Skip to content
2000
image of Molecular Mechanisms of cGAS-STING Axis and Mitochondrial Dysfunction-Related Diseases in Humans: A Comprehensive Review

Abstract

Mitochondria play a critical role in immune cell differentiation, activation, and the regulation of innate immune responses. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a key mediator of cytosolic DNA sensing and contributes to a broad spectrum of pathological processes, including infectious diseases, sterile inflammation, cancer, and autoimmune disorders. STING is activated in response to cytosolic DNA during infection and can restrict translation in RNA virus-infected cells as part of the innate immune response. Studies have shown that mitochondrial dysfunction, particularly the release of mitochondrial DNA (mtDNA), can act as a potent trigger of cGAS-STING signaling, linking mitochondrial damage to immune activation. Additionally, this pathway intersects with autophagy, metabolic regulation, and cell death mechanisms. This comprehensive review summarizes current advances in understanding the cGAS-STING axis and mtDNA release in the context of mitochondrial dysfunction, with a focus on their roles in disease pathogenesis and potential as therapeutic targets. We highlight recent progress in the development of targeted interventions and emphasize the importance of elucidating the regulatory mechanisms underlying STING activation in various pathological conditions, including neuroinflammation, cancer, ischemia/reperfusion injury, and autoimmune diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X388747250830161230
2025-09-25
2025-10-29
Loading full text...

Full text loading...

References

  1. Decout A. Katz J.D. Venkatraman S. Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 2021 21 9 548 569 10.1038/s41577‑021‑00524‑z 33833439
    [Google Scholar]
  2. Samson N. Ablasser A. The cGAS-STING pathway and cancer. Nat. Cancer 2022 3 12 1452 1463 10.1038/s43018‑022‑00468‑w 36510011
    [Google Scholar]
  3. Gulen M.F. Samson N. Keller A. Schwabenland M. Liu C. Glück S. Thacker V.V. Favre L. Mangeat B. Kroese L.J. Krimpenfort P. Prinz M. Ablasser A. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 2023 620 7973 374 380 10.1038/s41586‑023‑06373‑1 37532932
    [Google Scholar]
  4. Chen C. Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol. 2023 33 8 630 648 10.1016/j.tcb.2022.11.001 36437149
    [Google Scholar]
  5. Hopfner K.P. Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 2020 21 9 501 521 10.1038/s41580‑020‑0244‑x 32424334
    [Google Scholar]
  6. Kwon J. Bakhoum S.F. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 2020 10 1 26 39 10.1158/2159‑8290.CD‑19‑0761 31852718
    [Google Scholar]
  7. Wang Y. Luo J. Alu A. Han X. Wei Y. Wei X. cGAS-STING pathway in cancer biotherapy. Mol. Cancer 2020 19 1 136 10.1186/s12943‑020‑01247‑w 32887628
    [Google Scholar]
  8. Chen G.Y. Nuñez G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010 10 12 826 837 10.1038/nri2873 21088683
    [Google Scholar]
  9. Li D. Wu M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021 6 1 291 10.1038/s41392‑021‑00687‑0 34344870
    [Google Scholar]
  10. Kano N. Ong G.H. Ori D. Kawai T. Pathophysiological role of nucleic acid-sensing pattern recognition receptors in inflammatory diseases. Front. Cell. Infect. Microbiol. 2022 12 910654 10.3389/fcimb.2022.910654 35734577
    [Google Scholar]
  11. Kawasaki T. Kawai T. Akira S. Recognition of nucleic acids by pattern‐recognition receptors and its relevance in autoimmunity. Immunol. Rev. 2011 243 1 61 73 10.1111/j.1600‑065X.2011.01048.x 21884167
    [Google Scholar]
  12. Bishani A. Chernolovskaya E.L. Activation of innate immunity by therapeutic nucleic acids. Int. J. Mol. Sci. 2021 22 24 13360 10.3390/ijms222413360 34948156
    [Google Scholar]
  13. Biacchesi S. Mérour E. Lamoureux A. Bernard J. Brémont M. Both STING and MAVS fish orthologs contribute to the induction of interferon mediated by RIG-I. PLoS One 2012 7 10 47737 10.1371/journal.pone.0047737 23091644
    [Google Scholar]
  14. Kumar V. A STING to inflammation and autoimmunity. J. Leukoc. Biol. 2019 106 1 171 185 10.1002/JLB.4MIR1018‑397RR 30990921
    [Google Scholar]
  15. Franz K.M. Neidermyer W.J. Tan Y.J. Whelan S.P.J. Kagan J.C. STING-dependent translation inhibition restricts RNA virus replication. Proc. Natl. Acad. Sci. USA 2018 115 9 E2058 E2067 10.1073/pnas.1716937115 29440426
    [Google Scholar]
  16. Paul B.D. Snyder S.H. Bohr V.A. Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging. Trends Neurosci. 2021 44 2 83 96 10.1016/j.tins.2020.10.008 33187730
    [Google Scholar]
  17. Skolariki A. Jady-Clark R.L. Parkes E.E. CIN s of the cytoplasm: 65 Dissecting ds RNA signaling in chromosomal instability Mol. Oncol 2025 1878 0261 10.1002/1878‑0261.70047 40334061 70047
    [Google Scholar]
  18. Chandramoorthy H.C. Saleh R.O. Altalbawy F.M.A. Mohammed J.S. Ganesan S. Kundlas M. Premkumar J. Ray S. Mustafa Y.F. Abbas J.K. Deciphering cGAS-STING signaling: Implications for tumor immunity and hepatocellular carcinoma. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑04240‑6 40332552 (E-pub ahead of 73 print)
    [Google Scholar]
  19. Li J.X. Zhang J. Li C.H. Li Y.F. Chen H.M. Li T. Zhang Q. Kong B.H. Wang P.H. Human papillomavirus E1 proteins inhibit RIG-I/MDA5-MAVS, TLR3-TRIF, cGAS-STING, and JAK-STAT signaling pathways to evade innate antiviral immunity. Front. Immunol. 2025 16 1549766 10.3389/fimmu.2025.1549766 40330484
    [Google Scholar]
  20. West A.P. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology 2017 391 54 63 10.1016/j.tox.2017.07.016 28765055
    [Google Scholar]
  21. Faas M.M. de Vos P. Mitochondrial function in immune cells in health and disease. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 10 165845 10.1016/j.bbadis.2020.165845 32473386
    [Google Scholar]
