. Pavlov E. Dedkova E.N. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. J. Gen. Physiol. 2012 139 5 321 331 10.1085/jgp.201210788 22547663
    [Google Scholar]
  29. Agarwal A. Wu P.H. Hughes E.G. Fukaya M. Tischfield M.A. Langseth A.J. Wirtz D. Bergles D.E. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 2017 93 3 587 605.e7 10.1016/j.neuron.2016.12.034 28132831
    [Google Scholar]
  30. Jonas E.A. Miranda P. Gribkoff V. Alavian K.N. Park H.A. Wu J. Chavez A. Zukin R.S. Hardwick J.M. Mnatsakanyan N. PTP and LTP: The physiological role of the permeability transition pore in learning and memory. Biochim. Biophys. Acta Bioenerg. 2016 1857 e66 e67 10.1016/j.bbabio.2016.04.357
    [Google Scholar]
  31. Mnatsakanyan N. Beutner G. Porter G.A. Alavian K.N. Jonas E.A. Physiological roles of the mitochondrial permeability transition pore. J. Bioenerg. Biomembr. 2017 49 1 13 25 10.1007/s10863‑016‑9652‑1 26868013
    [Google Scholar]
  32. Walters G.C. Usachev Y.M. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front. Cell Dev. Biol. 2023 11 1094356 10.3389/fcell.2023.1094356 36760367
    [Google Scholar]
  33. Kabir A. Muth A. Polypharmacology: The science of multi-targeting molecules. Pharmacol. Res. 2022 176 106055 10.1016/j.phrs.2021.106055 34990865
    [Google Scholar]
  34. Ryszkiewicz P. Malinowska B. Schlicker E. Polypharmacology: Promises and new drugs in 2022. Pharmacol. Rep. 2023 75 4 755 770 10.1007/s43440‑023‑00501‑4 37278927
    [Google Scholar]
  35. Wilcock G.K. Gauthier S. Frisoni G.B. Jia J. Hardlund J.H. Moebius H.J. Bentham P. Kook K.A. Schelter B.O. Wischik D.J. Davis C.S. Staff R.T. Vuksanovic V. Ahearn T. Bracoud L. Shamsi K. Marek K. Seibyl J. Riedel G. Storey J.M.D. Harrington C.R. Wischik C.M. Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (lmtm) monotherapy for treatment of mild alzheimer’s disease: Cohort analysis as modified primary outcome in a phase iii clinical trial. J. Alzheimers Dis. 2017 61 1 435 457 10.3233/JAD‑170560 29154277
    [Google Scholar]
  36. Necula M. Breydo L. Milton S. Kayed R. van der Veer W.E. Tone P. Glabe C.G. Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization. Biochemistry 2007 46 30 8850 8860 10.1021/bi700411k 17595112
    [Google Scholar]
  37. Schwab K. Frahm S. Horsley D. Rickard J.E. Melis V. Goatman E.A. Magbagbeolu M. Douglas M. Leith M.G. Baddeley T.C. Storey J.M.D. Riedel G. Wischik C.M. Harrington C.R. Theuring F. A protein aggregation inhibitor, leuco-methylthioninium bis(hydromethanesulfonate), decreases α-synuclein inclusions in a transgenic mouse model of synucleinopathy. Front. Mol. Neurosci. 2018 10 447 10.3389/fnmol.2017.00447 29375308
    [Google Scholar]
  38. Sontag E.M. Lotz G.P. Agrawal N. Tran A. Aron R. Yang G. Necula M. Lau A. Finkbeiner S. Glabe C. Marsh J.L. Muchowski P.J. Thompson L.M. Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington’s disease models. J. Neurosci. 2012 32 32 11109 11119 10.1523/JNEUROSCI.0895‑12.2012 22875942
    [Google Scholar]
  39. Wischik C.M. Edwards P.C. Lai R.Y. Roth M. Harrington C.R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. USA 1996 93 20 11213 11218 10.1073/pnas.93.20.11213 8855335
    [Google Scholar]
