Skip to content
2000
image of Microglia-Neuron Interactions in Alzheimer’s Disease

Abstract

Alzheimer's disease (AD) is a progressive disease characterized by significant cognitive decline, posing a substantial threat to life. Neuronal loss and dysfunction are responsible for the cognitive decline and behavioral disturbances observed in AD. Microglia are increasingly recognized for shaping the fate of neurons. However, the role of microglia-neuron interaction in neuronal degeneration of AD remains largely unclear. This review discusses microglia-mediated excessive synaptic pruning and microglia-neuron metabolic coupling in the neuronal degeneration of AD. It also summarizes the role of microglia-neuron interactions in classical pathogenic hypotheses such as the amyloid cascade, tau protein, neuroinflammation, and metal ions. It is found that microglia can serve as protectors of neurons, yet they also exacerbate neuronal damage under stress stimulation. This bidirectional modulation of microglia-neuron interaction provides a novel direction for rescuing AD neurons.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X379539250807114252
2025-08-26
2025-10-28
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  2. van Dyck C.H. Swanson C.J. Aisen P. Bateman R.J. Chen C. Gee M. Kanekiyo M. Li D. Reyderman L. Cohen S. Froelich L. Katayama S. Sabbagh M. Vellas B. Watson D. Dhadda S. Irizarry M. Kramer L.D. Iwatsubo T. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  3. Boxer A.L. Sperling R. Accelerating Alzheimer’s therapeutic development: The past and future of clinical trials. Cell 2023 186 22 4757 4772 10.1016/j.cell.2023.09.023 37848035
    [Google Scholar]
  4. Peng L. Bestard-Lorigados I. Song W. The synapse as a treatment avenue for Alzheimer’s Disease. Mol. Psychiatry 2022 27 7 2940 2949 10.1038/s41380‑022‑01565‑z 35444256
    [Google Scholar]
  5. Cai H. Pang Y. Ren Z. Fu X. Jia L. Delivering synaptic protein mRNAs via extracellular vesicles ameliorates cognitive impairment in a mouse model of Alzheimer’s disease. BMC Med. 2024 22 1 138 10.1186/s12916‑024‑03359‑2 38528511
    [Google Scholar]
  6. Keine C. Al-Yaari M. Radulovic T. Thomas C.I. Valino Ramos P. Guerrero-Given D. Ranjan M. Taschenberger H. Kamasawa N. Young S.M. Presynaptic Rac1 controls synaptic strength through the regulation of synaptic vesicle priming. eLife 2022 11 e81505 10.7554/eLife.81505 36214784
    [Google Scholar]
  7. Vandael D. Jonas P. Structure, biophysics, and circuit function of a “giant” cortical presynaptic terminal. Science 2024 383 6687 eadg6757 10.1126/science.adg6757 38452088
    [Google Scholar]
  8. Porsteinsson A.P. Isaacson R.S. Knox S. Sabbagh M.N. Rubino I. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021. J. Prev. Alzheimers Dis. 2021 8 3 371 386 10.14283/jpad.2021.23 34101796
    [Google Scholar]
  9. Pei Y.A. Davies J. Zhang M. Zhang H.T. The role of synaptic dysfunction in Alzheimer’s disease. J. Alzheimers Dis. 2020 76 1 49 62 10.3233/JAD‑191334 32417776
    [Google Scholar]
  10. Gazestani V. Kamath T. Nadaf N.M. Dougalis A. Burris S.J. Rooney B. Junkkari A. Vanderburg C. Pelkonen A. Gomez-Budia M. Välimäki N.N. Rauramaa T. Therrien M. Koivisto A.M. Tegtmeyer M. Herukka S.K. Abdulraouf A. Marsh S.E. Hiltunen M. Nehme R. Malm T. Stevens B. Leinonen V. Macosko E.Z. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 2023 186 20 4438 4453.e23 10.1016/j.cell.2023.08.005 37774681
    [Google Scholar]
  11. Kauwe G. Pareja-Navarro K.A. Yao L. Chen J.H. Wong I. Saloner R. Cifuentes H. Nana A.L. Shah S. Li Y. Le D. Spina S. Grinberg L.T. Seeley W.W. Kramer J.H. Sacktor T.C. Schilling B. Gan L. Casaletto K.B. Tracy T.E. KIBRA repairs synaptic plasticity and promotes resilience to tauopathy-related memory loss. J. Clin. Invest. 2024 134 3 e169064 10.1172/JCI169064 38299587
    [Google Scholar]
  12. Sun M.K. Alkon D.L. Alzheimer’s therapeutic development: shifting neurodegeneration to neuroregeneration. Trends Pharmacol. Sci. 2024 45 3 197 209 10.1016/j.tips.2024.01.012 38360510
    [Google Scholar]
  13. Kazim S.F. Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: Emerging therapeutic modality for Alzheimer’s disease. Mol. Neurodegener. 2016 11 1 50 10.1186/s13024‑016‑0119‑y 27400746
    [Google Scholar]
  14. Cserép C. Pósfai B. Dénes Á. Shaping neuronal fate: Functional heterogeneity of direct microglia-neuron interactions. Neuron 2021 109 2 222 240 10.1016/j.neuron.2020.11.007 33271068
    [Google Scholar]
  15. Escoubas C.C. Molofsky A.V. Microglia as integrators of brain-associated molecular patterns. Trends Immunol. 2024 45 5 358 370 10.1016/j.it.2024.03.009 38658221
    [Google Scholar]
  16. Neniskyte U. Gross C.T. Errant gardeners: Glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat. Rev. Neurosci. 2017 18 11 658 670 10.1038/nrn.2017.110 28931944
    [Google Scholar]
  17. Germann M. Brederoo S.G. Sommer I.E.C. Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders. Curr. Opin. Psychiatry 2021 34 3 222 227 10.1097/YCO.0000000000000696 33560023
    [Google Scholar]
  18. Hedrick N.G. Wright W.J. Komiyama T. Local and global predictors of synapse elimination during motor learning. Sci. Adv. 2024 10 11 eadk0540 10.1126/sciadv.adk0540 38489360
    [Google Scholar]
  19. Yasuda M. Nagappan-Chettiar S. Johnson-Venkatesh E.M. Umemori H. An activity-dependent determinant of synapse elimination in the mammalian brain. Neuron 2021 109 8 1333 1349.e6 10.1016/j.neuron.2021.03.006 33770504
    [Google Scholar]
  20. Faust T.E. Gunner G. Schafer D.P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 2021 22 11 657 673 10.1038/s41583‑021‑00507‑y 34545240
    [Google Scholar]
  21. Morizawa Y.M. Matsumoto M. Nakashima Y. Endo N. Aida T. Ishikane H. Beppu K. Moritoh S. Inada H. Osumi N. Shigetomi E. Koizumi S. Yang G. Hirai H. Tanaka K. Tanaka K.F. Ohno N. Fukazawa Y. Matsui K. Synaptic pruning through glial synapse engulfment upon motor learning. Nat. Neurosci. 2022 25 11 1458 1469 10.1038/s41593‑022‑01184‑5 36319770
    [Google Scholar]
  22. Cheadle L. Rivera S.A. Phelps J.S. Ennis K.A. Stevens B. Burkly L.C. Lee W.C.A. Greenberg M.E. Sensory experience engages microglia to shape neural connectivity through a non-phagocytic mechanism. Neuron 2020 108 3 451 468.e9 10.1016/j.neuron.2020.08.002 32931754
    [Google Scholar]
  23. Lan L. Wang H. Zhang X. Shen Q. Li X. He L. Rong X. Peng J. Mo J. Peng Y. Chronic exposure of alcohol triggers microglia-mediated synaptic elimination inducing cognitive impairment. Exp. Neurol. 2022 353 114061 10.1016/j.expneurol.2022.114061 35367455
    [Google Scholar]
  24. Györffy B.A. Kun J. Török G. Bulyáki É. Borhegyi Z. Gulyássy P. Kis V. Szocsics P. Micsonai A. Matkó J. Drahos L. Juhász G. Kékesi K.A. Kardos J. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proc. Natl. Acad. Sci. USA 2018 115 24 6303 6308 10.1073/pnas.1722613115 29844190
    [Google Scholar]
  25. Lituma P.J. Woo E. O’Hara B.F. Castillo P.E. Sibinga N.E.S. Nandi S. Altered synaptic connectivity and brain function in mice lacking microglial adapter protein Iba1. Proc. Natl. Acad. Sci. USA 2021 118 46 e2115539118 10.1073/pnas.2115539118 34764226
    [Google Scholar]
  26. Gunner G. Cheadle L. Johnson K.M. Ayata P. Badimon A. Mondo E. Nagy M.A. Liu L. Bemiller S.M. Kim K.W. Lira S.A. Lamb B.T. Tapper A.R. Ransohoff R.M. Greenberg M.E. Schaefer A. Schafer D.P. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat. Neurosci. 2019 22 7 1075 1088 10.1038/s41593‑019‑0419‑y 31209379
    [Google Scholar]
  27. Dundee J.M. Puigdellívol M. Butler R. Brown G.C. P2Y 6 receptor-dependent microglial phagocytosis of synapses during development regulates synapse density and memory. J. Neurosci. 2023 43 48 8090 8103 10.1523/JNEUROSCI.1089‑23.2023 37758475
    [Google Scholar]
  28. Favuzzi E. Huang S. Saldi G.A. Binan L. Ibrahim L.A. Fernández-Otero M. Cao Y. Zeine A. Sefah A. Zheng K. Xu Q. Khlestova E. Farhi S.L. Bonneau R. Datta S.R. Stevens B. Fishell G. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 2021 184 15 4048 4063.e32 10.1016/j.cell.2021.06.018 34233165