  22. West A.P. Khoury-Hanold W. Staron M. Tal M.C. Pineda C.M. Lang S.M. Bestwick M. Duguay B.A. Raimundo N. MacDuff D.A. Kaech S.M. Smiley J.R. Means R.E. Iwasaki A. Shadel G.S. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015 520 7548 553 557 10.1038/nature14156 25642965
    [Google Scholar]
  23. Wu Z. Oeck S. West A.P. Mangalhara K.C. Sainz A.G. Newman L.E. Zhang X.O. Wu L. Yan Q. Bosenberg M. Liu Y. Sulkowski P.L. Tripple V. Kaech S.M. Glazer P.M. Shadel G.S. Mitochondrial DNA stress signalling protects the nuclear genome. Nat. Metab. 2019 1 12 1209 1218 10.1038/s42255‑019‑0150‑8 32395698
    [Google Scholar]
  24. Cosentino K. Hertlein V. Jenner A. Dellmann T. Gojkovic M. Peña-Blanco A. Dadsena S. Wajngarten N. Danial J.S.H. Thevathasan J.V. Mund M. Ries J. Garcia-Saez A.J. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Mol. Cell 2022 82 5 933 949.e9 10.1016/j.molcel.2022.01.008 35120587
    [Google Scholar]
  25. McArthur K. Whitehead L.W. Heddleston J.M. Li L. Padman B.S. Oorschot V. Geoghegan N.D. Chappaz S. Davidson S. San Chin H. Lane R.M. Dramicanin M. Saunders T.L. Sugiana C. Lessene R. Osellame L.D. Chew T.L. Dewson G. Lazarou M. Ramm G. Lessene G. Ryan M.T. Rogers K.L. van Delft M.F. Kile B.T. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 2018 359 6378 eaao6047 10.1126/science.aao6047 29472455
    [Google Scholar]
  26. Riley J.S. Quarato G. Cloix C. Lopez J. O’Prey J. Pearson M. Chapman J. Sesaki H. Carlin L.M. Passos J.F. Wheeler A.P. Oberst A. Ryan K.M. Tait S.W.G. Mitochondrial inner membrane permeabilisation enables mt DNA release during apoptosis. EMBO J. 2018 37 17 99238 10.15252/embj.201899238 30049712
    [Google Scholar]
  27. Li C. Liu W. Wang F. Hayashi T. Mizuno K. Hattori S. Fujisaki H. Ikejima T. DNA damage-triggered activation of cGAS-STING pathway induces apoptosis in human keratinocyte HaCaT cells. Mol. Immunol. 2021 131 180 190 10.1016/j.molimm.2020.12.037 33423764
    [Google Scholar]
  28. White M.J. McArthur K. Metcalf D. Lane R.M. Cambier J.C. Herold M.J. van Delft M.F. Bedoui S. Lessene G. Ritchie M.E. Huang D.C.S. Kile B.T. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014 159 7 1549 1562 10.1016/j.cell.2014.11.036 25525874
    [Google Scholar]
  29. Tigano M. Vargas D.C. Tremblay-Belzile S. Fu Y. Sfeir A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 2021 591 7850 477 481 10.1038/s41586‑021‑03269‑w 33627873
    [Google Scholar]
  30. Yan J. Liu W. Feng F. Chen L. VDAC oligomer pores: A mechanism in disease triggered by mtDNA release. Cell Biol. Int. 2020 44 11 2178 2181 10.1002/cbin.11427 32716117
    [Google Scholar]
  31. He W.R. Cao L.B. Yang Y.L. Hua D. Hu M.M. Shu H.B. VRK2 is involved in the innate antiviral response by promoting mitostress-induced mtDNA release. Cell. Mol. Immunol. 2021 18 5 1186 1196 10.1038/s41423‑021‑00673‑0 33785841
    [Google Scholar]
  32. Banoth B. Cassel S.L. Mitochondria in innate immune signaling. Transl. Res. 2018 202 52 68 10.1016/j.trsl.2018.07.014 30165038
    [Google Scholar]
  33. Ablasser A. Goldeck M. Cavlar T. Deimling T. Witte G. Röhl I. Hopfner K.P. Ludwig J. Hornung V. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 2013 498 7454 380 384 10.1038/nature12306 23722158
    [Google Scholar]
  34. Zhang X. Shi H. Wu J. Zhang X. Sun L. Chen C. Chen Z.J. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 2013 51 2 226 235 10.1016/j.molcel.2013.05.022 23747010
    [Google Scholar]
  35. Burdette D.L. Monroe K.M. Sotelo-Troha K. Iwig J.S. Eckert B. Hyodo M. Hayakawa Y. Vance R.E. STING is a direct innate immune sensor of cyclic di-GMP. Nature 2011 478 7370 515 518 10.1038/nature10429 21947006
    [Google Scholar]
  36. Kemmoku H. Kuchitsu Y. Mukai K. Taguchi T. Specific association of TBK1 with the trans-Golgi network following STING stimulation. Cell Struct. Funct. 2022 47 1 19 30 10.1247/csf.21080 35125375
    [Google Scholar]
  37. Zhang C. Shang G. Gui X. Zhang X. Bai X. Chen Z.J. Structural basis of STING binding with and phosphorylation by TBK1. Nature 2019 567 7748 394 398 10.1038/s41586‑019‑1000‑2 30842653
    [Google Scholar]
  38. Sun W. Li Y. Chen L. Chen H. You F. Zhou X. Zhou Y. Zhai Z. Chen D. Jiang Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA 2009 106 21 8653 8658 10.1073/pnas.0900850106 19433799
    [Google Scholar]
  39. Zhao B. Shu C. Gao X. Sankaran B. Du F. Shelton C.L. Herr A.B. Ji J.Y. Li P. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc. Natl. Acad. Sci. USA 2016 113 24 E3403 E3412 10.1073/pnas.1603269113 27302953
    [Google Scholar]
  40. Ni G. Konno H. Barber G.N. Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci. Immunol. 2017 2 11 eaah7119 10.1126/sciimmunol.aah7119 28763789
    [Google Scholar]
  41. Zhang J. Hu M.M. Wang Y.Y. Shu H.B. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 2012 287 34 28646 28655 10.1074/jbc.M112.362608 22745133
    [Google Scholar]
  42. Zhong B. Zhang L. Lei C. Li Y. Mao A.P. Yang Y. Wang Y.Y. Zhang X.L. Shu H.B. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 2009 30 3 397 407 10.1016/j.immuni.2009.01.008 19285439
    [Google Scholar]
  43. Ouyang S. Song X. Wang Y. Ru H. Shaw N. Jiang Y. Niu F. Zhu Y. Qiu W. Parvatiyar K. Li Y. Zhang R. Cheng G. Liu Z.J. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 2012 36 6 1073 1086 10.1016/j.immuni.2012.03.019 22579474
    [Google Scholar]
  44. Gui X. Yang H. Li T. Tan X. Shi P. Li M. Du F. Chen Z.J. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 2019 567 7747 262 266 10.1038/s41586‑019‑1006‑9 30842662
    [Google Scholar]
  45. Deng Z. Chong Z. Law C.S. Mukai K. Ho F.O. Martinu T. Backes B.J. Eckalbar W.L. Taguchi T. Shum A.K. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J. Exp. Med. 2020 217 11 20201045 10.1084/jem.20201045 32725126
    [Google Scholar]