  40. Yamashita M. Nonaka T. Arai T. Kametani F. Buchman V.L. Ninkina N. Bachurin S.O. Akiyama H. Goedert M. Hasegawa M. Methylene blue and dimebon inhibit aggregation of TDP‐43 in cellular models. FEBS Lett. 2009 583 14 2419 2424 10.1016/j.febslet.2009.06.042 19560462
    [Google Scholar]
  41. Tikhonova I.G. Baskin I.I. Palyulin V.A. Zefirov N.S. Bachurin S.O. Structural basis for understanding structure-activity relationships for the glutamate binding site of the NMDA receptor. J. Med. Chem. 2002 45 18 3836 3843 10.1021/jm011091t 12190307
    [Google Scholar]
  42. Danysz W. Dekundy A. Scheschonka A. Riederer P. Amantadine: Reappraisal of the timeless diamond—target updates and novel therapeutic potentials. J. Neural Transm. (Vienna) 2021 128 2 127 169 10.1007/s00702‑021‑02306‑2 33624170
    [Google Scholar]
  43. Dekundy A. Pichler G. El Badry R. Scheschonka A. Danysz W. Amantadine for traumatic brain injury—supporting evidence and mode of action. Biomedicines 2024 12 7 1558 10.3390/biomedicines12071558 39062131
    [Google Scholar]
  44. Rascol O. Fabbri M. Poewe W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 2021 20 12 1048 1056 10.1016/S1474‑4422(21)00249‑0 34678171
    [Google Scholar]
  45. MacMillan K.S. Naidoo J. Liang J. Melito L. Williams N.S. Morlock L. Huntington P.J. Estill S.J. Longgood J. Becker G.L. McKnight S.L. Pieper A.A. De Brabander J.K. Ready J.M. Development of proneurogenic, neuroprotective small molecules. J. Am. Chem. Soc. 2011 133 5 1428 1437 10.1021/ja108211m 21210688
    [Google Scholar]
  46. Tesla R. Wolf H.P. Xu P. Drawbridge J. Estill S.J. Huntington P. McDaniel L. Knobbe W. Burket A. Tran S. Starwalt R. Morlock L. Naidoo J. Williams N.S. Ready J.M. McKnight S.L. Pieper A.A. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 2012 109 42 17016 17021 10.1073/pnas.1213960109 23027932
    [Google Scholar]
  47. Chen Y. Zhu Z. Yan Y. Sun H. Wang G. Du X. Li F. Yuan S. Wang W. Wang M. Gu C. P7C3 suppresses astrocytic senescence to protect dopaminergic neurons: Implication in the mouse model of Parkinson’s disease. CNS Neurosci. Ther. 2024 30 7 e14819 10.1111/cns.14819 39056208
    [Google Scholar]
  48. Doody R.S. Gavrilova S.I. Sano M. Thomas R.G. Aisen P.S. Bachurin S.O. Seely L. Hung D. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: A randomised, double-blind, placebo-controlled study. Lancet 2008 372 9634 207 215 10.1016/S0140‑6736(08)61074‑0 18640457
    [Google Scholar]
  49. Shevtsova E.F. Vinogradova D.V. Kireeva E.G. Reddy V.P. Aliev G. Bachurin S.O. Dimebon attenuates the Aβ-induced mitochondrial permeabilization. Curr. Alzheimer Res. 2014 11 5 422 429 10.2174/1567205011666140505094808 24801220
    [Google Scholar]
  50. Ustyugov A. Shevtsova E. Bachurin S. Novel sites of neuroprotective action of dimebon (Latrepirdine). Mol. Neurobiol. 2015 52 2 970 978 10.1007/s12035‑015‑9249‑4 26123670
    [Google Scholar]
  51. Sokolov V.B. Aksinenko A.Y. Epishina T.A. Goreva T.V. Catalytic alkylation of cycloalkaneindoles and tetrahydro-γ-carboline with 9-oxiranylmethylcarbazole. Russ. J. Gen. Chem. 2016 86 8 1827 1831 10.1134/S1070363216080089
    [Google Scholar]