    [Google Scholar]
  29. Chen D. Lou Q. Song X.J. Kang F. Liu A. Zheng C. Li Y. Wang D. Qun S. Zhang Z. Cao P. Jin Y. Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice. Nat. Commun. 2024 15 1 449 10.1038/s41467‑024‑44704‑6 38200023
    [Google Scholar]
  30. Stevens B. Allen N.J. Vazquez L.E. Howell G.R. Christopherson K.S. Nouri N. Micheva K.D. Mehalow A.K. Huberman A.D. Stafford B. Sher A. Litke A.M. Lambris J.D. Smith S.J. John S.W.M. Barres B.A. The classical complement cascade mediates CNS synapse elimination. Cell 2007 131 6 1164 1178 10.1016/j.cell.2007.10.036 18083105
    [Google Scholar]
  31. Schafer D.P. Lehrman E.K. Kautzman A.G. Koyama R. Mardinly A.R. Yamasaki R. Ransohoff R.M. Greenberg M.E. Barres B.A. Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012 74 4 691 705 10.1016/j.neuron.2012.03.026 22632727
    [Google Scholar]
  32. Li T. Chiou B. Gilman C.K. Luo R. Koshi T. Yu D. Oak H.C. Giera S. Johnson-Venkatesh E. Muthukumar A.K. Stevens B. Umemori H. Piao X. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 2020 39 16 e104136 10.15252/embj.2019104136 32452062
    [Google Scholar]
  33. Fracassi A. Marcatti M. Tumurbaatar B. Woltjer R. Moreno S. Taglialatela G. TREM2 ‐induced activation of microglia contributes to synaptic integrity in cognitively intact aged individuals with Alzheimer’s neuropathology. Brain Pathol. 2023 33 1 e13108 10.1111/bpa.13108 35816404
    [Google Scholar]
  34. Park J. Choi Y. Jung E. Lee S.H. Sohn J.W. Chung W.S. Microglial MERTK eliminates phosphatidylserine‐displaying inhibitory post‐synapses. EMBO J. 2021 40 15 e107121 10.15252/embj.2020107121 34013588
    [Google Scholar]
  35. Zhou J. Wade S.D. Graykowski D. Xiao M.F. Zhao B. Giannini L.A.A. Hanson J.E. van Swieten J.C. Sheng M. Worley P.F. Dejanovic B. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci. Transl. Med. 2023 15 689 eadf0141 10.1126/scitranslmed.adf0141 36989373
    [Google Scholar]
  36. Cong Q. Soteros B.M. Wollet M. Kim J.H. Sia G.M. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat. Neurosci. 2020 23 9 1067 1078 10.1038/s41593‑020‑0672‑0 32661396
    [Google Scholar]
  37. Iweka C.A. Seigneur E. Hernandez A.L. Paredes S.H. Cabrera M. Blacher E. Pasternak C.T. Longo F.M. de Lecea L. Andreasson K.I. Myeloid deficiency of the intrinsic clock protein BMAL1 accelerates cognitive aging by disrupting microglial synaptic pruning. J. Neuroinflammation 2023 20 1 48 10.1186/s12974‑023‑02727‑8 36829230
    [Google Scholar]
  38. Lui H. Zhang J. Makinson S.R. Cahill M.K. Kelley K.W. Huang H.Y. Shang Y. Oldham M.C. Martens L.H. Gao F. Coppola G. Sloan S.A. Hsieh C.L. Kim C.C. Bigio E.H. Weintraub S. Mesulam M.M. Rademakers R. Mackenzie I.R. Seeley W.W. Karydas A. Miller B.L. Borroni B. Ghidoni R. Farese R.V. Paz J.T. Barres B.A. Huang E.J. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 2016 165 4 921 935 10.1016/j.cell.2016.04.001 27114033
    [Google Scholar]
  39. Zhong L. Sheng X. Wang W. Li Y. Zhuo R. Wang K. Zhang L. Hu D.D. Hong Y. Chen L. Rao H. Li T. Chen M. Lin Z. Zhang Y. Wang X. Yan X.X. Chen X. Bu G. Chen X.F. TREM2 receptor protects against complement-mediated synaptic loss by binding to complement C1q during neurodegeneration. Immunity 2023 56 8 1794 1808.e8 10.1016/j.immuni.2023.06.016 37442133
    [Google Scholar]
  40. Horchar M.J. Wohleb E.S. Glucocorticoid receptor antagonism prevents microglia-mediated neuronal remodeling and behavioral despair following chronic unpredictable stress. Brain Behav. Immun. 2019 81 329 340 10.1016/j.bbi.2019.06.030 31255679
    [Google Scholar]
  41. Morrissey M.A. Kern N. Vale R.D. CD47 ligation repositions the inhibitory receptor SIRPA to suppress integrin activation and phagocytosis. Immunity 2020 53 2 290 302.e6 10.1016/j.immuni.2020.07.008 32768386
    [Google Scholar]
  42. Lehrman E.K. Wilton D.K. Litvina E.Y. Welsh C.A. Chang S.T. Frouin A. Walker A.J. Heller M.D. Umemori H. Chen C. Stevens B. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 2018 100 1 120 134.e6 10.1016/j.neuron.2018.09.017 30308165
    [Google Scholar]
  43. Hong S. Beja-Glasser V.F. Nfonoyim B.M. Frouin A. Li S. Ramakrishnan S. Merry K.M. Shi Q. Rosenthal A. Barres B.A. Lemere C.A. Selkoe D.J. Stevens B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016 352 6286 712 716 10.1126/science.aad8373 27033548
    [Google Scholar]
  44. Wen L. Bi D. Shen Y. Complement-mediated synapse loss in Alzheimer’s disease: Mechanisms and involvement of risk factors. Trends Neurosci. 2024 47 2 135 149 10.1016/j.tins.2023.11.010 38129195
    [Google Scholar]
  45. Zhai Q. Zhang Y. Ye M. Zhu S. Sun J. Wang Y. Deng B. Ma D. Wang Q. Reducing complement activation during sleep deprivation yields cognitive improvement by dexmedetomidine. Br. J. Anaesth. 2023 131 3 542 555 10.1016/j.bja.2023.04.044 37517957
    [Google Scholar]
  46. Jin M. Xu R. Wang L. Alam M.M. Ma Z. Zhu S. Martini A.C. Jadali A. Bernabucci M. Xie P. Kwan K.Y. Pang Z.P. Head E. Liu Y. Hart R.P. Jiang P. Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer’s disease. Cell Stem Cell 2022 29 7 1135 1153.e8 10.1016/j.stem.2022.06.007 35803230
    [Google Scholar]
  47. Hao X. Li Z. Li W. Katz J. Michalek S.M. Barnum S.R. Pozzo-Miller L. Saito T. Saido T.C. Wang Q. Roberson E.D. Zhang P. Periodontal infection aggravates C1q-mediated microglial activation and synapse pruning in Alzheimer’s mice. Front. Immunol. 2022 13 816640 10.3389/fimmu.2022.816640 35178049
    [Google Scholar]
  48. Zhang C. Qi H. Jia D. Zhao J. Xu C. Liu J. Cui Y. Zhang J. Wang M. Chen M. Tang B. Cognitive impairment in Alzheimer’s disease FAD4T mouse model: Synaptic loss facilitated by activated microglia via C1qA. Life Sci. 2024 340 122457 10.1016/j.lfs.2024.122457 38266812
    [Google Scholar]
  49. Györffy B.A. Tóth V. Török G. Gulyássy P. Kovács R.Á. Vadászi H. Micsonai A. Tóth M.E. Sántha M. Homolya L. Drahos L. Juhász G. Kékesi K.A. Kardos J. Synaptic mitochondrial dysfunction and septin accumulation are linked to complement-mediated synapse loss in an Alzheimer’s disease animal model. Cell. Mol. Life Sci. 2020 77 24 5243 5258 10.1007/s00018‑020‑03468‑0 32034429
    [Google Scholar]
  50. De Schepper S. Ge J.Z. Crowley G. Ferreira L.S.S. Garceau D. Toomey C.E. Sokolova D. Rueda-Carrasco J. Shin S.H. Kim J.S. Childs T. Lashley T. Burden J.J. Sasner M. Sala Frigerio C. Jung S. Hong S. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat. Neurosci. 2023 26 3 406 415 10.1038/s41593‑023‑01257‑z 36747024
    [Google Scholar]
  51. Wu J. Bie B. Foss J.F. Naguib M. Amyloid fibril–induced astrocytic glutamate transporter disruption contributes to complement C1q-mediated microglial pruning of glutamatergic synapses. Mol. Neurobiol. 2020 57 5 2290 2300 10.1007/s12035‑020‑01885‑7 32008166
    [Google Scholar]
  52. Carvalho K. Faivre E. Pietrowski M.J. Marques X. Gomez-Murcia V. Deleau A. Huin V. Hansen J.N. Kozlov S. Danis C. Temido-Ferreira M. Coelho J.E. Mériaux C. Eddarkaoui S. Gras S.L. Dumoulin M. Cellai L. Landrieu I. Chern Y. Hamdane M. Buée L. Boutillier A.L. Levi S. Halle A. Lopes L.V. Blum D. Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain 2019 142 11 3636 3654 10.1093/brain/awz288 31599329
    [Google Scholar]
  53. Dejanovic B. Wu T. Tsai M.C. Graykowski D. Gandham V.D. Rose C.M. Bakalarski C.E. Ngu H. Wang Y. Pandey S. Rezzonico M.G. Friedman B.A. Edmonds R. De Mazière A. Rakosi-Schmidt R. Singh T. Klumperman J. Foreman O. Chang M.C. Xie L. Sheng M. Hanson J.E. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nature Aging 2022 2 9 837 850 10.1038/s43587‑022‑00281‑1 37118504
    [Google Scholar]
  54. Dejanovic B. Huntley M.A. De Mazière A. Meilandt W.J. Wu T. Srinivasan K. Jiang Z. Gandham V. Friedman B.A. Ngu H. Foreman O. Carano R.A.D. Chih B. Klumperman J. Bakalarski C. Hanson J.E. Sheng M. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron 2018 100 6 1322 1336.e7 10.1016/j.neuron.2018.10.014 30392797