  46. Lepelley A. Martin-Niclós M.J. Le Bihan M. Marsh J.A. Uggenti C. Rice G.I. Bondet V. Duffy D. Hertzog J. Rehwinkel J. Amselem S. Boulisfane-El Khalifi S. Brennan M. Carter E. Chatenoud L. Chhun S. Coulomb l’Hermine A. Depp M. Legendre M. Mackenzie K.J. Marey J. McDougall C. McKenzie K.J. Molina T.J. Neven B. Seabra L. Thumerelle C. Wislez M. Nathan N. Manel N. Crow Y.J. Frémond M.L. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med. 2020 217 11 20200600 10.1084/jem.20200600 32725128
    [Google Scholar]
  47. Jiménez-Castro M.B. Cornide-Petronio M.E. Gracia-Sancho J. Peralta C. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury. Cells 2019 8 10 1131 10.3390/cells8101131 31547621
    [Google Scholar]
  48. Hu Q. Zhou Q. Wu J. Wu X. Ren J. The role of mitochondrial DNA in the development of ischemia reperfusion injury. Shock 2019 51 1 52 59 10.1097/SHK.0000000000001190 30286034
    [Google Scholar]
  49. Zhang X. Wu J. Liu Q. Li X. Li S. Chen J. Hong Z. Wu X. Zhao Y. Ren J. mtDNA-STING pathway promotes necroptosis-dependent enterocyte injury in intestinal ischemia reperfusion. Cell Death Dis. 2020 11 12 1050 10.1038/s41419‑020‑03239‑6 33311495
    [Google Scholar]
  50. Sun X. Yin J. Starovasnik M.A. Fairbrother W.J. Dixit V.M. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J. Biol. Chem. 2002 277 11 9505 9511 10.1074/jbc.M109488200 11734559
    [Google Scholar]
  51. Weinlich R. Oberst A. Beere H.M. Green D.R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 2017 18 2 127 136 10.1038/nrm.2016.149 27999438
    [Google Scholar]
  52. Zerbes R.M. van der Klei I.J. Veenhuis M. Pfanner N. van der Laan M. Bohnert M. Mitofilin complexes: Conserved organizers 248 of mitochondrial membrane architecture bchm 2012 393 11 1247 1261 10.1515/hsz‑2012‑0239 23109542
    [Google Scholar]
  53. Feng Y. Imam Aliagan A. Tombo N. Draeger D. Bopassa J.C. RIP3 translocation into mitochondria promotes mitofilin degradation to increase inflammation and kidney injury after renal ischemia-reperfusion. Cells 2022 11 12 1894 10.3390/cells11121894 35741025
    [Google Scholar]
  54. Zhong W. Rao Z. Rao J. Han G. Wang P. Jiang T. Pan X. Zhou S. Zhou H. Wang X. Aging aggravated liver ischemia and reperfusion injury by promoting STING‐mediated NLRP3 activation in macrophages. Aging Cell 2020 19 8 13186 10.1111/acel.13186 32666684
    [Google Scholar]
  55. Lei Z. Deng M. Yi Z. Sun Q. Shapiro R.A. Xu H. Li T. Loughran P.A. Griepentrog J.E. Huang H. Scott M.J. Huang F. Billiar T.R. cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING. Am. J. Physiol. Gastrointest. Liver Physiol. 2018 314 6 G655 G667 10.1152/ajpgi.00326.2017 29446653
    [Google Scholar]
  56. Hu X. Leak R.K. Shi Y. Suenaga J. Gao Y. Zheng P. Chen J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol. 2015 11 1 56 64 10.1038/nrneurol.2014.207 25385337
    [Google Scholar]
  57. Kong L. Li W. Chang E. Wang W. Shen N. Xu X. Wang X. Zhang Y. Sun W. Hu W. Xu P. Liu X. mtDNA-STING axis mediates microglial polarization via IRF3/NF-κB signaling after ischemic stroke. Front. Immunol. 2022 13 860977 10.3389/fimmu.2022.860977 35450066
    [Google Scholar]
  58. Liao Y. Cheng J. Kong X. Li S. Li X. Zhang M. Zhang H. Yang T. Dong Y. Li J. Xu Y. Yuan Z. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics 2020 10 21 9644 9662 10.7150/thno.47651 32863951
    [Google Scholar]
  59. Haldar A.K. Saka H.A. Piro A.S. Dunn J.D. Henry S.C. Taylor G.A. Frickel E.M. Valdivia R.H. Coers J. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of “self” IRGM proteins. PLoS Pathog. 2013 9 6 1003414 10.1371/journal.ppat.1003414 23785284
    [Google Scholar]
  60. Pilla-Moffett D. Barber M.F. Taylor G.A. Coers J. Interferon-inducible GTPases in host resistance, inflammation and disease. J. Mol. Biol. 2016 428 17 3495 3513 10.1016/j.jmb.2016.04.032 27181197
    [Google Scholar]
  61. Kim K.H. Lee M.S. Autophagy—a key player in cellular and body metabolism. Nat. Rev. Endocrinol. 2014 10 6 322 337 10.1038/nrendo.2014.35 24663220
    [Google Scholar]
  62. Singh S.B. Ornatowski W. Vergne I. Naylor J. Delgado M. Roberts E. Ponpuak M. Master S. Pilli M. White E. Komatsu M. Deretic V. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat. Cell Biol. 2010 12 12 1154 1165 10.1038/ncb2119 21102437
    [Google Scholar]
  63. Rai P. Janardhan K.S. Meacham J. Madenspacher J.H. Lin W.C. Karmaus P.W.F. Martinez J. Li Q.Z. Yan M. Zeng J. Grinstaff M.W. Shirihai O.S. Taylor G.A. Fessler M.B. IRGM1 links mitochondrial quality control to autoimmunity. Nat. Immunol. 2021 22 3 312 321 10.1038/s41590‑020‑00859‑0 33510463
    [Google Scholar]
  64. Jena K.K. Mehto S. Nath P. Chauhan N.R. Sahu R. Dhar K. Das S.K. Kolapalli S.P. Murmu K.C. Jain A. Krishna S. Sahoo B.S. Chattopadhyay S. Rusten T.E. Prasad P. Chauhan S. Chauhan S. Autoimmunity gene IRGM suppresses cGAS ‐ STING and RIG ‐I‐ MAVS signaling to control interferon response. EMBO Rep. 2020 21 9 50051 10.15252/embr.202050051 32715615
    [Google Scholar]
  65. Pan M. CSNK1A1/CK1α suppresses autoimmunity by restraining the CGAS-STING1 signaling. Autophagy 2024 20 2 311 328
    [Google Scholar]
  66. Xu Y. he cGAS-STING pathway activates transcription factor TFEB to stimulate lysosome biogenesis and pathogen clearance Immunity 2024 S1074-7613 24 00532 6
    [Google Scholar]
  67. Durcan L. O’Dwyer T. Petri M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 2019 393 10188 2332 2343 24 10.1016/S0140‑6736(19)30237‑5 31180030
    [Google Scholar]
  68. Gkirtzimanaki K. Kabrani E. Nikoleri D. Polyzos A. Blanas A. Sidiropoulos P. Makrigiannakis A. Bertsias G. Boumpas D.T. Verginis P. IFNα impairs autophagic degradation of mtDNA promoting autoreactivity of SLE monocytes in a STING-dependent fashion. Cell Rep. 2018 25 4 921 933.e5 10.1016/j.celrep.2018.09.001 30355498
    [Google Scholar]
  69. Zhou X. Lu X. Lv J. Yang H. Qin L. Zhao M. Su Y. Li Z. Zhang H. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. Dis. 2011 70 7 1330 1337 10.1136/ard.2010.140111 21622776