  52. Sokolov V.B. Aksinenko A.Y. Epishina T.A. Goreva T.V. Reactions of carbazole with dimethyl alkanedisulfonates. Russ. J. Gen. Chem. 2017 87 7 1641 1644 10.1134/S1070363217070337
    [Google Scholar]
  53. Sokolov V.B. Aksinenko A.Y. Epishina T.A. Goreva T.V. Bachurin S.O. Synthetic approaches to conjugation of aminoadamantanes and carbazoles. Russ. Chem. Bull. 2017 66 11 2110 2114 10.1007/s11172‑017‑1988‑0
    [Google Scholar]
  54. Sokolov V.B. Aksinenko A.Y. Epishina T.A. Goreva T.V. Grigoriev V.V. Gabrel’yan A.V. Bachurin S.O. Synthesis and biological activity of N-substituted tetrahydro-γ-carbolins bearing bis(dimethylamino)phenothiazine moiety. Russ. Chem. Bull. 2015 64 3 718 722 10.1007/s11172‑015‑0925‑3
    [Google Scholar]
  55. Sokolov V.B. Aksinenko A.Y. Goreva T.V. Epishina T.A. Grigor’ev V.V. Gabrel’yan A.V. Vinogradova D.V. Dubova L.G. Shevtsov P.N. Shevtsova E.F. Bachurin S.O. Molecular design of multitarget neuroprotectors 2. Synthesis and bioactivity of carbazole—γ-carboline conjugates. Russ. Chem. Bull. 2016 65 5 1346 1353 10.1007/s11172‑016‑1460‑6
    [Google Scholar]
  56. Sokolov V.B. Makhaeva G.F. Aksinenko A.Y. Grigoriev V.V. Shevtsova E.F. Bachurin S.O. Targeted synthesis and biological activity of polypharmacophoric agents for the treatment of neurodegenerative diseases. Russ. Chem. Bull. 2017 66 10 1821 1831 10.1007/s11172‑017‑1953‑y
    [Google Scholar]
  57. Gureev A.P. Sadovnikova I.S. Popov V.N. Molecular mechanisms of the neuroprotective effect of methylene blue. Biochemistry 2022 87 9 940 956 10.1134/S0006297922090073 36180986
    [Google Scholar]
  58. Liu J. Bandyopadhyay I. Zheng L. Khdour O.M. Hecht S.M. Antiferroptotic activity of phenothiazine analogues: A novel therapeutic strategy for oxidative stress related disease. ACS Med. Chem. Lett. 2020 11 11 2165 2173 10.1021/acsmedchemlett.0c00293 33214825
    [Google Scholar]
  59. Varga B. Csonka Á. Csonka A. Molnár J. Amaral L. Spengler G. Possible biological and clinical applications of phenothiazines. Anticancer Res. 2017 37 11 5983 5993 10.21873/anticanres.12045 29061777
    [Google Scholar]
  60. Biju K.C. Evans R.C. Shrestha K. Carlisle D.C.B. Gelfond J. Clark R.A. Methylene blue ameliorates olfactory dysfunction and motor deficits in a chronic mptp/probenecid mouse model of parkinson’s disease. Neuroscience 2018 380 111 122 10.1016/j.neuroscience.2018.04.008 29684508
    [Google Scholar]
  61. Hashmi M.U. Ahmed R. Mahmoud S. Ahmed K. Bushra N.M. Ahmed A. Elwadie B. Madni A. Saad A.B. Abdelrahman N. Exploring methylene blue and its derivatives in alzheimer’s treatment: A comprehensive review of randomized control trials. Cureus 2023 15 10 e46732 10.7759/cureus.46732 38022191
    [Google Scholar]
  62. Hochgräfe K. Sydow A. Matenia D. Cadinu D. Könen S. Petrova O. Pickhardt M. Goll P. Morellini F. Mandelkow E. Mandelkow E.M. Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathol. Commun. 2015 3 1 25 10.1186/s40478‑015‑0204‑4 25958115
    [Google Scholar]
  63. Poteet E. Winters A. Yan L.J. Shufelt K. Green K.N. Simpkins J.W. Wen Y. Yang S.H. Neuroprotective actions of methylene blue and its derivatives. PLoS One 2012 7 10 e48279 10.1371/journal.pone.0048279 23118969
    [Google Scholar]