    [Google Scholar]
  55. Bie B. Wu J. Foss J.F. Naguib M. Activation of mGluR1 mediates C1q-dependent microglial phagocytosis of glutamatergic synapses in Alzheimer’s rodent models. Mol. Neurobiol. 2019 56 8 5568 5585 10.1007/s12035‑019‑1467‑8 30652266
    [Google Scholar]
  56. Wu J. Xu J. Naguib M. Bie B. Blockade of type 2A protein phosphatase signaling attenuates complement C1q-mediated microglial phagocytosis of glutamatergic synapses induced by amyloid fibrils. Mol. Neurobiol. 2023 60 3 1527 1536 10.1007/s12035‑022‑03161‑2 36515857
    [Google Scholar]
  57. Spurrier J. Nicholson L. Fang X.T. Stoner A.J. Toyonaga T. Holden D. Siegert T.R. Laird W. Allnutt M.A. Chiasseu M. Brody A.H. Takahashi H. Nies S.H. Pérez-Cañamás A. Sadasivam P. Lee S. Li S. Zhang L. Huang Y.H. Carson R.E. Cai Z. Strittmatter S.M. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Sci. Transl. Med. 2022 14 647 eabi8593 10.1126/scitranslmed.abi8593 35648810
    [Google Scholar]
  58. Lall D. Lorenzini I. Mota T.A. Bell S. Mahan T.E. Ulrich J.D. Davtyan H. Rexach J.E. Muhammad A.K.M.G. Shelest O. Landeros J. Vazquez M. Kim J. Ghaffari L. O’Rourke J.G. Geschwind D.H. Blurton-Jones M. Holtzman D.M. Sattler R. Baloh R.H. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 2021 109 14 2275 2291.e8 10.1016/j.neuron.2021.05.020 34133945
    [Google Scholar]
  59. Guttikonda S.R. Sikkema L. Tchieu J. Saurat N. Walsh R.M. Harschnitz O. Ciceri G. Sneeboer M. Mazutis L. Setty M. Zumbo P. Betel D. de Witte L.D. Pe’er D. Studer L. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease. Nat. Neurosci. 2021 24 3 343 354 10.1038/s41593‑020‑00796‑z 33558694
    [Google Scholar]
  60. Gomez-Arboledas A. Fonseca M.I. Kramar E. Chu S.H. Schartz N. Selvan P. C5aR1 signaling promotes region and age dependent synaptic pruning in models of Alzheimer’s Disease. bioRxiv 2023
    [Google Scholar]
  61. Rueda-Carrasco J. Sokolova D. Lee S.E. Childs T. Jurčáková N. Crowley G. De Schepper S. Ge J.Z. Lachica J.I. Toomey C.E. Freeman O.J. Hardy J. Barnes S.J. Lashley T. Stevens B. Chang S. Hong S. Microglia‐synapse engulfment via PtdSer‐TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 2023 42 19 e113246 10.15252/embj.2022113246 37575021
    [Google Scholar]
  62. Ding X. Wang J. Huang M. Chen Z. Liu J. Zhang Q. Zhang C. Xiang Y. Zen K. Li L. Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration. Nat. Commun. 2021 12 1 2030 10.1038/s41467‑021‑22301‑1 33795678
    [Google Scholar]
  63. Sun X. Yu X. Zhu J. Li L. Zhang L. Huang Y. Liu D. Ji M. Sun X. Zhang L. Zhou W. Zhang D. Jiao J. Liu R. Fc effector of anti-Aβ antibody induces synapse loss and cognitive deficits in Alzheimer’s disease-like mouse model. Signal Transduct. Target. Ther. 2023 8 1 30 10.1038/s41392‑022‑01273‑8 36693826
    [Google Scholar]
  64. Padamsey Z. Rochefort N.L. Paying the brain’s energy bill. Curr. Opin. Neurobiol. 2023 78 102668 10.1016/j.conb.2022.102668 36571958
    [Google Scholar]
  65. Faria-Pereira A. Morais V.A. Synapses: The brain’s energy-demanding sites. Int. J. Mol. Sci. 2022 23 7 3627 10.3390/ijms23073627 35408993
    [Google Scholar]
  66. Rangaraju V. Calloway N. Ryan T.A. Activity-driven local ATP synthesis is required for synaptic function. Cell 2014 156 4 825 835 10.1016/j.cell.2013.12.042 24529383
    [Google Scholar]
  67. Li S. Sheng Z.H. Energy matters: Presynaptic metabolism and the maintenance of synaptic transmission. Nat. Rev. Neurosci. 2022 23 1 4 22 10.1038/s41583‑021‑00535‑8 34782781
    [Google Scholar]
  68. Wei Y. Miao Q. Zhang Q. Mao S. Li M. Xu X. Xia X. Wei K. Fan Y. Zheng X. Fang Y. Mei M. Zhang Q. Ding J. Fan Y. Lu M. Hu G. Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat. Neurosci. 2023 26 12 2081 2089 10.1038/s41593‑023‑01476‑4 37996529
    [Google Scholar]
  69. Miller A. York E.M. Stopka S.A. Martínez-François J.R. Hossain M.A. Baquer G. Regan M.S. Agar N.Y.R. Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. Nat. Metab. 2023 5 10 1820 1835 10.1038/s42255‑023‑00890‑z 37798473
    [Google Scholar]
  70. Iwata R. Casimir P. Erkol E. Boubakar L. Planque M. Gallego López I.M. Ditkowska M. Gaspariunaite V. Beckers S. Remans D. Vints K. Vandekeere A. Poovathingal S. Bird M. Vlaeminck I. Creemers E. Wierda K. Corthout N. Vermeersch P. Carpentier S. Davie K. Mazzone M. Gounko N.V. Aerts S. Ghesquière B. Fendt S.M. Vanderhaeghen P. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science 2023 379 6632 eabn4705 10.1126/science.abn4705 36705539
    [Google Scholar]
  71. Dong W.T. Long L.H. Deng Q. Liu D. Wang J.L. Wang F. Chen J.G. Mitochondrial fission drives neuronal metabolic burden to promote stress susceptibility in male mice. Nat. Metab. 2023 5 12 2220 2236 10.1038/s42255‑023‑00924‑6 37985735
    [Google Scholar]
  72. Hernandez-Espinosa D.R. Gale J.R. Scrabis M.G. Aizenman E. Microglial reprogramming by Hv1 antagonism protects neurons from inflammatory and glutamate toxicity. J. Neurochem. 2023 165 1 29 54 10.1111/jnc.15760 36625847
    [Google Scholar]
  73. Lepiarz-Raba I. Gbadamosi I. Florea R. Paolicelli R.C. Jawaid A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer’s disease therapeutics. Transl. Neurodegener. 2023 12 1 48 10.1186/s40035‑023‑00382‑w 37908010
    [Google Scholar]
  74. Chausse B. Lewen A. Poschet G. Kann O. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav. Immun. 2020 88 802 814 10.1016/j.bbi.2020.05.052 32446944
    [Google Scholar]
  75. Tagliatti E. Desiato G. Mancinelli S. Bizzotto M. Gagliani M.C. Faggiani E. Hernández-Soto R. Cugurra A. Poliseno P. Miotto M. Argüello R.J. Filipello F. Cortese K. Morini R. Lodato S. Matteoli M. Trem2 expression in microglia is required to maintain normal neuronal bioenergetics during development. Immunity 2024 57 1 86 105.e9 10.1016/j.immuni.2023.12.002 38159572
    [Google Scholar]
  76. Filipello F. You S.F. Mirfakhar F.S. Mahali S. Bollman B. Acquarone M. Korvatska O. Marsh J.A. Sivaraman A. Martinez R. Cantoni C. De Feo L. Ghezzi L. Minaya M.A. Renganathan A. Cashikar A.G. Satoh J.I. Beatty W. Iyer A.K. Cella M. Raskind W.H. Piccio L. Karch C.M. Defects in lysosomal function and lipid metabolism in human microglia harboring a TREM2 loss of function mutation. Acta Neuropathol. 2023 145 6 749 772 10.1007/s00401‑023‑02568‑y 37115208
    [Google Scholar]
  77. Nugent A.A. Lin K. van Lengerich B. Lianoglou S. Przybyla L. Davis S.S. Llapashtica C. Wang J. Kim D.J. Xia D. Lucas A. Baskaran S. Haddick P.C.G. Lenser M. Earr T.K. Shi J. Dugas J.C. Andreone B.J. Logan T. Solanoy H.O. Chen H. Srivastava A. Poda S.B. Sanchez P.E. Watts R.J. Sandmann T. Astarita G. Lewcock J.W. Monroe K.M. Di Paolo G. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 2020 105 5 837 854.e9 10.1016/j.neuron.2019.12.007 31902528
    [Google Scholar]
  78. Drougard A. Ma E.H. Wegert V. Sheldon R. Panzeri I. Vatsa N. An acute microglial metabolic response controls metabolism and improves memory. bioRxiv 2024
    [Google Scholar]
  79. Victor M.B. Leary N. Luna X. Meharena H.S. Scannail A.N. Bozzelli P.L. Samaan G. Murdock M.H. von Maydell D. Effenberger A.H. Cerit O. Wen H.L. Liu L. Welch G. Bonner M. Tsai L.H. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 2022 29 8 1197 1212.e8 10.1016/j.stem.2022.07.005 35931030
    [Google Scholar]
  80. Gu R. Zhang F. Chen G. Han C. Liu J. Ren Z. Zhu Y. Waddington J.L. Zheng L.T. Zhen X. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming. Brain Behav. Immun. 2017 60 206 219 10.1016/j.bbi.2016.10.018 27769915
    [Google Scholar]
  81. Cheng J. Zhang R. Xu Z. Ke Y. Sun R. Yang H. Zhang X. Zhen X. Zheng L.T. Early glycolytic reprogramming controls microglial inflammatory activation. J. Neuroinflammation 2021 18 1 129 10.1186/s12974‑021‑02187‑y 34107997
    [Google Scholar]
  82. He D. Xu H. Zhang H. Tang R. Lan Y. Xing R. Li S. Christian E. Hou Y. Lorello P. Caldarone B. Ding J. Nguyen L. Dionne D. Thakore P. Schnell A. Huh J.R. Rozenblatt-Rosen O. Regev A. Kuchroo V.K. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity 2022 55 1 159 173.e9 10.1016/j.immuni.2021.12.001 34982959