    [Google Scholar]
  70. Olivieri G. Ceccarelli F. Perricone C. Ciccacci C. Pirone C. Natalucci F. Spinelli F.R. Alessandri C. Borgiani P. Conti F. Fever in systemic lupus erythematosus: Associated clinical features and genetic factors. Clin. Exp. Rheumatol. 2022 40 11 2141 2146 35349414
    [Google Scholar]
  71. Jakimovski D. Bittner S. Zivadinov R. Morrow S.A. Benedict R.H.B. Zipp F. Weinstock-Guttman B. Multiple sclerosis. Lancet 2024 403 10422 183 202 10.1016/S0140‑6736(23)01473‑3 37949093
    [Google Scholar]
  72. Dangond F. Donnelly A. Hohlfeld R. Lubetzki C. Kohlhaas S. Leocani L. Ciccarelli O. Stankoff B. Sormani M.P. Chataway J. Bozzoli F. Cucca F. Melton L. Coetzee T. Salvetti M. Facing the urgency of therapies for progressive MS — a Progressive MS Alliance proposal. Nat. Rev. Neurol. 2021 17 3 185 192 10.1038/s41582‑020‑00446‑9 33483719
    [Google Scholar]
  73. Faissner S. Plemel J.R. Gold R. Yong V.W. Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 2019 18 12 905 922 10.1038/s41573‑019‑0035‑2 31399729
    [Google Scholar]
  74. Bierhansl L. Hartung H.P. Aktas O. Ruck T. Roden M. Meuth S.G. Thinking outside the box: Non-canonical targets in multiple sclerosis. Nat. Rev. Drug Discov. 2022 21 8 578 600 10.1038/s41573‑022‑00477‑5 35668103
    [Google Scholar]
  75. Andreadou M. Ingelfinger F. De Feo D. Cramer T.L.M. Tuzlak S. Friebel E. Schreiner B. Eede P. Schneeberger S. Geesdorf M. Ridder F. Welsh C.A. Power L. Kirschenbaum D. Tyagarajan S.K. Greter M. Heppner F.L. Mundt S. Becher B. IL-12 sensing in neurons induces neuroprotective CNS tissue adaptation and attenuates neuroinflammation in mice. Nat. Neurosci. 2023 26 10 1701 1712 10.1038/s41593‑023‑01435‑z 37749256
    [Google Scholar]
  76. Oh-hora M. Yamashita M. Hogan P.G. Sharma S. Lamperti E. Chung W. Prakriya M. Feske S. Rao A. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 2008 9 4 432 443 10.1038/ni1574 18327260
    [Google Scholar]
  77. Woo M.S. Mayer C. Binkle-Ladisch L. Sonner J.K. Rosenkranz S.C. Shaposhnykov A. Rothammer N. Tsvilovskyy V. Lorenz S.M. Raich L. Bal L.C. Vieira V. Wagner I. Bauer S. Glatzel M. Conrad M. Merkler D. Freichel M. Friese M.A. STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell 2024 187 15 4043 4060.e30 10.1016/j.cell.2024.05.031 38878778
    [Google Scholar]
  78. Wang W. Wang Y. Su L. Zhang M. Zhang T. Zhao J. Ma H. Zhang D. Ji F. Jiao R.D. Li H. Xu Y. Chen L. Jiao J. Endothelial cells mediated by STING regulate oligodendrogenesis and myelination during brain development. Adv. Sci. 2024 11 38 2308508 10.1002/advs.202308508 39136074
    [Google Scholar]
  79. Zhang Y. Zhang Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020 17 8 807 821 10.1038/s41423‑020‑0488‑6 32612154
    [Google Scholar]
  80. Jin X.K. Liang J.L. Zhang S.M. Ji P. Huang Q.X. Qin Y.T. Deng X.C. Liu C.J. Zhang X.Z. Engineering metal-based hydrogel-mediated tertiary lymphoid structure formation via activation of the STING pathway for enhanced immunotherapy. Mater. Horiz. 2023 10 10 4365 4379 10.1039/D3MH00748K 37455643
    [Google Scholar]
  81. Saha T. Dash C. Jayabalan R. Khiste S. Kulkarni A. Kurmi K. Mondal J. Majumder P.K. Bardia A. Jang H.L. Sengupta S. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat. Nanotechnol. 2022 17 1 98 106 10.1038/s41565‑021‑01000‑4 34795441
    [Google Scholar]
  82. Voos W. Pollecker K. The mitochondrial lon protease: Novel functions off the beaten track? Biomolecules 2020 10 2 253 10.3390/biom10020253 32046155
    [Google Scholar]
  83. Cheng A.N. Cheng L.C. Kuo C.L. Lo Y.K. Chou H.Y. Chen C.H. Wang Y.H. Chuang T.H. Cheng S.J. Lee A.Y.L. Mitochondrial Lon-induced mtDNA leakage contributes to PD-L1-mediated immunoescape via STING-IFN signaling and extracellular vesicles. J. Immunother. Cancer 2020 8 2 001372 10.1136/jitc‑2020‑001372 33268351
    [Google Scholar]
  84. Field C.S. Baixauli F. Kyle R.L. Puleston D.J. Cameron A.M. Sanin D.E. Hippen K.L. Loschi M. Thangavelu G. Corrado M. Edwards-Hicks J. Grzes K.M. Pearce E.J. Blazar B.R. Pearce E.L. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive function. Cell Metab. 2020 31 2 422 437.e5 10.1016/j.cmet.2019.11.021 31883840
    [Google Scholar]
  85. Shen Q. Xu P. Mei C. Role of micronucleus-activated cGAS-STING signaling in antitumor immunity. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024 53 1 25 34 10.3724/zdxbyxb‑2023‑0485 38273467
    [Google Scholar]
  86. Saberiyan M. Gholami S. Ejlalidiz M. Rezaeian Manshadi M. Noorabadi P. Hamblin M.R. The dual role of chaperone-mediated autophagy in the response and resistance to cancer immunotherapy. Crit. Rev. Oncol. Hematol. 2025 210 104700 10.1016/j.critrevonc.2025.104700 40086769
    [Google Scholar]
  87. Zhang Y. Wang Y. Mu P. Zhu X. Dong Y. Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Front. Immunol. 2024 15 1470468 10.3389/fimmu.2024.1470468 39464890
    [Google Scholar]
  88. Kitajima S. Ivanova E. Guo S. Yoshida R. Campisi M. Sundararaman S.K. Tange S. Mitsuishi Y. Thai T.C. Masuda S. Piel B.P. Sholl L.M. Kirschmeier P.T. Paweletz C.P. Watanabe H. Yajima M. Barbie D.A. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov. 2019 9 1 34 45 10.1158/2159‑8290.CD‑18‑0689 30297358
    [Google Scholar]
  89. Yan X. Yao C. Fang C. Han M. Gong C. Hu D. Shen W. Wang L. Li S. Zhu S. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer. Int. J. Biol. Sci. 2022 18 2 585 598 10.7150/ijbs.65019 35002511
    [Google Scholar]
  90. Chou H.L. Fong Y. Wei C.K. Tsai E.M. Chen J.Y.F. Chang W.T. Wu C.Y. Huang H.W. Chiu C.C. A quinone-containing compound enhances camptothecin-induced apoptosis of lung cancer through modulating endogenous ROS and ERK signaling. Arch. Immunol. Ther. Exp. (Warsz.) 2017 65 3 241 252 10.1007/s00005‑016‑0424‑8 27677293
    [Google Scholar]