  64. Talbot J.D. Barrett J.N. Nonner D. Zhang Z. Wicomb K. Barrett E.F. Preservation of neuromuscular function in symptomatic SOD1-G93A mice by peripheral infusion of methylene blue. Exp. Neurol. 2016 285 Pt A 96 107 10.1016/j.expneurol.2016.08.013 27567739
    [Google Scholar]
  65. Bachurin S.O. Aksinenko A.Y. Makhaeva G.F. Grigoriev V.V. Ninkina N.N. Kukharsky M.S. Derivatives of phenothiazine-containing 1,2,3,4-tetrahydropyrido[4,3-b]indoles as a means for reducing uncontrolled protein aggregation in the nervous system, methods for their production, a pharmacological agent based on them and a method for reducing uncontrolled protein aggregation in the nervous system. U.S. Patent 11082014B2 2014
  66. Bachurin S.O. Aksinenko A.Y. Makhaeva G.F. Grigoriev V.V. Ninkina N.N. Kukharsky M.S. Derivatives of 1,2,3,4-tetrahydropyrido[4,3-b]indole-containing phenothiazines as cholinesterase inhibitors and serotonin receptor 5-HT6 blockers, methods for obtaining their hydrochlorides and a pharmacological agent based on them. NO20082014L 2014
  67. Bachurin S.O. Makhaeva G.F. Shevtsova E.F. Boltneva N.P. Kovaleva N.V. Lushchekina S.V. Rudakova E.V. Dubova L.G. Vinogradova D.V. Sokolov V.B. Aksinenko A.Y. Fisenko V.P. Richardson R.J. Aliev G. Conjugates of methylene blue with γ-carboline derivatives as new multifunctional agents for the treatment of neurodegenerative diseases. Sci. Rep. 2019 9 1 4873 10.1038/s41598‑019‑41272‑4 30890752
    [Google Scholar]
  68. Bachurin S.O. Shevtsova E.F. Makhaeva G.F. Aksinenko A.Y. Grigoriev V.V. Goreva T.V. Epishina T.A. Kovaleva N.V. Boltneva N.P. Lushchekina S.V. Rudakova E.V. Vinogradova D.V. Shevtsov P.N. Pushkareva E.A. Dubova L.G. Serkova T.P. Veselov I.M. Fisenko V.P. Richardson R.J. Conjugates of methylene blue with cycloalkaneindoles as new multifunctional agents for potential treatment of neurodegenerative disease. Int. J. Mol. Sci. 2022 23 22 13925 10.3390/ijms232213925 36430413
    [Google Scholar]
  69. Duranti E. Villa C. Molecular investigations of protein aggregation in the pathogenesis of amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2022 24 1 704 10.3390/ijms24010704 36614144
    [Google Scholar]
  70. Mitchell J.C. McGoldrick P. Vance C. Hortobagyi T. Sreedharan J. Rogelj B. Tudor E.L. Smith B.N. Klasen C. Miller C.C.J. Cooper J.D. Greensmith L. Shaw C.E. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 2013 125 2 273 288 10.1007/s00401‑012‑1043‑z 22961620
    [Google Scholar]
  71. Wang H. Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J. Neurol. 2024 271 8 4826 4851 10.1007/s00415‑024‑12485‑z 38869826
    [Google Scholar]
  72. Bachurin S.O. Aksinenko A.Y. Makhaeva G.F. Shevtsova E.F. Multipharmacophore strategy in medicinal chemistry for the design of drugs for the treatment of Alzheimer’s and some other neurodegenerative diseases. Russ. Chem. Bull. 2023 72 1 130 147 10.1007/s11172‑023‑3718‑0
    [Google Scholar]
  73. Dai J. Dan W. Zhang Y. Wang J. Recent developments on synthesis and biological activities of γ-carboline. Eur. J. Med. Chem. 2018 157 447 461 10.1016/j.ejmech.2018.08.015 30103193
    [Google Scholar]