    [Google Scholar]
  83. Sun N. Victor M.B. Park Y.P. Xiong X. Scannail A.N. Leary N. Prosper S. Viswanathan S. Luna X. Boix C.A. James B.T. Tanigawa Y. Galani K. Mathys H. Jiang X. Ng A.P. Bennett D.A. Tsai L.H. Kellis M. Human microglial state dynamics in Alzheimer’s disease progression. Cell 2023 186 20 4386 4403.e29 10.1016/j.cell.2023.08.037 37774678
    [Google Scholar]
  84. Xia D. Lianoglou S. Sandmann T. Calvert M. Suh J.H. Thomsen E. Dugas J. Pizzo M.E. DeVos S.L. Earr T.K. Lin C.C. Davis S. Ha C. Leung A.W.S. Nguyen H. Chau R. Yulyaningsih E. Lopez I. Solanoy H. Masoud S.T. Liang C. Lin K. Astarita G. Khoury N. Zuchero J.Y. Thorne R.G. Shen K. Miller S. Palop J.J. Garceau D. Sasner M. Whitesell J.D. Harris J.A. Hummel S. Gnörich J. Wind K. Kunze L. Zatcepin A. Brendel M. Willem M. Haass C. Barnett D. Zimmer T.S. Orr A.G. Scearce-Levie K. Lewcock J.W. Di Paolo G. Sanchez P.E. Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Mol. Neurodegener. 2022 17 1 41 10.1186/s13024‑022‑00547‑7 35690868
    [Google Scholar]
  85. Li Y. Munoz-Mayorga D. Nie Y. Kang N. Tao Y. Lagerwall J. Pernaci C. Curtin G. Coufal N.G. Mertens J. Shi L. Chen X. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metab. 2024 36 6 1351 1370.e8 10.1016/j.cmet.2024.03.014 38657612
    [Google Scholar]
  86. Haney M.S. Pálovics R. Munson C.N. Long C. Johansson P.K. Yip O. Dong W. Rawat E. West E. Schlachetzki J.C.M. Tsai A. Guldner I.H. Lamichhane B.S. Smith A. Schaum N. Calcuttawala K. Shin A. Wang Y.H. Wang C. Koutsodendris N. Serrano G.E. Beach T.G. Reiman E.M. Glass C.K. Abu-Remaileh M. Enejder A. Huang Y. Wyss-Coray T. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature 2024 628 8006 154 161 10.1038/s41586‑024‑07185‑7 38480892
    [Google Scholar]
  87. Sebastian Monasor L. Müller S.A. Colombo A.V. Tanrioever G. König J. Roth S. Liesz A. Berghofer A. Piechotta A. Prestel M. Saito T. Saido T.C. Herms J. Willem M. Haass C. Lichtenthaler S.F. Tahirovic S. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. eLife 2020 9 e54083 10.7554/eLife.54083 32510331
    [Google Scholar]
  88. Johnson E.C.B. Dammer E.B. Duong D.M. Ping L. Zhou M. Yin L. Higginbotham L.A. Guajardo A. White B. Troncoso J.C. Thambisetty M. Montine T.J. Lee E.B. Trojanowski J.Q. Beach T.G. Reiman E.M. Haroutunian V. Wang M. Schadt E. Zhang B. Dickson D.W. Ertekin-Taner N. Golde T.E. Petyuk V.A. De Jager P.L. Bennett D.A. Wingo T.S. Rangaraju S. Hajjar I. Shulman J.M. Lah J.J. Levey A.I. Seyfried N.T. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 2020 26 5 769 780 10.1038/s41591‑020‑0815‑6 32284590
    [Google Scholar]
  89. Xiang X. Wind K. Wiedemann T. Blume T. Shi Y. Briel N. Beyer L. Biechele G. Eckenweber F. Zatcepin A. Lammich S. Ribicic S. Tahirovic S. Willem M. Deussing M. Palleis C. Rauchmann B.S. Gildehaus F.J. Lindner S. Spitz C. Franzmeier N. Baumann K. Rominger A. Bartenstein P. Ziegler S. Drzezga A. Respondek G. Buerger K. Perneczky R. Levin J. Höglinger G.U. Herms J. Haass C. Brendel M. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med. 2021 13 615 eabe5640 10.1126/scitranslmed.abe5640 34644146
    [Google Scholar]
  90. Tondo G. Iaccarino L. Caminiti S.P. Presotto L. Santangelo R. Iannaccone S. Magnani G. Perani D. The combined effects of microglia activation and brain glucose hypometabolism in early-onset Alzheimer’s disease. Alzheimers Res. Ther. 2020 12 1 50 10.1186/s13195‑020‑00619‑0 32354345
    [Google Scholar]
  91. Sangineto M. Ciarnelli M. Cassano T. Radesco A. Moola A. Bukke V.N. Romano A. Villani R. Kanwal H. Capitanio N. Duda L. Avolio C. Serviddio G. Metabolic reprogramming in inflammatory microglia indicates a potential way of targeting inflammation in Alzheimer’s disease. Redox Biol. 2023 66 102846 10.1016/j.redox.2023.102846 37586250
    [Google Scholar]
  92. Pan R.Y. He L. Zhang J. Liu X. Liao Y. Gao J. Liao Y. Yan Y. Li Q. Zhou X. Cheng J. Xing Q. Guan F. Zhang J. Sun L. Yuan Z. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 2022 34 4 634 648.e6 10.1016/j.cmet.2022.02.013 35303422
    [Google Scholar]
  93. Hardy J.A. Higgins G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992 256 5054 184 185 10.1126/science.1566067 1566067
    [Google Scholar]
  94. Hardy J. Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991 12 10 383 388 10.1016/0165‑6147(91)90609‑V 1763432
    [Google Scholar]
  95. Cai W. Li L. Sang S. Pan X. Zhong C. Physiological roles of β-amyloid in regulating synaptic function: Implications for AD pathophysiology. Neurosci. Bull. 2023 39 8 1289 1308 10.1007/s12264‑022‑00985‑9 36443453
    [Google Scholar]
  96. Tolar M. Hey J. Power A. Abushakra S. Neurotoxic soluble amyloid oligomers drive Alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression. Int. J. Mol. Sci. 2021 22 12 6355 10.3390/ijms22126355 34198582
    [Google Scholar]
  97. Ciudad S. Puig E. Botzanowski T. Meigooni M. Arango A.S. Do J. Mayzel M. Bayoumi M. Chaignepain S. Maglia G. Cianferani S. Orekhov V. Tajkhorshid E. Bardiaux B. Carulla N. Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nat. Commun. 2020 11 1 3014 10.1038/s41467‑020‑16566‑1 32541820
    [Google Scholar]
  98. Yasumoto T. Takamura Y. Tsuji M. Watanabe-Nakayama T. Imamura K. Inoue H. Nakamura S. Inoue T. Kimura A. Yano S. Nishijo H. Kiuchi Y. Teplow D.B. Ono K. High molecular weight amyloid β 1‐42 oligomers induce neurotoxicity via plasma membrane damage. FASEB J. 2019 33 8 9220 9234 10.1096/fj.201900604R 31084283
    [Google Scholar]
  99. Ortiz-Sanz C. Balantzategi U. Quintela-López T. Ruiz A. Luchena C. Zuazo-Ibarra J. Capetillo-Zarate E. Matute C. Zugaza J.L. Alberdi E. Amyloid β/PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer’s disease. Cell Death Dis. 2022 13 3 253 10.1038/s41419‑022‑04687‑y 35306512
    [Google Scholar]
  100. Dore K. Carrico Z. Alfonso S. Marino M. Koymans K. Kessels H.W. Malinow R. PSD-95 protects synapses from β-amyloid. Cell Rep. 2021 35 9 109194 10.1016/j.celrep.2021.109194 34077732
    [Google Scholar]
  101. Liu S. Li S. Lin J. Li J. Yang H. Aptamer-induced-dimerization strategy attenuates AβO toxicity through modulating the trophic activity of PrP C signaling. J. Am. Chem. Soc. 2022 144 21 9264 9270 10.1021/jacs.2c00287 35583938
    [Google Scholar]
  102. Verma A. Shteinfer-Kuzmine A. Kamenetsky N. Pittala S. Paul A. Nahon Crystal E. Ouro A. Chalifa-Caspi V. Pandey S.K. Monsonego A. Vardi N. Knafo S. Shoshan-Barmatz V. Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer’s disease protects against mitochondrial dysfunction and mitigates brain pathology. Transl. Neurodegener. 2022 11 1 58 10.1186/s40035‑022‑00329‑7 36578022
    [Google Scholar]
  103. Song L.L. Qu Y.Q. Tang Y.P. Chen X. Lo H.H. Qu L.Q. Yun Y.X. Wong V.K.W. Zhang R.L. Wang H.M. Liu M.H. Zhang W. Zhang H.X. Chan J.T.W. Wang C.R. Wu J.H. Law B.Y.K. Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer’s disease mice. Redox Biol. 2023 61 102637 10.1016/j.redox.2023.102637 36821955
    [Google Scholar]
  104. Baev A.Y. Vinokurov A.Y. Novikova I.N. Dremin V.V. Potapova E.V. Abramov A.Y. Interaction of mitochondrial calcium and ROS in neurodegeneration. Cells 2022 11 4 706 10.3390/cells11040706 35203354
    [Google Scholar]
  105. Dridi H. Liu Y. Reiken S. Liu X. Argyrousi E.K. Yuan Q. Miotto M.C. Sittenfeld L. Meddar A. Soni R.K. Arancio O. Lacampagne A. Marks A.R. Heart failure-induced cognitive dysfunction is mediated by intracellular Ca2+ leak through ryanodine receptor type 2. Nat. Neurosci. 2023 26 8 1365 1378 10.1038/s41593‑023‑01377‑6 37429912
    [Google Scholar]
  106. Wang P. Wang P. Luan H. Wu Y. Chen Y. Midazolam alleviates cellular senescence in SH‐SY5Y neuronal cells in Alzheimer’s disease. Brain Behav. 2023 13 1 e2822 10.1002/brb3.2822 36444490
    [Google Scholar]