  91. Fermaintt C.S. Takahashi-Ruiz L. Liang H. Mooberry S.L. Risinger A.L. Eribulin activates the cGAS-STING pathway via the cytoplasmic accumulation of mitochondrial DNA. Mol. Pharmacol. 2021 100 4 309 318 10.1124/molpharm.121.000297 34312217
    [Google Scholar]
  92. Vasiyani H. Shinde A. Roy M. Mane M. Singh K. Singh J. Gohel D. Currim F. Vaidya K. Chhabria M. Singh R. RETRACTED ARTICLE: The analog of cGAMP, c-di-AMP, activates STING mediated cell death pathway in estrogen-receptor negative breast cancer cells. Apoptosis 2021 26 5-6 293 306 10.1007/s10495‑021‑01669‑x 33840002
    [Google Scholar]
  93. Daver N. Alotaibi A.S. Bücklein V. Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: Current concepts and future developments. Leukemia 2021 35 7 1843 1863 10.1038/s41375‑021‑01253‑x 33953290
    [Google Scholar]
  94. Dalton W.B. Ghiaur G. Resar L.M.S. Taking the STING out of acute myeloid leukemia through macrophage-mediated phagocytosis. J. Clin. Invest. 2022 132 5 157434 10.1172/JCI157434 35229728
    [Google Scholar]
  95. Xian H. Watari K. Sanchez-Lopez E. Offenberger J. Onyuru J. Sampath H. Ying W. Hoffman H.M. Shadel G.S. Karin M. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 2022 55 8 1370 1385.e8 10.1016/j.immuni.2022.06.007 35835107
    [Google Scholar]
  96. Meibers H.E. Warrick K.A. VonHandorf A. Vallez C.N. Kawarizadeh K. Saha I. Donmez O. Jain V.G. Kottyan L.C. Weirauch M.T. Pasare C. Effector memory T cells induce innate inflammation by triggering DNA damage and a non-canonical STING pathway in dendritic cells. Cell Rep. 2023 42 10 113180 10.1016/j.celrep.2023.113180 37794597
    [Google Scholar]
  97. Hayes M.T. Parkinson’s disease and parkinsonism. Am. J. Med. 2019 132 7 802 807 10.1016/j.amjmed.2019.03.001 30890425
    [Google Scholar]
  98. Mathur V. Burai R. Vest R.T. Bonanno L.N. Lehallier B. Zardeneta M.E. Mistry K.N. Do D. Marsh S.E. Abud E.M. Blurton-Jones M. Li L. Lashuel H.A. Wyss-Coray T. Activation of the STING-dependent type I interferon response reduces microglial reactivity and neuroinflammation. Neuron 2017 96 6 1290 1302.e6 10.1016/j.neuron.2017.11.032 29268096
    [Google Scholar]
  99. Malpartida A.B. Williamson M. Narendra D.P. Wade-Martins R. Ryan B.J. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: From mechanism to therapy. Trends Biochem. Sci. 2021 46 4 329 343 10.1016/j.tibs.2020.11.007 33323315
    [Google Scholar]
  100. Sliter D.A. Martinez J. Hao L. Chen X. Sun N. Fischer T.D. Burman J.L. Li Y. Zhang Z. Narendra D.P. Cai H. Borsche M. Klein C. Youle R.J. Parkin and PINK1 mitigate STING-induced inflammation. Nature 2018 561 7722 258 262 10.1038/s41586‑018‑0448‑9 30135585
    [Google Scholar]
  101. Borsche M. König I.R. Delcambre S. Petrucci S. Balck A. Brüggemann N. Zimprich A. Wasner K. Pereira S.L. Avenali M. Deuschle C. Badanjak K. Ghelfi J. Gasser T. Kasten M. Rosenstiel P. Lohmann K. Brockmann K. Valente E.M. Youle R.J. Grünewald A. Klein C. Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain 2020 143 10 3041 3051 10.1093/brain/awaa246 33029617
    [Google Scholar]
  102. Lee J.J. Andreazza S. Whitworth A.J. The STING pathway does not contribute to behavioural or mitochondrial phenotypes in Drosophila Pink1/parkin or mtDNA mutator models. Sci. Rep. 2020 10 1 2693 10.1038/s41598‑020‑59647‑3 32060339
    [Google Scholar]
  103. Kwon O.C. Song J.J. Yang Y. Kim S.H. Kim J.Y. Seok M.J. Hwang I. Yu J.W. Karmacharya J. Maeng H.J. Kim J. Jho E. Ko S.Y. Son H. Chang M.Y. Lee S.H. SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol. Med. 2021 13 4 13076 10.15252/emmm.202013076 33646633
    [Google Scholar]
  104. Hancock-Cerutti W. Wu Z. Xu P. Yadavalli N. Leonzino M. Tharkeshwar A.K. Ferguson S.M. Shadel G.S. De Camilli P. ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling. J. Cell Biol. 2022 221 7 202106046 10.1083/jcb.202106046 35657605
    [Google Scholar]
  105. van den Bos M.A.J. Geevasinga N. Higashihara M. Menon P. Vucic S. Pathophysiology and diagnosis of als: insights from advances in neurophysiological techniques. Int. J. Mol. Sci. 2019 20 11 2818 10.3390/ijms20112818 31185581
    [Google Scholar]
  106. Yu C.H. Davidson S. Harapas C.R. Hilton J.B. Mlodzianoski M.J. Laohamonthonkul P. Louis C. Low R.R.J. Moecking J. De Nardo D. Balka K.R. Calleja D.J. Moghaddas F. Ni E. McLean C.A. Samson A.L. Tyebji S. Tonkin C.J. Bye C.R. Turner B.J. Pepin G. Gantier M.P. Rogers K.L. McArthur K. Crouch P.J. Masters S.L. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 2020 183 3 636 649.e18 10.1016/j.cell.2020.09.020 33031745
    [Google Scholar]
  107. Tan H.Y. Yong Y.K. Xue Y.C. Liu H. Furihata T. Shankar E.M. Ng C.S. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience 2022 25 6 104404 10.1016/j.isci.2022.104404 35712074
    [Google Scholar]
  108. Fritsch L.E. Ju J. Gudenschwager Basso E.K. Soliman E. Paul S. Chen J. Kaloss A.M. Kowalski E.A. Tuhy T.C. Somaiya R.D. Wang X. Allen I.C. Theus M.H. Pickrell A.M. Type I interferon response is mediated by NLRX1-cGAS-STING signaling in brain injury. Front. Mol. Neurosci. 2022 15 852243 10.3389/fnmol.2022.852243 35283725
    [Google Scholar]
  109. Liu B. Carlson R.J. Pires I.S. Gentili M. Feng E. Hellier Q. Schwartz M.A. Blainey P.C. Irvine D.J. Hacohen N. Human STING is a proton channel. Science 2023 381 6657 508 514 10.1126/science.adf8974 37535724
    [Google Scholar]
  110. Wang X. Rao H. Zhao J. Wee A. Li X. Fei R. Huang R. Wu C. Liu F. Wei L. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Lab. Invest. 2020 100 4 542 552 10.1038/s41374‑019‑0342‑6 31745210
    [Google Scholar]
  111. Zeng H. Gao Y. Yu W. Liu J. Zhong C. Su X. Wen S. Liang H. Pharmacological inhibition of STING/TBK1 signaling attenuates myeloid fibroblast activation and macrophage to myofibroblast transition in renal fibrosis. Front. Pharmacol. 2022 13 940716 10.3389/fphar.2022.940716 35924048
    [Google Scholar]