  74. Bharadwaj P.R. Bates K.A. Porter T. Teimouri E. Perry G. Steele J.W. Gandy S. Groth D. Martins R.N. Verdile G. Latrepirdine: Molecular mechanisms underlying potential therapeutic roles in Alzheimer’s and other neurodegenerative diseases. Transl. Psychiatry 2013 3 12 e332 e332 10.1038/tp.2013.97 24301650
    [Google Scholar]
  75. Egea J. Romero A. Parada E. León R. Dal-Cim T. López M.G. Neuroprotective effect of dimebon against ischemic neuronal damage. Neuroscience 2014 267 11 21 10.1016/j.neuroscience.2014.02.025 24607349
    [Google Scholar]
  76. Steele J.W. Ju S. Lachenmayer M.L. Liken J. Stock A. Kim S.H. Delgado L.M. Alfaro I.E. Bernales S. Verdile G. Bharadwaj P. Gupta V. Barr R. Friss A. Dolios G. Wang R. Ringe D. Protter A.A. Martins R.N. Ehrlich M.E. Yue Z. Petsko G.A. Gandy S. Latrepirdine stimulates autophagy and reduces accumulation of α-synuclein in cells and in mouse brain. Mol. Psychiatry 2013 18 8 882 888 10.1038/mp.2012.115 22869031
    [Google Scholar]
  77. Weisová P. Alvarez S.P. Kilbride S.M. Anilkumar U. Baumann B. Jordán J. Bernas T. Huber H.J. Düssmann H. Prehn J.H.M. Latrepirdine is a potent activator of AMP-activated protein kinase and reduces neuronal excitability. Transl. Psychiatry 2013 3 10 e317 e317 10.1038/tp.2013.92 24150226
    [Google Scholar]
  78. Zhang S. Hedskog L. Petersen C.A.H. Winblad B. Ankarcrona M. Dimebon (latrepirdine) enhances mitochondrial function and protects neuronal cells from death. J. Alzheimers Dis. 2010 21 2 389 402 10.3233/JAD‑2010‑100174 20555134
    [Google Scholar]
  79. Makhaeva G.F. Shevtsova E.F. Aksinenko A.Y. Kovaleva N.V. Boltneva N.P. Lushchekina S.V. Rudakova E.V. Pushkareva E.A. Serkova T.P. Dubova L.G. Shevtsov P.N. Sokolov V.B. Radchenko E.V. Palyulin V.A. Bachurin S.O. Richardson R.J. Bis-γ-carbolines as new potential multitarget agents for Alzheimer’s disease. Pure Appl. Chem. 2020 92 7 1057 1080 10.1515/pac‑2019‑1206
    [Google Scholar]
  80. Otto R. Penzis R. Gaube F. Adolph O. Föhr K.J. Warncke P. Robaa D. Appenroth D. Fleck C. Enzensperger C. Lehmann J. Winckler T. Evaluation of homobivalent carbolines as designed multiple ligands for the treatment of neurodegenerative disorders. J. Med. Chem. 2015 58 16 6710 6715 10.1021/acs.jmedchem.5b00958 26278660
    [Google Scholar]
  81. de Wet S. Mangali A. Batt R. Kriel J. Vahrmeijer N. Niehaus D. Theart R. Loos B. The highs and lows of memantine—an autophagy and mitophagy inducing agent that protects mitochondria. Cells 2023 12 13 1726 10.3390/cells12131726 37443760
    [Google Scholar]
  82. Quarato G. Scrima R. Ripoli M. Agriesti F. Moradpour D. Capitanio N. Piccoli C. Protective role of amantadine in mitochondrial dysfunction and oxidative stress mediated by hepatitis C virus protein expression. Biochem. Pharmacol. 2014 89 4 545 556 10.1016/j.bcp.2014.03.018 24726442
    [Google Scholar]
  83. Makhaeva G.F. Shevtsova E.F. Boltneva N.P. Lushchekina S.V. Kovaleva N.V. Rudakova E.V. Bachurin S.O. Richardson R.J. Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer’s disease. Chem. Biol. Interact. 2019 308 224 234 10.1016/j.cbi.2019.05.020 31100279
    [Google Scholar]