  107. Wang J. Zhao C. Zhao A. Li M. Ren J. Qu X. New insights in amyloid beta interactions with human telomerase. J. Am. Chem. Soc. 2015 137 3 1213 1219 10.1021/ja511030s 25564872
    [Google Scholar]
  108. Lee J.H. Yang D.S. Goulbourne C.N. Im E. Stavrides P. Pensalfini A. Chan H. Bouchet-Marquis C. Bleiwas C. Berg M.J. Huo C. Peddy J. Pawlik M. Levy E. Rao M. Staufenbiel M. Nixon R.A. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat. Neurosci. 2022 25 6 688 701 10.1038/s41593‑022‑01084‑8 35654956
    [Google Scholar]
  109. McAlpine C.S. Park J. Griciuc A. Kim E. Choi S.H. Iwamoto Y. Kiss M.G. Christie K.A. Vinegoni C. Poller W.C. Mindur J.E. Chan C.T. He S. Janssen H. Wong L.P. Downey J. Singh S. Anzai A. Kahles F. Jorfi M. Feruglio P.F. Sadreyev R.I. Weissleder R. Kleinstiver B.P. Nahrendorf M. Tanzi R.E. Swirski F.K. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature 2021 595 7869 701 706 10.1038/s41586‑021‑03734‑6 34262178
    [Google Scholar]
  110. Heckmann B.L. Teubner B.J.W. Tummers B. Boada-Romero E. Harris L. Yang M. Guy C.S. Zakharenko S.S. Green D.R. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 2019 178 3 536 551.e14 10.1016/j.cell.2019.05.056 31257024
    [Google Scholar]
  111. Keren-Shaul H. Spinrad A. Weiner A. Matcovitch-Natan O. Dvir-Szternfeld R. Ulland T.K. David E. Baruch K. Lara-Astaiso D. Toth B. Itzkovitz S. Colonna M. Schwartz M. Amit I. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 2017 169 7 1276 1290.e17 10.1016/j.cell.2017.05.018 28602351
    [Google Scholar]
  112. Depp C. Sun T. Sasmita A.O. Spieth L. Berghoff S.A. Nazarenko T. Overhoff K. Steixner-Kumar A.A. Subramanian S. Arinrad S. Ruhwedel T. Möbius W. Göbbels S. Saher G. Werner H.B. Damkou A. Zampar S. Wirths O. Thalmann M. Simons M. Saito T. Saido T. Krueger-Burg D. Kawaguchi R. Willem M. Haass C. Geschwind D. Ehrenreich H. Stassart R. Nave K.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature 2023 618 7964 349 357 10.1038/s41586‑023‑06120‑6 37258678
    [Google Scholar]
  113. Ennerfelt H. Frost E.L. Shapiro D.A. Holliday C. Zengeler K.E. Voithofer G. Bolte A.C. Lammert C.R. Kulas J.A. Ulland T.K. Lukens J.R. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell 2022 185 22 4135 4152.e22 10.1016/j.cell.2022.09.030 36257314
    [Google Scholar]
  114. Wang S. Sudan R. Peng V. Zhou Y. Du S. Yuede C.M. Lei T. Hou J. Cai Z. Cella M. Nguyen K. Poliani P.L. Beatty W.L. Chen Y. Cao S. Lin K. Rodrigues C. Ellebedy A.H. Gilfillan S. Brown G.D. Holtzman D.M. Brioschi S. Colonna M. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. Cell 2022 185 22 4153 4169.e19 10.1016/j.cell.2022.09.033 36306735
    [Google Scholar]
  115. Yeh F.L. Wang Y. Tom I. Gonzalez L.C. Sheng M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 2016 91 2 328 340 10.1016/j.neuron.2016.06.015 27477018
    [Google Scholar]
  116. Singh N. Benoit M.R. Zhou J. Das B. Davila-Velderrain J. Kellis M. Tsai L.H. Hu X. Yan R. BACE-1 inhibition facilitates the transition from homeostatic microglia to DAM-1. Sci. Adv. 2022 8 24 eabo1286 10.1126/sciadv.abo1286 35714196
    [Google Scholar]
  117. Shi Q. Chang C. Saliba A. Bhat M.A. Microglial mTOR activation upregulates trem2 and enhances β-amyloid plaque clearance in the 5XFAD Alzheimer’s disease model. J. Neurosci. 2022 42 27 5294 5313 10.1523/JNEUROSCI.2427‑21.2022 35672148
    [Google Scholar]
  118. Hu J. Chen Q. Zhu H. Hou L. Liu W. Yang Q. Shen H. Chai G. Zhang B. Chen S. Cai Z. Wu C. Hong F. Li H. Chen S. Xiao N. Wang Z. Zhang X. Wang B. Zhang L. Mo W. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer’s disease. Neuron 2023 111 1 15 29.e8 10.1016/j.neuron.2022.10.021 36368316
    [Google Scholar]
  119. Huang Y. Happonen K.E. Burrola P.G. O’Connor C. Hah N. Huang L. Nimmerjahn A. Lemke G. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat. Immunol. 2021 22 5 586 594 10.1038/s41590‑021‑00913‑5 33859405
    [Google Scholar]
  120. Uddin M.S. Lim L.W. Glial cells in Alzheimer’s disease: From neuropathological changes to therapeutic implications. Ageing Res. Rev. 2022 78 101622 10.1016/j.arr.2022.101622 35427810
    [Google Scholar]
  121. Zhao Y. Liu B. Wang J. Xu L. Yu S. Fu J. Yan X. Su J. Aβ and tau regulate microglia metabolism via exosomes in Alzheimer’s disease. Biomedicines 2022 10 8 1800 10.3390/biomedicines10081800 35892700
    [Google Scholar]
  122. Zhao X. Sun J. Xiong L. She L. Li L. Tang H. Zeng Y. Chen F. Han X. Ye S. Wang W. Wang X. Liang G. β-amyloid binds to microglia Dectin-1 to induce inflammatory response in the pathogenesis of Alzheimer’s disease. Int. J. Biol. Sci. 2023 19 10 3249 3265 10.7150/ijbs.81900 37416769
    [Google Scholar]
  123. Venegas C. Kumar S. Franklin B.S. Dierkes T. Brinkschulte R. Tejera D. Vieira-Saecker A. Schwartz S. Santarelli F. Kummer M.P. Griep A. Gelpi E. Beilharz M. Riedel D. Golenbock D.T. Geyer M. Walter J. Latz E. Heneka M.T. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 2017 552 7685 355 361 10.1038/nature25158 29293211
    [Google Scholar]
  124. Friker L.L. Scheiblich H. Hochheiser I.V. Brinkschulte R. Riedel D. Latz E. Geyer M. Heneka M.T. β-amyloid clustering around ASC fibrils boosts its toxicity in microglia. Cell Rep. 2020 30 11 3743 3754.e6 10.1016/j.celrep.2020.02.025 32187546
    [Google Scholar]
  125. Gabrielli M. Prada I. Joshi P. Falcicchia C. D’Arrigo G. Rutigliano G. Battocchio E. Zenatelli R. Tozzi F. Radeghieri A. Arancio O. Origlia N. Verderio C. Microglial large extracellular vesicles propagate early synaptic dysfunction in Alzheimer’s disease. Brain 2022 145 8 2849 2868 10.1093/brain/awac083 35254410
    [Google Scholar]
  126. Moloney C.M. Lowe V.J. Murray M.E. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement. 2021 17 9 1554 1574 10.1002/alz.12321 33797838
    [Google Scholar]
  127. Dregni A.J. Duan P. Xu H. Changolkar L. El Mammeri N. Lee V.M.Y. Hong M. Fluent molecular mixing of Tau isoforms in Alzheimer’s disease neurofibrillary tangles. Nat. Commun. 2022 13 1 2967 10.1038/s41467‑022‑30585‑0 35624093
    [Google Scholar]
  128. Drummond E. Pires G. MacMurray C. Askenazi M. Nayak S. Bourdon M. Safar J. Ueberheide B. Wisniewski T. Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain 2020 143 9 2803 2817 10.1093/brain/awaa223 32812023
    [Google Scholar]
  129. Janelidze S. Mattsson N. Palmqvist S. Smith R. Beach T.G. Serrano G.E. Chai X. Proctor N.K. Eichenlaub U. Zetterberg H. Blennow K. Reiman E.M. Stomrud E. Dage J.L. Hansson O. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020 26 3 379 386 10.1038/s41591‑020‑0755‑1 32123385
    [Google Scholar]
  130. Karikari T.K. Pascoal T.A. Ashton N.J. Janelidze S. Benedet A.L. Rodriguez J.L. Chamoun M. Savard M. Kang M.S. Therriault J. Schöll M. Massarweh G. Soucy J.P. Höglund K. Brinkmalm G. Mattsson N. Palmqvist S. Gauthier S. Stomrud E. Zetterberg H. Hansson O. Rosa-Neto P. Blennow K. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020 19 5 422 433 10.1016/S1474‑4422(20)30071‑5 32333900
    [Google Scholar]
  131. Moscoso A. Grothe M.J. Ashton N.J. Karikari T.K. Rodriguez J.L. Snellman A. Suárez-Calvet M. Zetterberg H. Blennow K. Schöll M. Time course of phosphorylated-tau181 in blood across the Alzheimer’s disease spectrum. Brain 2021 144 1 325 339 10.1093/brain/awaa399 33257949
    [Google Scholar]
  132. Thijssen E.H. La Joie R. Strom A. Fonseca C. Iaccarino L. Wolf A. Spina S. Allen I.E. Cobigo Y. Heuer H. VandeVrede L. Proctor N.K. Lago A.L. Baker S. Sivasankaran R. Kieloch A. Kinhikar A. Yu L. Valentin M.A. Jeromin A. Zetterberg H. Hansson O. Mattsson-Carlgren N. Graham D. Blennow K. Kramer J.H. Grinberg L.T. Seeley W.W. Rosen H. Boeve B.F. Miller B.L. Teunissen C.E. Rabinovici G.D. Rojas J.C. Dage J.L. Boxer A.L. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study. Lancet Neurol. 2021 20 9 739 752 10.1016/S1474‑4422(21)00214‑3 34418401
    [Google Scholar]