  112. Kessler N. Viehmann S.F. Krollmann C. Mai K. Kirschner K.M. Luksch H. Kotagiri P. Böhner A.M.C. Huugen D. de Oliveira Mann C.C. Otten S. Weiss S.A.I. Zillinger T. Dobrikova K. Jenne D.E. Behrendt R. Ablasser A. Bartok E. Hartmann G. Hopfner K.P. Lyons P.A. Boor P. Rösen-Wolff A. Teichmann L.L. Heeringa P. Kurts C. Garbi N. Monocyte-derived macrophages aggravate pulmonary vasculitis via cGAS/] STING/IFN-mediated nucleic acid sensing. J. Exp. Med. 2022 219 10 20220759 10.1084/jem.20220759 35997679
    [Google Scholar]
  113. Chen Y. Yang C. Miao Y. Shi D. Li X. Tian S. Zhang Y. Xu C. Dong Y. Han C. Shi H. Bai C. Macrophage STING signaling promotes fibrosis in benign airway stenosis via an IL6-STAT3 pathway. Nat. Commun. 2025 16 1 289 10.1038/s41467‑024‑55170‑5 39753529
    [Google Scholar]
  114. Mao Y. Luo W. Zhang L. Wu W. Yuan L. Xu H. Song J. Fujiwara K. Abe J. LeMaire S.A. Wang X.L. Shen Y.H. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler. Thromb. Vasc. Biol. 2017 37 5 920 929 10.1161/ATVBAHA.117.309017 28302626
    [Google Scholar]
  115. Pham P.T. Fukuda D. Nishimoto S. Kim-Kaneyama J.R. Lei X.F. Takahashi Y. Sato T. Tanaka K. Suto K. Kawabata Y. Yamaguchi K. Yagi S. Kusunose K. Yamada H. Soeki T. Wakatsuki T. Shimada K. Kanematsu Y. Takagi Y. Shimabukuro M. Setou M. Barber G.N. Sata M. STING, a cytosolic DNA sensor, plays a critical role in atherogenesis: A link between innate immunity and chronic inflammation caused by lifestyle-related diseases. Eur. Heart J. 2021 42 42 4336 4348 10.1093/eurheartj/ehab249 34226923
    [Google Scholar]
  116. Huangfu N. Wang Y. Xu Z. Zheng W. Tao C. Li Z. Hu Y. Chen X. TDP43 exacerbates atherosclerosis progression by promoting inflammation and lipid uptake of macrophages. Front. Cell Dev. Biol. 2021 9 687169 10.3389/fcell.2021.687169 34291051
    [Google Scholar]
  117. Ma X.M. Geng K. Law B.Y.K. Wang P. Pu Y.L. Chen Q. Xu H.W. Tan X.Z. Jiang Z.Z. Xu Y. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes. Cell Biol. Toxicol. 2023 39 1 277 299 10.1007/s10565‑021‑09692‑z 35235096
    [Google Scholar]
  118. Yan M. Li Y. Luo Q. Zeng W. Shao X. Li L. Wang Q. Wang D. Zhang Y. Diao H. Rong X. Bai Y. Guo J. Mitochondrial damage and activation of the cytosolic DNA sensor cGAS-STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice. Cell Death Discov. 2022 8 1 258 10.1038/s41420‑022‑01046‑w 35538059
    [Google Scholar]
  119. Gong Y. Li G. Tao J. Wu N.N. Kandadi M.R. Bi Y. Wang S. Pei Z. Ren J. Double knockout of Akt2 and AMPK accentuates high fat diet-induced cardiac anomalies through a cGAS-STING-mediated mechanism. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 10 165855 10.1016/j.bbadis.2020.165855 32512189
    [Google Scholar]
  120. Luo W. Wang Y. Zhang L. Ren P. Zhang C. Li Y. Azares A.R. Zhang M. Guo J. Ghaghada K.B. Starosolski Z.A. Rajapakshe K. Coarfa C. Li Y. Chen R. Fujiwara K. Abe J. Coselli J.S. Milewicz D.M. LeMaire S.A. Shen Y.H. Critical role of cytosolic DNA and its sensing adaptor STING in aortic degeneration, dissection, and rupture. Circulation 2020 141 1 42 66 10.1161/CIRCULATIONAHA.119.041460 31887080
    [Google Scholar]
  121. Tyrrell D.J. Chen J. Li B.Y. Wood S.C. Rosebury-Smith W. Remmer H.A. Jiang L. Zhang M. Salmon M. Ailawadi G. Yang B. Goldstein D.R. Aging alters the aortic proteome in health and thoracic aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 2022 42 8 1060 1076 10.1161/ATVBAHA.122.317643 35510553
    [Google Scholar]
  122. Hamann L. Szwed M. Mossakowska M. Chudek J. Puzianowska-Kuznicka M. First evidence for STING SNP R293Q being protective regarding obesity-associated cardiovascular disease in age-advanced subjects - a cohort study. Immun. Ageing 2020 17 1 7 10.1186/s12979‑020‑00176‑y 32190093
    [Google Scholar]
  123. Yuan L. Mao Y. Luo W. Wu W. Xu H. Wang X.L. Shen Y.H. Palmitic acid dysregulates the Hippo-YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS-STING-IRF3 signaling mechanism. J. Biol. Chem. 2017 292 36 15002 15015 10.1074/jbc.M117.804005 28698384
    [Google Scholar]
  124. Rizwan H. Pal S. Sabnam S. Pal A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life Sci. 2020 241 117148 10.1016/j.lfs.2019.117148 31830478
    [Google Scholar]
  125. Pal S. Rao G.N. Pal A. High glucose-induced ROS accumulation is a critical regulator of ERK1/2-Akt-tuberin-mTOR signalling in RGC-5 cells. Life Sci. 2020 256 117914 10.1016/j.lfs.2020.117914 32512010
    [Google Scholar]
  126. Hu H.Q. Qiao J.T. Liu F.Q. Wang J.B. Sha S. He Q. Cui C. Song J. Zang N. Wang L.S. Sun Z. Chen L. Hou X.G. The STING-IRF3 pathway is involved in lipotoxic injury of pancreatic β cells in type 2 diabetes. Mol. Cell. Endocrinol. 2020 518 110890 10.1016/j.mce.2020.110890 32781250
    [Google Scholar]
  127. Xiaohong L. Zhenting Z. Yunjie Y. Wei C. Xiangjin X. Kun X. Xin L. Lu L. Jun L. Pin C. Activation of the STING‐IRF3 pathway involved in psoriasis with diabetes mellitus. J. Cell. Mol. Med. 2022 26 8 2139 2151 10.1111/jcmm.17236 35174638
    [Google Scholar]
  128. Bai J. Cervantes C. Liu J. He S. Zhou H. Zhang B. Cai H. Yin D. Hu D. Li Z. Chen H. Gao X. Wang F. O’Connor J.C. Xu Y. Liu M. Dong L.Q. Liu F. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc. Natl. Acad. Sci. USA 2017 114 46 12196 12201 10.1073/pnas.1708744114 29087318
    [Google Scholar]
  129. Bai J. Cervantes C. He S. He J. Plasko G.R. Wen J. Li Z. Yin D. Zhang C. Liu M. Dong L.Q. Liu F. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun. Biol. 2020 3 1 257 10.1038/s42003‑020‑0986‑1 32444826
    [Google Scholar]
  130. Huang Y. Zhou J.H. Zhang H. Canfran-Duque A. Singh A.K. Perry R.J. Shulman G.I. Fernandez-Hernando C. Min W. Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. J. Clin. Invest. 2022 132 9 148852 10.1172/JCI148852 35202005
    [Google Scholar]
  131. Pagan C. Goubran-Botros H. Delorme R. Benabou M. Lemière N. Murray K. Amsellem F. Callebert J. Chaste P. Jamain S. Fauchereau F. Huguet G. Maronde E. Leboyer M. Launay J.M. Bourgeron T. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci. Rep. 2017 7 1 2096 10.1038/s41598‑017‑02152‑x 28522826