  84. Bachurin S.O. Makhaeva G.F. Shevtsova E.F. Aksinenko A.Y. Grigoriev V.V. Shevtsov P.N. Goreva T.V. Epishina T.A. Kovaleva N.V. Pushkareva E.A. Boltneva N.P. Lushchekina S.V. Gabrelyan A.V. Zamoyski V.L. Dubova L.G. Rudakova E.V. Fisenko V.P. Bovina E.V. Richardson R.J. Conjugation of aminoadamantane and γ-carboline pharmacophores gives rise to unexpected properties of multifunctional ligands. Molecules 2021 26 18 5527 10.3390/molecules26185527 34576998
    [Google Scholar]
  85. Yan G. Li Y.J. Zhao Y.Y. Guo J.M. Zhang W.H. Zhang M.M. Fu Y.H. Liu Y.P. Neuroprotective carbazole alkaloids from the stems and leaves of Clausena lenis. Nat. Prod. Res. 2021 35 12 2002 2009 10.1080/14786419.2019.1652285 31523980
    [Google Scholar]
  86. Liu Y.P. Guo J.M. Liu Y.Y. Hu S. Yan G. Qiang L. Fu Y.H. Carbazole alkaloids with potential neuroprotective activities from the fruits of Clausena lansium. J. Agric. Food Chem. 2019 67 20 5764 5771 10.1021/acs.jafc.9b00961 31083994
    [Google Scholar]
  87. Furukawa Y. Sawamoto A. Yamaoka M. Nakaya M. Hieda Y. Choshi T. Hatae N. Okuyama S. Nakajima M. Hibino S. Effects of carbazole derivatives on neurite outgrowth and hydrogen peroxide-induced cytotoxicity in neuro 2a cells. Molecules 2019 24 7 1366 10.3390/molecules24071366 30959983
    [Google Scholar]
  88. Zhu D. Chen M. Li M. Luo B. Zhao Y. Huang P. Xue F. Rapposelli S. Pi R. Wen S. Discovery of novel N-substituted carbazoles as neuroprotective agents with potent anti-oxidative activity. Eur. J. Med. Chem. 2013 68 81 88 10.1016/j.ejmech.2013.07.029 23973819
    [Google Scholar]
  89. Fang L. Chen M. Liu Z. Fang X. Gou S. Chen L. Ferulic acid–carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents. Bioorg. Med. Chem. 2016 24 4 886 893 10.1016/j.bmc.2016.01.010 26795115
    [Google Scholar]
  90. Elmabruk A. Das B. Yedlapudi D. Xu L. Antonio T. Reith M.E.A. Dutta A.K. Design, synthesis, and pharmacological characterization of carbazole based dopamine agonists as potential symptomatic and neuroprotective therapeutic agents for parkinson’s disease. ACS Chem. Neurosci. 2019 10 1 396 411 10.1021/acschemneuro.8b00291 30301349
    [Google Scholar]
  91. Pieper A.A. Xie S. Capota E. Estill S.J. Zhong J. Long J.M. Becker G.L. Huntington P. Goldman S.E. Shen C.H. Capota M. Britt J.K. Kotti T. Ure K. Brat D.J. Williams N.S. MacMillan K.S. Naidoo J. Melito L. Hsieh J. De Brabander J. Ready J.M. McKnight S.L. Discovery of a proneurogenic, neuroprotective chemical. Cell 2010 142 1 39 51 10.1016/j.cell.2010.06.018 20603013
    [Google Scholar]
  92. De Jesús-Cortés H. Xu P. Drawbridge J. Estill S.J. Huntington P. Tran S. Britt J. Tesla R. Morlock L. Naidoo J. Melito L.M. Wang G. Williams N.S. Ready J.M. McKnight S.L. Pieper A.A. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease. Proc. Natl. Acad. Sci. USA 2012 109 42 17010 17015 10.1073/pnas.1213956109 23027934
    [Google Scholar]
  93. Gu C. Zhang Y. Hu Q. Wu J. Ren H. Liu C.F. Wang G. P7C3 inhibits GSK3β activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo. Cell Death Dis. 2017 8 6 e2858 e2858 10.1038/cddis.2017.250 28569794
    [Google Scholar]
  94. Yoon H.J. Kong S.Y. Park M.H. Cho Y. Kim S.E. Shin J.Y. Jung S. Lee J. Farhanullah; Kim, H.J.; Lee, J. Aminopropyl carbazole analogues as potent enhancers of neurogenesis. Bioorg. Med. Chem. 2013 21 22 7165 7174 10.1016/j.bmc.2013.08.066 24095011