  133. Palmqvist S. Janelidze S. Quiroz Y.T. Zetterberg H. Lopera F. Stomrud E. Su Y. Chen Y. Serrano G.E. Leuzy A. Mattsson-Carlgren N. Strandberg O. Smith R. Villegas A. Sepulveda-Falla D. Chai X. Proctor N.K. Beach T.G. Blennow K. Dage J.L. Reiman E.M. Hansson O. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs. other neurodegenerative disorders. JAMA 2020 324 8 772 781 10.1001/jama.2020.12134 32722745
    [Google Scholar]
  134. Pascoal T.A. Benedet A.L. Tudorascu D.L. Therriault J. Mathotaarachchi S. Savard M. Lussier F.Z. Tissot C. Chamoun M. Kang M.S. Stevenson J. Massarweh G. Guiot M.C. Soucy J.P. Gauthier S. Rosa-Neto P. Longitudinal 18F-MK-6240 tau tangles accumulation follows Braak stages. Brain 2021 144 11 3517 3528 10.1093/brain/awab248 34515754
    [Google Scholar]
  135. Horie K. Barthélemy N.R. Sato C. Bateman R.J. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 2021 144 2 515 527 10.1093/brain/awaa373 33283854
    [Google Scholar]
  136. McInnes J. Wierda K. Snellinx A. Bounti L. Wang Y.C. Stancu I.C. Apóstolo N. Gevaert K. Dewachter I. Spires-Jones T.L. De Strooper B. De Wit J. Zhou L. Verstreken P. Synaptogyrin-3 mediates presynaptic dysfunction induced by tau. Neuron 2018 97 4 823 835.e8 10.1016/j.neuron.2018.01.022 29398363
    [Google Scholar]
  137. Lei H.Y. Pi G.L. He T. Xiong R. Lv J.R. Liu J.L. Wu D.Q. Li M.Z. Shi K. Li S.H. Yu N.N. Gao Y. Yu H.L. Wei L.Y. Wang X. Zhou Q.Z. Zou P.L. Zhou J.Y. Liu Y.Z. Shen N.T. Yang J. Ke D. Wang Q. Liu G.P. Yang X.F. Wang J.Z. Yang Y. Targeting vulnerable microcircuits in the ventral hippocampus of male transgenic mice to rescue Alzheimer-like social memory loss. Mil. Med. Res. 2024 11 1 16 10.1186/s40779‑024‑00512‑z 38462603
    [Google Scholar]
  138. Wu D. Yu N. Gao Y. Xiong R. Liu L. Lei H. Jin S. Liu J. Liu Y. Xie J. Liu E. Zhou Q. Liu Y. Li S. Wei L. Lv J. Yu H. Zeng W. Zhou Q. Xu F. Luo M.H. Zhang Y. Yang Y. Wang J.Z. Targeting a vulnerable septum-hippocampus cholinergic circuit in a critical time window ameliorates tau-impaired memory consolidation. Mol. Neurodegener. 2023 18 1 23 10.1186/s13024‑023‑00614‑7 37060096
    [Google Scholar]
  139. Sun X. Eastman G. Shi Y. Saibaba S. Oliveira A.K. Lukens J.R. Norambuena A. Thompson J.A. Purdy M.D. Dryden K. Pardo E. Mandell J.W. Bloom G.S. Structural and functional damage to neuronal nuclei caused by extracellular tau oligomers. Alzheimers Dement. 2024 20 3 1656 1670 10.1002/alz.13535 38069673
    [Google Scholar]
  140. Zuniga G. Levy S. Ramirez P. De Mange J. Gonzalez E. Gamez M. Frost B. Tau‐induced deficits in nonsense‐mediated mRNA decay contribute to neurodegeneration. Alzheimers Dement. 2023 19 2 405 420 10.1002/alz.12653 35416419
    [Google Scholar]
  141. Ochoa E. Ramirez P. Gonzalez E. De Mange J. Ray W.J. Bieniek K.F. Frost B. Pathogenic tau–induced transposable element–derived dsRNA drives neuroinflammation. Sci. Adv. 2023 9 1 eabq5423 10.1126/sciadv.abq5423 36608133
    [Google Scholar]
  142. Sun W. Samimi H. Gamez M. Zare H. Frost B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 2018 21 8 1038 1048 10.1038/s41593‑018‑0194‑1 30038280
    [Google Scholar]
  143. Hole K.L. Zhu B. Huggon L. Brown J.T. Mason J.M. Williams R.J. TauP301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis. 2024 15 6 429 10.1038/s41419‑024‑06815‑2 38890273
    [Google Scholar]
  144. Datta D. Leslie S.N. Wang M. Morozov Y.M. Yang S. Mentone S. Zeiss C. Duque A. Rakic P. Horvath T.L. van Dyck C.H. Nairn A.C. Arnsten A.F.T. Age‐related calcium dysregulation linked with tau pathology and impaired cognition in non‐human primates. Alzheimers Dement. 2021 17 6 920 932 10.1002/alz.12325 33829643
    [Google Scholar]
  145. Dong Y. Yu H. Li X. Bian K. Zheng Y. Dai M. Feng X. Sun Y. He Y. Yu B. Zhang H. Wu J. Yu X. Wu H. Kong W. Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease. J. Neuroinflammation 2022 19 1 205 10.1186/s12974‑022‑02567‑y 35971179
    [Google Scholar]
  146. Koper M.J. Moonen S. Ronisz A. Ospitalieri S. Callaerts-Vegh Z. T’Syen, D.; Rabe, S.; Staufenbiel, M.; De Strooper, B.; Balusu, S.; Thal, D.R. Inhibition of an Alzheimer’s disease–associated form of necroptosis rescues neuronal death in mouse models. Sci. Transl. Med. 2024 16 771 eadf5128 10.1126/scitranslmed.adf5128 39475569
    [Google Scholar]
  147. Scheiblich H. Eikens F. Wischhof L. Opitz S. Jüngling K. Cserép C. Schmidt S.V. Lambertz J. Bellande T. Pósfai B. Geck C. Spitzer J. Odainic A. Castro-Gomez S. Schwartz S. Boussaad I. Krüger R. Glaab E. Di Monte D.A. Bano D. Dénes Á. Latz E. Melki R. Pape H.C. Heneka M.T. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024 112 18 3106 3125.e8 10.1016/j.neuron.2024.06.029 39059388
    [Google Scholar]
  148. Chakraborty R. Nonaka T. Hasegawa M. Zurzolo C. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein and mitochondria. Cell Death Dis. 2023 14 5 329 10.1038/s41419‑023‑05835‑8 37202391
    [Google Scholar]
  149. Gerrits E. Brouwer N. Kooistra S.M. Woodbury M.E. Vermeiren Y. Lambourne M. Mulder J. Kummer M. Möller T. Biber K. Dunnen W.F.A. De Deyn P.P. Eggen B.J.L. Boddeke E.W.G.M. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol. 2021 141 5 681 696 10.1007/s00401‑021‑02263‑w 33609158
    [Google Scholar]
  150. Clayton K. Delpech J.C. Herron S. Iwahara N. Ericsson M. Saito T. Saido T.C. Ikezu S. Ikezu T. Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol. Neurodegener. 2021 16 1 18 10.1186/s13024‑021‑00440‑9 33752701
    [Google Scholar]
  151. Bussian T.J. Aziz A. Meyer C.F. Swenson B.L. van Deursen J.M. Baker D.J. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 2018 562 7728 578 582 10.1038/s41586‑018‑0543‑y 30232451
    [Google Scholar]
  152. Zhu B. Liu Y. Hwang S. Archuleta K. Huang H. Campos A. Murad R. Piña-Crespo J. Xu H. Huang T.Y. Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Mol. Neurodegener. 2022 17 1 58 10.1186/s13024‑022‑00562‑8 36056435
    [Google Scholar]
  153. Wang C. Fan L. Khawaja R.R. Liu B. Zhan L. Kodama L. Chin M. Li Y. Le D. Zhou Y. Condello C. Grinberg L.T. Seeley W.W. Miller B.L. Mok S.A. Gestwicki J.E. Cuervo A.M. Luo W. Gan L. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 2022 13 1 1969 10.1038/s41467‑022‑29552‑6 35413950
    [Google Scholar]
  154. Siew J.J. Chen H.M. Chiu F.L. Lee C.W. Chang Y.M. Chen H.L. Nguyen T.N.A. Liao H.T. Liu M. Hagar H.T. Sun Y.C. Lai H.L. Kuo M.H. Blum D. Buée L. Jin L.W. Chen S.Y. Ko T.M. Huang J.R. Kuo H.C. Liu F.T. Chern Y. Galectin-3 aggravates microglial activation and tau transmission in tauopathy. J. Clin. Invest. 2024 134 2 e165523 10.1172/JCI165523 37988169
    [Google Scholar]
  155. Festa B.P. Siddiqi F.H. Jimenez-Sanchez M. Won H. Rob M. Djajadikerta A. Stamatakou E. Rubinsztein D.C. Microglial-to-neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron 2023 111 13 2021 2037.e12 10.1016/j.neuron.2023.04.006 37105172
    [Google Scholar]
  156. Benetatos J. Bennett R.E. Evans H.T. Ellis S.A. Hyman B.T. Bodea L.G. Götz J. PTEN activation contributes to neuronal and synaptic engulfment by microglia in tauopathy. Acta Neuropathol. 2020 140 1 7 24 10.1007/s00401‑020‑02151‑9 32236736
    [Google Scholar]
  157. Brelstaff J. Tolkovsky A.M. Ghetti B. Goedert M. Spillantini M.G. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep. 2018 24 8 1939 1948.e4 10.1016/j.celrep.2018.07.072 30134156
    [Google Scholar]
  158. Taddei R.N. Perbet R. Mate de Gerando A. Wiedmer A.E. Sanchez-Mico M. Connors Stewart T. Gaona A. Melloni A. Amaral A.C. Duff K. Frosch M.P. Gómez-Isla T. Tau oligomer–containing synapse elimination by microglia and astrocytes in Alzheimer disease. JAMA Neurol. 2023 80 11 1209 1221 10.1001/jamaneurol.2023.3530 37812432
    [Google Scholar]
  159. Udeochu J.C. Amin S. Huang Y. Fan L. Torres E.R.S. Carling G.K. Liu B. McGurran H. Coronas-Samano G. Kauwe G. Mousa G.A. Wong M.Y. Ye P. Nagiri R.K. Lo I. Holtzman J. Corona C. Yarahmady A. Gill M.T. Raju R.M. Mok S.A. Gong S. Luo W. Zhao M. Tracy T.E. Ratan R.R. Tsai L.H. Sinha S.C. Gan L. Tau activation of microglial cGAS–IFN reduces MEF2C-mediated cognitive resilience. Nat. Neurosci. 2023 26 5 737 750 10.1038/s41593‑023‑01315‑6 37095396