    [Google Scholar]
  132. Ghorbandaiepour T. Sadroddiny E. Zahmatkesh M. Hassanzadeh G. Inhibition of hippocampal melatonin synthesis by siRNA induced learning and memory deficits in male rats. Horm. Behav. 2024 164 105599 10.1016/j.yhbeh.2024.105599 38964019
    [Google Scholar]
  133. Muxel S.M. Pires-Lapa M.A. Monteiro A.W.A. Cecon E. Tamura E.K. Floeter-Winter L.M. Markus R.P. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One 2012 7 12 52010 10.1371/journal.pone.0052010 23284853
    [Google Scholar]
  134. Markus R.P. Fernandes P.A. Kinker G.S. da Silveira Cruz-Machado S. Marçola M. Immune‐pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br. J. Pharmacol. 2018 175 16 3239 3250 10.1111/bph.14083 29105727
    [Google Scholar]
  135. Deng Z. He M. Hu H. Zhang W. Zhang Y. Ge Y. Ma T. Wu J. Li L. Sun M. An S. Li J. Huang Q. Gong S. Zhang J. Chen Z. Zeng Z. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation. Autophagy 2024 20 1 151 165 10.1080/15548627.2023.2252265 37651673
    [Google Scholar]
  136. Zhang Y. Liu Y. Hou M. Xia X. Liu J. Xu Y. Shi Q. Zhang Z. Wang L. Shen Y. Yang H. He F. Zhu X. Reprogramming of mitochondrial respiratory chain complex by targeting SIRT3‐COX4I2 axis attenuates osteoarthritis progression. Adv. Sci. 2023 10 10 2206144 10.1002/advs.202206144 36683245
    [Google Scholar]
  137. Chen J. Ma W. Yue S. Li D. Chen L. Zhang C. Guan Y. Li C. Jiang C. Liao G. Liang C. Wang H. Tai S. Dual deficiency of melatonin and dihydrotestosterone promotes stromal cell damage and mediates prostatitis via the cGAS-STING pathway in sleep-deprived mice. Cell Commun. Signal. 2024 22 1 183 10.1186/s12964‑024‑01554‑5 38491517
    [Google Scholar]
  138. Jauhari A. Baranov S.V. Suofu Y. Kim J. Singh T. Yablonska S. Li F. Wang X. Oberly P. Minnigh M.B. Poloyac S.M. Carlisle D.L. Friedlander R.M. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J. Clin. Invest. 2020 130 6 3124 3136 10.1172/JCI135026 32182222
    [Google Scholar]
  139. Anderson G. Tumor microenvironment and metabolism: Role of the mitochondrial melatonergic pathway in determining intercellular interactions in a new dynamic homeostasis. Int. J. Mol. Sci. 2022 24 1 311 10.3390/ijms24010311 36613754
    [Google Scholar]
  140. Zhou H. Wang L. Lin Z. Jiang C. Chen X. Wang K. Liu L. Shao L. Pan J. Li J. Zhang D. Wu J. Methylglyoxal from gut microbes boosts radiosensitivity and radioimmunotherapy in rectal cancer by triggering endoplasmic reticulum stress and cGAS-STING activation. J. Immunother. Cancer 2023 11 11 007840 10.1136/jitc‑2023‑007840 38035726
    [Google Scholar]
  141. Liu Z. Wang M. Wang X. Bu Q. Wang Q. Su W. Li L. Zhou H. Lu L. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury. Redox Biol. 2022 52 102305 10.1016/j.redox.2022.102305 35367811
    [Google Scholar]
  142. Zhong W. Rao Z. Xu J. Sun Y. Hu H. Wang P. Xia Y. Pan X. Tang W. Chen Z. Zhou H. Wang X. Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate STING signaling during liver sterile inflammation. Aging Cell 2022 21 6 13622 10.1111/acel.13622 35599014
    [Google Scholar]
  143. Petrasek J. Iracheta-Vellve A. Csak T. Satishchandran A. Kodys K. Kurt-Jones E.A. Fitzgerald K.A. Szabo G. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl. Acad. Sci. USA 2013 110 41 16544 16549 10.1073/pnas.1308331110 24052526
    [Google Scholar]
  144. Maekawa H. Inoue T. Ouchi H. Jao T.M. Inoue R. Nishi H. Fujii R. Ishidate F. Tanaka T. Tanaka Y. Hirokawa N. Nangaku M. Inagi R. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 2019 29 5 1261 1273.e6 10.1016/j.celrep.2019.09.050 31665638
    [Google Scholar]
  145. Gong W. Lu L. Zhou Y. Liu J. Ma H. Fu L. Huang S. Zhang Y. Zhang A. Jia Z. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. Am. J. Physiol. Renal Physiol. 2021 320 4 F608 F616 10.1152/ajprenal.00554.2020 33615891
    [Google Scholar]
  146. Stallons L.J. Whitaker R.M. Schnellmann R.G. Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol. Lett. 2014 224 3 326 332 10.1016/j.toxlet.2013.11.014 24275386
    [Google Scholar]
  147. Chung K.W. Dhillon P. Huang S. Sheng X. Shrestha R. Qiu C. Kaufman B.A. Park J. Pei L. Baur J. Palmer M. Susztak K. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 2019 30 4 784 799.e5 10.1016/j.cmet.2019.08.003 31474566
    [Google Scholar]
  148. Ning L. Wei W. Wenyang J. Rui X. Qing G. Cytosolic DNA‐STING‐NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide. Clin. Transl. Med. 2020 10 7 228 10.1002/ctm2.228 33252860
    [Google Scholar]
  149. Liu Q. Wu J. Zhang X. Li X. Wu X. Zhao Y. Ren J. Circulating mitochondrial DNA-triggered autophagy dysfunction via STING underlies sepsis-related acute lung injury. Cell Death Dis. 2021 12 7 673 10.1038/s41419‑021‑03961‑9 34218252
    [Google Scholar]
  150. Domizio J.D. Gulen M.F. Saidoune F. Thacker V.V. Yatim A. Sharma K. Nass T. Guenova E. Schaller M. Conrad C. Goepfert C. de Leval L. Garnier C. Berezowska S. Dubois A. Gilliet M. Ablasser A. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022 603 7899 145 151 10.1038/s41586‑022‑04421‑w 35045565
    [Google Scholar]
  151. Gomes M.T.R. Guimarães E.S. Marinho F.V. Macedo I. Aguiar E.R.G.R. Barber G.N. Moraes-Vieira P.M.M. Alves-Filho J.C. Oliveira S.C. STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection. PLoS Pathog. 2021 17 5 1009597 10.1371/journal.ppat.1009597 33989349
    [Google Scholar]
  152. Olson G.S. Murray T.A. Jahn A.N. Mai D. Diercks A.H. Gold E.S. Aderem A. Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Rep. 2021 35 9 109195 10.1016/j.celrep.2021.109195 34077724
    [Google Scholar]
  153. Wiens K.E. Ernst J.D. The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog. 2016 12 8 1005809 10.1371/journal.ppat.1005809 27500737
    [Google Scholar]