    [Google Scholar]
  95. Wang S.N. Xu T.Y. Wang X. Guan Y.F. Zhang S.L. Wang P. Miao C.Y. Neuroprotective efficacy of an aminopropyl carbazole derivative p7c3‐a20 in ischemic stroke. CNS Neurosci. Ther. 2016 22 9 782 788 10.1111/cns.12576 27333812
    [Google Scholar]
  96. Makhaeva G.F. Sokolov V.B. Shevtsova E.F. Kovaleva N.V. Lushchekina S.V. Boltneva N.P. Rudakova E.V. Aksinenko A.Y. Shevtsov P.N. Neganova M.E. Dubova L.G. Bachurin S.O. Focused design of polypharmacophoric neuroprotective compounds: Conjugates of γ-carbolines with carbazole derivatives and tetrahydrocarbazole. Pure Appl. Chem. 2017 89 8 1167 1184 10.1515/pac‑2017‑0308
    [Google Scholar]
  97. Sokolov V.B. Aksinenko A.Y. Goreva T.V. Epishina T.A. Grigor’ev V.V. Gabrel’yan A.V. Vinogradova D.V. Neganova M.E. Shevtsova E.F. Bachurin S.O. Molecular design of multitarget neuroprotectors 3. Synthesis and bioactivity of tetrahydrocarbazole—aminoadamantane conjugates. Russ. Chem. Bull. 2016 65 5 1354 1359 10.1007/s11172‑016‑1461‑5
    [Google Scholar]
  98. Bachurin S.O. Shevtsova E.F. Makhaeva G.F. Grigoriev V.V. Boltneva N.P. Kovaleva N.V. Lushchekina S.V. Shevtsov P.N. Neganova M.E. Redkozubova O.M. Bovina E.V. Gabrelyan A.V. Fisenko V.P. Sokolov V.B. Aksinenko A.Y. Echeverria V. Barreto G.E. Aliev G. Novel conjugates of aminoadamantanes with carbazole derivatives as potential multitarget agents for AD treatment. Sci. Rep. 2017 7 1 45627 10.1038/srep45627 28358144
    [Google Scholar]
  99. Angelova P.R. Vinogradova D. Neganova M.E. Serkova T.P. Sokolov V.V. Bachurin S.O. Shevtsova E.F. Abramov A.Y. Pharmacological sequestration of mitochondrial calcium uptake protects neurons against glutamate excitotoxicity. Mol. Neurobiol. 2019 56 3 2244 2255 10.1007/s12035‑018‑1204‑8 30008072
    [Google Scholar]
  100. Abramov A.Y. Duchen M.R. Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim. Biophys. Acta Bioenerg. 2008 1777 7-8 953 964 10.1016/j.bbabio.2008.04.017 18471431
    [Google Scholar]
  101. Shevtsova E.F. Angelova P.R. Stelmashchuk O.A. Esteras N. Vasil’eva N.A. Maltsev A.V. Shevtsov P.N. Shaposhnikov A.V. Fisenko V.P. Bachurin S.O. Abramov A.Y. Pharmacological sequestration of mitochondrial calcium uptake protects against dementia and β-amyloid neurotoxicity. Sci. Rep. 2022 12 1 12766 10.1038/s41598‑022‑16817‑9 35896565
    [Google Scholar]
  102. Bachurin S.O. Sokolov V.B. Aksinenko A.Yu. Shevtsova E.F. Abramov A.Yu. Vinogradova D.V. Neganova M.E. The use of adamantane-containing indoles and their hydrochlorides as cytoprotectors and for the treatment and prevention of diseases associated with an increase in the cytosolic concentration of calcium, and a pharmacological agent based on them. Patent RU2608737 2015
  103. Deb D. Dhanawat M. Bhushan B. Pachuau L. Das N. Targeting neurodegeneration: The emerging role of hybrid drugs. Curr. Drug Targets 2025 26 6 410 434 10.2174/0113894501365588250131073304 39917940
    [Google Scholar]
/content/journals/cn/10.2174/011570159X409525251027064739
Loading
/content/journals/cn/10.2174/011570159X409525251027064739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test