    [Google Scholar]
  160. Chen X. Firulyova M. Manis M. Herz J. Smirnov I. Aladyeva E. Wang C. Bao X. Finn M.B. Hu H. Shchukina I. Kim M.W. Yuede C.M. Kipnis J. Artyomov M.N. Ulrich J.D. Holtzman D.M. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 2023 615 7953 668 677 10.1038/s41586‑023‑05788‑0 36890231
    [Google Scholar]
  161. Calsolaro V. Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016 12 6 719 732 10.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  162. Leng F. Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 2021 17 3 157 172 10.1038/s41582‑020‑00435‑y 33318676
    [Google Scholar]
  163. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018 4 1 575 590 10.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  164. Prater K.E. Green K.J. Mamde S. Sun W. Cochoit A. Smith C.L. Chiou K.L. Heath L. Rose S.E. Wiley J. Keene C.D. Kwon R.Y. Snyder-Mackler N. Blue E.E. Logsdon B. Young J.E. Shojaie A. Garden G.A. Jayadev S. Human microglia show unique transcriptional changes in Alzheimer’s disease. Nature Aging 2023 3 7 894 907 10.1038/s43587‑023‑00424‑y 37248328
    [Google Scholar]
  165. Schaffer Aguzzoli C. Ferreira P.C.L. Povala G. Ferrari-Souza J.P. Bellaver B. Soares Katz C. Zalzale H. Lussier F.Z. Rohden F. Abbas S. Leffa D.T. Scop Medeiros M. Therriault J. Benedet A.L. Tissot C. Servaes S. Rahmouni N. Cassa Macedo A. Bezgin G. Kang M.S. Stevenson J. Pallen V. Cohen A. Lopez O.L. Tudorascu D.L. Klunk W.E. Villemagne V.L. Soucy J.P. Zimmer E.R. Schilling L.P. Karikari T.K. Ashton N.J. Zetterberg H. Blennow K. Gauthier S. Valcour V. Miller B.L. Rosa-Neto P. Pascoal T.A. Neuropsychiatric symptoms and microglial activation in patients with Alzheimer disease. JAMA Netw. Open 2023 6 11 e2345175 10.1001/jamanetworkopen.2023.45175 38010651
    [Google Scholar]
  166. Rangaraju S. Dammer E.B. Raza S.A. Rathakrishnan P. Xiao H. Gao T. Duong D.M. Pennington M.W. Lah J.J. Seyfried N.T. Levey A.I. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol. Neurodegener. 2018 13 1 24 10.1186/s13024‑018‑0254‑8 29784049
    [Google Scholar]
  167. Qiu Y. Shen X. Ravid O. Atrakchi D. Rand D. Wight A.E. Kim H.J. Liraz-Zaltsman S. Cooper I. Schnaider Beeri M. Cantor H. Definition of the contribution of an Osteopontin-producing CD11c + microglial subset to Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2023 120 6 e2218915120 10.1073/pnas.2218915120 36730200
    [Google Scholar]
  168. Millet A. Ledo J.H. Tavazoie S.F. An exhausted-like microglial population accumulates in aged and APOE4 genotype Alzheimer’s brains. Immunity 2024 57 1 153 170.e6 10.1016/j.immuni.2023.12.001 38159571
    [Google Scholar]
  169. Rauchmann B.S. Brendel M. Franzmeier N. Trappmann L. Zaganjori M. Ersoezlue E. Morenas-Rodriguez E. Guersel S. Burow L. Kurz C. Haeckert J. Tatò M. Utecht J. Papazov B. Pogarell O. Janowitz D. Buerger K. Ewers M. Palleis C. Weidinger E. Biechele G. Schuster S. Finze A. Eckenweber F. Rupprecht R. Rominger A. Goldhardt O. Grimmer T. Keeser D. Stoecklein S. Dietrich O. Bartenstein P. Levin J. Höglinger G. Perneczky R. Microglial activation and connectivity in Alzheimer disease and aging. Ann. Neurol. 2022 92 5 768 781 10.1002/ana.26465 36053756
    [Google Scholar]
  170. Chou V. Pearse R.V. Aylward A.J. Ashour N. Taga M. Terzioglu G. Fujita M. Fancher S.B. Sigalov A. Benoit C.R. Lee H. Lam M. Seyfried N.T. Bennett D.A. De Jager P.L. Menon V. Young-Pearse T.L. INPP5D regulates inflammasome activation in human microglia. Nat. Commun. 2023 14 1 7552 10.1038/s41467‑023‑42819‑w 38016942
    [Google Scholar]
  171. Zhang Y.J. Cheng Y. Tang H.L. Yue Q. Cai X.Y. Lu Z.J. Hao Y.X. Dai A.X. Hou T. Liu H.X. Kong N. Ji X.Y. Lu C.H. Xu S.L. Huang K. Zeng X. Wen Y.Q. Ma W.Y. Guan J.T. Lin Y. Zheng W.B. Pan H. Wu J. Wu R.H. Wei N.L. APOE ε4-associated downregulation of the IL-7/IL-7R pathway in effector memory T cells: Implications for Alzheimer’s disease. Alzheimers Dement. 2024 20 9 6441 6455 10.1002/alz.14173 39129310
    [Google Scholar]
  172. Ferrari-Souza J.P. Lussier F.Z. Leffa D.T. Therriault J. Tissot C. Bellaver B. Ferreira P.C.L. Malpetti M. Wang Y.T. Povala G. Benedet A.L. Ashton N.J. Chamoun M. Servaes S. Bezgin G. Kang M.S. Stevenson J. Rahmouni N. Pallen V. Poltronetti N.M. O’Brien J.T. Rowe J.B. Cohen A.D. Lopez O.L. Tudorascu D.L. Karikari T.K. Klunk W.E. Villemagne V.L. Soucy J.P. Gauthier S. Souza D.O. Zetterberg H. Blennow K. Zimmer E.R. Rosa-Neto P. Pascoal T.A. APOE ε4 associates with microglial activation independently of Aβ plaques and tau tangles. Sci. Adv. 2023 9 14 eade1474 10.1126/sciadv.ade1474 37018391
    [Google Scholar]
  173. Faridar A. Vasquez M. Thome A.D. Yin Z. Xuan H. Wang J.H. Wen S. Li X. Thonhoff J.R. Zhao W. Zhao H. Beers D.R. Wong S.T.C. Masdeu J.C. Appel S.H. Ex vivo expanded human regulatory T cells modify neuroinflammation in a preclinical model of Alzheimer’s disease. Acta Neuropathol. Commun. 2022 10 1 144 10.1186/s40478‑022‑01447‑z 36180898
    [Google Scholar]
  174. Su W. Saravia J. Risch I. Rankin S. Guy C. Chapman N.M. Shi H. Sun Y. Kc A. Li W. Huang H. Lim S.A. Hu H. Wang Y. Liu D. Jiao Y. Chen P.C. Soliman H. Yan K.K. Zhang J. Vogel P. Liu X. Serrano G.E. Beach T.G. Yu J. Peng J. Chi H. CXCR6 orchestrates brain CD8+ T cell residency and limits mouse Alzheimer’s disease pathology. Nat. Immunol. 2023 24 10 1735 1747 10.1038/s41590‑023‑01604‑z 37679549
    [Google Scholar]
  175. Jorfi M. Park J. Hall C.K. Lin C.C.J. Chen M. von Maydell D. Kruskop J.M. Kang B. Choi Y. Prokopenko D. Irimia D. Kim D.Y. Tanzi R.E. Infiltrating CD8+ T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model. Nat. Neurosci. 2023 26 9 1489 1504 10.1038/s41593‑023‑01415‑3 37620442
    [Google Scholar]
  176. Wang X. Sun G. Feng T. Zhang J. Huang X. Wang T. Xie Z. Chu X. Yang J. Wang H. Chang S. Gong Y. Ruan L. Zhang G. Yan S. Lian W. Du C. Yang D. Zhang Q. Lin F. Liu J. Zhang H. Ge C. Xiao S. Ding J. Geng M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019 29 10 787 803 10.1038/s41422‑019‑0216‑x 31488882
    [Google Scholar]
  177. Chen C. Liao J. Xia Y. Liu X. Jones R. Haran J. McCormick B. Sampson T.R. Alam A. Ye K. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 2022 71 11 2233 2252 10.1136/gutjnl‑2021‑326269 35017199
    [Google Scholar]
  178. Qian X. Song X. Liu X. Chen S. Tang H. Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota. Ageing Res. Rev. 2021 68 101317 10.1016/j.arr.2021.101317 33711509
    [Google Scholar]
  179. Ng R.C.L. Jian M. Ma O.K.F. Xiang A.W. Bunting M. Kwan J.S.C. Wong C.W.K. Yick L.W. Chung S.K. Lam K.S.L. Alexander I.E. Xu A. Chan K.H. Liver-specific adiponectin gene therapy suppresses microglial NLRP3-inflammasome activation for treating Alzheimer’s disease. J. Neuroinflammation 2024 21 1 77 10.1186/s12974‑024‑03066‑y 38539253
    [Google Scholar]
  180. Prieto G.A. Cotman C.W. Cytokines and cytokine networks target neurons to modulate long-term potentiation. Cytokine Growth Factor Rev. 2017 34 27 33 10.1016/j.cytogfr.2017.03.005 28377062
    [Google Scholar]
  181. Uruk G. Mocanu E. Shaw A.E. Bamburg J.R. Swanson R.A. Cofilactin rod formation mediates inflammation-induced neurite degeneration. Cell Rep. 2024 43 3 113914 10.1016/j.celrep.2024.113914 38451813
    [Google Scholar]