  154. Kim B.R. Kim B.J. Kook Y.H. Kim B.J. Mycobacterium abscessus infection leads to enhanced production of type 1 interferon and NLRP3 inflammasome activation in murine macrophages via mitochondrial oxidative stress. PLoS Pathog. 2020 16 3 1008294 10.1371/journal.ppat.1008294 32210476
    [Google Scholar]
  155. Kim B.R. Kim B.J. Kook Y.H. Kim B.J. Phagosome escape of rough Mycobacterium abscessus strains in murine macrophage via phagosomal rupture can lead to type I interferon production and their cell-to-cell spread. Front. Immunol. 2019 10 125 10.3389/fimmu.2019.00125 30766538
    [Google Scholar]
  156. Lienard J. Nobs E. Lovins V. Movert E. Valfridsson C. Carlsson F. The Mycobacterium marinum ESX-1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms. Proc. Natl. Acad. Sci. USA 2020 117 2 1160 1166 10.1073/pnas.1911646117 31879349
    [Google Scholar]
  157. Cui Y. Zhao D. Sreevatsan S. Liu C. Yang W. Song Z. Yang L. Barrow P. Zhou X. Mycobacterium bovis induces endoplasmic reticulum stress mediated-apoptosis by activating IRF3 in a murine macrophage cell line. Front. Cell. Infect. Microbiol. 2016 6 182 10.3389/fcimb.2016.00182 28018864
    [Google Scholar]
  158. Gao Y. Xu W. Dou X. Wang H. Zhang X. Yang S. Liao H. Hu X. Wang H. Mitochondrial DNA leakage caused by Streptococcus pneumoniae hydrogen peroxide promotes type I IFN expression in lung cells. Front. Microbiol. 2019 10 630 10.3389/fmicb.2019.00630 30984149
    [Google Scholar]
  159. Hu X. Peng X. Lu C. Zhang X. Gan L. Gao Y. Yang S. Xu W. Wang J. Yin Y. Wang H. Type I IFN expression is stimulated by cytosolic Mt DNA released from pneumolysin‐damaged mitochondria via the STING signaling pathway in macrophages. FEBS J. 2019 286 23 4754 4768 10.1111/febs.15001 31315154
    [Google Scholar]
  160. Movert E. Lienard J. Valfridsson C. Nordström T. Johansson-Lindbom B. Carlsson F. Streptococcal M protein promotes IL-10 production by cGAS-independent activation of the STING signaling pathway. PLoS Pathog. 2018 14 3 1006969 10.1371/journal.ppat.1006969 29579113
    [Google Scholar]
  161. Benmerzoug S. Rose S. Bounab B. Gosset D. Duneau L. Chenuet P. Mollet L. Le Bert M. Lambers C. Geleff S. Roth M. Fauconnier L. Sedda D. Carvalho C. Perche O. Laurenceau D. Ryffel B. Apetoh L. Kiziltunc A. Uslu H. Albez F.S. Akgun M. Togbe D. Quesniaux V.F.J. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat. Commun. 2018 9 1 5226 10.1038/s41467‑018‑07425‑1 30523277
    [Google Scholar]
  162. Comish P.B. Liu M.M. Huebinger R. Carlson D. Kang R. Tang D. The cGAS-STING pathway connects mitochondrial damage to inflammation in burn-induced acute lung injury in rat. Burns 2022 48 1 168 175 10.1016/j.burns.2021.04.007 33879372
    [Google Scholar]
  163. Ryu C. Walia A. Ortiz V. Perry C. Woo S. Reeves B.C. Sun H. Winkler J. Kanyo J.E. Wang W. Vukmirovic M. Ristic N. Stratton E.A. Meena S.R. Minasyan M. Kurbanov D. Liu X. Lam T.T. Farina G. Gomez J.L. Gulati M. Herzog E.L. Bioactive plasma mitochondrial DNA is associated with disease progression in scleroderma‐associated interstitial lung disease. Arthritis Rheumatol. 2020 72 11 1905 1915 10.1002/art.41418 32602227
    [Google Scholar]
  164. D’Anna S.E. Maniscalco M. Carriero V. Gnemmi I. Caramori G. Nucera F. Righi L. Brun P. Balbi B. Adcock I.M. Stella M.G. Ricciardolo F.L.M. Di Stefano A. Evaluation of innate immune mediators related to respiratory viruses in the lung of stable COPD patients. J. Clin. Med. 2020 9 6 1807 10.3390/jcm9061807 32531971
    [Google Scholar]
  165. Gao J. Liang Y. Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front. Immunol. 2022 13 888713 10.3389/fimmu.2022.888713 35844605
    [Google Scholar]
  166. Larkin B. Ilyukha V. Sorokin M. Buzdin A. Vannier E. Poltorak A. Cutting edge: Activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 2017 199 2 397 402 10.4049/jimmunol.1601999 28615418
    [Google Scholar]
  167. Amouzegar A. Chelvanambi M. Filderman J. Storkus W. Luke J. STING agonists as cancer therapeutics. Cancers 2021 13 11 2695 10.3390/cancers13112695 34070756
    [Google Scholar]
  168. Hansen A.S. Jensen L.S. Gammelgaard K.R. Ryttersgaard K.G. Krapp C. Just J. Jønsson K.L. Jensen P.B. Boesen T. Johannsen M. Etzerodt A. Deleuran B.W. Jakobsen M.R. T‐cell derived extracellular vesicles prime macrophages for improved STING based cancer immunotherapy. J. Extracell. Vesicles 2023 12 8 12350 10.1002/jev2.12350 37525396
    [Google Scholar]
  169. Zhang Z. Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat. Rev. Immunol. 2025 25 6 425 244 10.1038/s41577‑024‑01112‑7 39774812
    [Google Scholar]
  170. Wu Q. Leng X. Zhang Q. Zhu Y.Z. Zhou R. Liu Y. Mei C. Zhang D. Liu S. Chen S. Wang X. Lin A. Lin X. Liang T. Shen L. Feng X.H. Xia B. Xu P. IRF3 activates RB to authorize cGAS-STING-induced senescence and mitigate liver fibrosis. Sci. Adv. 2024 10 9 eadj2102 10.1126/sciadv.adj2102 38416816
    [Google Scholar]
  171. Pan J. Fei C.J. Hu Y. Wu X.Y. Nie L. Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool. Res. 2023 44 1 183 218 10.24272/j.issn.2095‑8137.2022.464 36579404
    [Google Scholar]
  172. Jiang S.Y. Tian T. Yao H. Xia X.M. Wang C. Cao L. Hu G. Du R.H. Lu M. The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence. Cell Death Differ. 2023 30 10 2280 2292 10.1038/s41418‑023‑01216‑y 37633968
    [Google Scholar]
  173. Sladitschek-Martens H.L. Guarnieri A. Brumana G. Zanconato F. Battilana G. Xiccato R.L. Panciera T. Forcato M. Bicciato S. Guzzardo V. Fassan M. Ulliana L. Gandin A. Tripodo C. Foiani M. Brusatin G. Cordenonsi M. Piccolo S. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature 2022 607 7920 790 798 10.1038/s41586‑022‑04924‑6 35768505
    [Google Scholar]
/content/journals/cn/10.2174/011570159X388747250830161230
Loading
/content/journals/cn/10.2174/011570159X388747250830161230
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test