  182. Shen Y. Timsina J. Heo G. Beric A. Ali M. Wang C. Yang C. Wang Y. Western D. Liu M. Gorijala P. Budde J. Do A. Liu H. Gordon B. Llibre-Guerra J.J. Joseph-Mathurin N. Perrin R.J. Maschi D. Wyss-Coray T. Pastor P. Renton A.E. Surace E.I. Johnson E.C.B. Levey A.I. Alvarez I. Levin J. Ringman J.M. Allegri R.F. Seyfried N. Day G.S. Wu Q. Fernández M.V. Tarawneh R. McDade E. Morris J.C. Bateman R.J. Goate A. Noble J.M. Day G.S. Graff-Radford N.R. Voglein J. Allegri R. Mendez P.C. Surace E. Berman S.B. Ikonomovic S. Nadkarni N. Lopera F. Ramirez L. Aguillon D. Leon Y. Ramos C. Alzate D. Baena A. Londono N. Mathias Jucker S.M. Laske C. Kuder-Buletta E. Graber-Sultan S. Preische O. Hofmann A. Ikeuchi T. Kasuga K. Niimi Y. Ishii K. Senda M. Sanchez-Valle R. Rosa-Neto P. Fox N. Cash D. Lee J-H. Roh J.H. Riddle M. Menard W. Bodge C. Surti M. Takada L.T. Farlow M. Chhatwal J.P. Sanchez-Gonzalez V.J. Orozco-Barajas M. Goate A. Renton A. Esposito B. Karch C.M. Marsh J. Cruchaga C. Fernandez V. Gordon B.A. Fagan A.M. Jerome G. Herries E. Llibre-Guerra J. Levey A.I. Johnson E.C.B. Seyfried N.T. Schofield P.R. Brooks W. Bechara J. Bateman R.J. McDade E. Hassenstab J. Perrin R.J. Franklin E. Benzinger T.L.S. Chen A. Chen C. Flores S. Friedrichsen N. Hantler N. Hornbeck R. Jarman S. Keefe S. Koudelis D. Massoumzadeh P. McCullough A. McKay N. Nicklaus J. Pulizos C. Wang Q. Mishall S. Sabaredzovic E. Deng E. Candela M. Smith H. Hobbs D. Scott J. Levin J. Xiong C. Wang P. Xu X. Li Y. Gremminger E. Ma Y. Bui R. Lu R. Martins R. Sosa Ortiz A.L. Daniels A. Courtney L. Mori H. Supnet-Bell C. Xu J. Ringman J. Ibanez L. Sung Y.J. Cruchaga C. CSF proteomics identifies early changes in autosomal dominant Alzheimer’s disease. Cell 2024 187 22 6309 6326.e15 10.1016/j.cell.2024.08.049 39332414
    [Google Scholar]
  183. Botella Lucena P. Heneka M.T. Inflammatory aspects of Alzheimer’s disease. Acta Neuropathol. 2024 148 1 31 10.1007/s00401‑024‑02790‑2 39196440
    [Google Scholar]
  184. Mangalmurti A. Lukens J.R. How neurons die in Alzheimer’s disease: Implications for neuroinflammation. Curr. Opin. Neurobiol. 2022 75 102575 10.1016/j.conb.2022.102575 35691251
    [Google Scholar]
  185. Qi X.H. Chen P. Wang Y.J. Zhou Z.P. Liu X.C. Fang H. Wang C.W. Liu J. Liu R.Y. Liu H.K. Zhang Z.X. Zhou J.N. Increased cysteinyl-tRNA synthetase drives neuroinflammation in Alzheimer’s disease. Transl. Neurodegener. 2024 13 1 3 10.1186/s40035‑023‑00394‑6 38191451
    [Google Scholar]
  186. Lee J.Y. Han S.H. Park M.H. Baek B. Song I.S. Choi M.K. Takuwa Y. Ryu H. Kim S.H. He X. Schuchman E.H. Bae J.S. Jin H.K. Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer’s disease. Nat. Commun. 2018 9 1 1479 10.1038/s41467‑018‑03674‑2 29662056
    [Google Scholar]
  187. Zeidan R.S. Han S.M. Leeuwenburgh C. Xiao R. Iron homeostasis and organismal aging. Ageing Res. Rev. 2021 72 101510 10.1016/j.arr.2021.101510 34767974
    [Google Scholar]
  188. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  189. Yang L. Nao J. Ferroptosis: A potential therapeutic target for Alzheimer’s disease. Rev. Neurosci. 2023 34 5 573 598 10.1515/revneuro‑2022‑0121 36514247
    [Google Scholar]
  190. Wang L. Yin Y.L. Liu X.Z. Shen P. Zheng Y.G. Lan X.R. Lu C.B. Wang J.Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener. 2020 9 1 10 10.1186/s40035‑020‑00189‑z 32266063
    [Google Scholar]
  191. Adeniyi P.A. Gong X. MacGregor E. Degener-O’Brien K. McClendon E. Garcia M. Romero O. Russell J. Srivastava T. Miller J. Keene C.D. Back S.A. Ferroptosis of microglia in aging human white matter injury. Ann. Neurol. 2023 94 6 1048 1066 10.1002/ana.26770 37605362
    [Google Scholar]
  192. Kenkhuis B. Somarakis A. de Haan L. Dzyubachyk O. IJsselsteijn M.E. de Miranda N.F.C.C. Lelieveldt B.P.F. Dijkstra J. van Roon-Mom W.M.C. Höllt T. van der Weerd L. Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients. Acta Neuropathol. Commun. 2021 9 1 27 10.1186/s40478‑021‑01126‑5 33597025
    [Google Scholar]
  193. Holland R. McIntosh A.L. Finucane O.M. Mela V. Rubio-Araiz A. Timmons G. McCarthy S.A. Gun’ko Y.K. Lynch M.A. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav. Immun. 2018 68 183 196 10.1016/j.bbi.2017.10.017 29061364
    [Google Scholar]
  194. Kenkhuis B. Bush A.I. Ayton S. How iron can drive neurodegeneration. Trends Neurosci. 2023 46 5 333 335 10.1016/j.tins.2023.02.003 36842947
    [Google Scholar]
  195. Ryan S.K. Zelic M. Han Y. Teeple E. Chen L. Sadeghi M. Shankara S. Guo L. Li C. Pontarelli F. Jensen E.H. Comer A.L. Kumar D. Zhang M. Gans J. Zhang B. Proto J.D. Saleh J. Dodge J.C. Savova V. Rajpal D. Ofengeim D. Hammond T.R. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat. Neurosci. 2023 26 1 12 26 10.1038/s41593‑022‑01221‑3 36536241
    [Google Scholar]
  196. Liddell J.R. Hilton J.B.W. Kysenius K. Billings J.L. Nikseresht S. McInnes L.E. Hare D.J. Paul B. Mercer S.W. Belaidi A.A. Ayton S. Roberts B.R. Beckman J.S. McLean C.A. White A.R. Donnelly P.S. Bush A.I. Crouch P.J. Microglial ferroptotic stress causes non-cell autonomous neuronal death. Mol. Neurodegener. 2024 19 1 14 10.1186/s13024‑023‑00691‑8 38317225
    [Google Scholar]
  197. Chen L. Min J. Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022 7 1 378 10.1038/s41392‑022‑01229‑y 36414625
    [Google Scholar]
  198. Gromadzka G. Tarnacka B. Flaga A. Adamczyk A. Copper dyshomeostasis in neurodegenerative diseases—therapeutic implications. Int. J. Mol. Sci. 2020 21 23 9259 10.3390/ijms21239259 33291628
    [Google Scholar]
  199. Zheng Z. White C. Lee J. Peterson T.S. Bush A.I. Sun G.Y. Weisman G.A. Petris M.J. Altered microglial copper homeostasis in a mouse model of Alzheimer’s disease. J. Neurochem. 2010 114 6 1630 1638 10.1111/j.1471‑4159.2010.06888.x 20626553
    [Google Scholar]
  200. Yu F. Gong P. Hu Z. Qiu Y. Cui Y. Gao X. Chen H. Li J. Cu(II) enhances the effect of Alzheimer’s amyloid-β peptide on microglial activation. J. Neuroinflammation 2015 12 1 122 10.1186/s12974‑015‑0343‑3 26104799
    [Google Scholar]
  201. Krall R.F. Tzounopoulos T. Aizenman E. The function and regulation of Zinc in the brain. Neuroscience 2021 457 235 258 10.1016/j.neuroscience.2021.01.010 33460731
    [Google Scholar]
  202. Portbury S. Adlard P. Zinc signal in brain diseases. Int. J. Mol. Sci. 2017 18 12 2506 10.3390/ijms18122506 29168792
    [Google Scholar]
  203. Rivers-Auty J. Tapia V.S. White C.S. Daniels M.J.D. Drinkall S. Kennedy P.T. Spence H.G. Yu S. Green J.P. Hoyle C. Cook J. Bradley A. Mather A.E. Peters R. Tzeng T.C. Gordon M.J. Beattie J.H. Brough D. Lawrence C.B. Zinc status alters Alzheimer’s disease progression through NLRP3-dependent inflammation. J. Neurosci. 2021 41 13 3025 3038 10.1523/JNEUROSCI.1980‑20.2020 33597269
    [Google Scholar]
  204. Shippy D.C. Ulland T.K. Exploring the zinc-related transcriptional landscape in Alzheimer’s disease. IBRO Neuroscience Reports 2022 13 31 37 10.1016/j.ibneur.2022.06.002 35711243
    [Google Scholar]
  205. Hongxia L. Yuxiao T. Zhilei S. Yan S. Yicui Q. Jiamin S. Xin X. Jianxin Y. Fengfeng M. Hui S. Zinc inhibited LPS-induced inflammatory responses by upregulating A20 expression in microglia BV2 cells. J. Affect. Disord. 2019 249 136 142 10.1016/j.jad.2019.02.041 30772740
    [Google Scholar]
  206. Lee M.C. Yu W.C. Shih Y.H. Chen C.Y. Guo Z.H. Huang S.J. Chan J.C.C. Chen Y.R. Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer’s disease. Sci. Rep. 2018 8 1 4772 10.1038/s41598‑018‑23122‑x 29555950
    [Google Scholar]
  207. Long H. Simmons A. Mayorga A. Burgess B. Nguyen T. Budda B. Rychkova A. Rhinn H. Tassi I. Ward M. Yeh F. Schwabe T. Paul R. Kenkare-Mitra S. Rosenthal A. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer’s disease. Alzheimers Res. Ther. 2024 16 1 235 10.1186/s13195‑024‑01599‑1 39444037
    [Google Scholar]
  208. van Olst L. Simonton B. Edwards A.J. Forsyth A.V. Boles J. Jamshidi P. Watson T. Shepard N. Krainc T. Argue B.M.R. Zhang Z. Kuruvilla J. Camp L. Li M. Xu H. Norman J.L. Cahan J. Vassar R. Chen J. Castellani R.J. Nicoll J.A.R. Boche D. Gate D. Microglial mechanisms drive amyloid-β clearance in immunized patients with Alzheimer’s disease. Nat. Med. 2025 10.1038/s41591‑025‑03574‑1
    [Google Scholar]
  209. Lv Z. Chen L. Chen P. Peng H. Rong Y. Hong W. Zhou Q. Li N. Li B. Paolicelli R.C. Zhan Y. Clearance of β-amyloid and synapses by the optogenetic depolarization of microglia is complement selective. Neuron 2024 112 5 740 754.e7 10.1016/j.neuron.2023.12.003 38295790
    [Google Scholar]
/content/journals/cn/10.2174/011570159X379539250807114252
Loading
/content/journals/cn/10.2174/011570159X379539250807114252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test