Skip to content
2000
image of Gut Microbiota and Bipolar Disorder: Advances in Translational Applications

Abstract

Bipolar disorder is a severe, recurrent affective disorder that imposes significant pain and burden on both the patients themselves and the social economy. Recent studies have indicated the involvement of intestinal flora in emotional regulation, as well as its close association with the occurrence and progression of diseases such as bipolar disorder. Therefore, conducting comprehensive research on the impact of intestinal microflora and the “gut-brain axis” on bipolar disorder becomes imperative, offering novel insights into its etiology, diagnosis, and treatment options. Consequently, this article provides an overview of the role and potential mechanisms underlying intestinal microbiota in bipolar disorder.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X379789250626044050
2025-07-17
2025-09-13
Loading full text...

Full text loading...

References

  1. Anderson I.M. Haddad P.M. Scott J. Bipolar disorder. BMJ 2012 345 dec27 3 e8508 10.1136/bmj.e8508 23271744
    [Google Scholar]
  2. Bauer M. Andreassen O.A. Geddes J.R. Vedel Kessing L. Lewitzka U. Schulze T.G. Vieta E. Areas of uncertainties and unmet needs in bipolar disorders: clinical and research perspectives. Lancet Psychiatry 2018 5 11 930 939 10.1016/S2215‑0366(18)30253‑0 30146246
    [Google Scholar]
  3. Connor D.F. Ford J.D. Pearson G.S. Scranton V.L. Dusad A. Early-onset bipolar disorder: Characteristics and outcomes in the clinic. J. Child Adolesc. Psychopharmacol. 2017 27 10 875 883 10.1089/cap.2017.0058 28829159
    [Google Scholar]
  4. Post R.M. Leverich G.S. Kupka R.W. Keck P.E. McElroy S.L. Altshuler L.L. Frye M.A. Luckenbaugh D.A. Rowe M. Grunze H. Suppes T. Nolen W.A. Early-onset bipolar disorder and treatment delay are risk factors for poor outcome in adulthood. J. Clin. Psychiatry 2010 71 7 864 872 10.4088/JCP.08m04994yel 20667291
    [Google Scholar]
  5. Young A.H. MacPherson H. Detection of bipolar disorder. Br. J. Psychiatry 2011 199 1 3 4 10.1192/bjp.bp.110.089128 21719873
    [Google Scholar]
  6. Wu W.L. Adame M.D. Liou C.W. Barlow J.T. Lai T.T. Sharon G. Schretter C.E. Needham B.D. Wang M.I. Tang W. Ousey J. Lin Y.Y. Yao T.H. Abdel-Haq R. Beadle K. Gradinaru V. Ismagilov R.F. Mazmanian S.K. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 2021 595 7867 409 414 10.1038/s41586‑021‑03669‑y 34194038
    [Google Scholar]
  7. Nikolova V.L. Smith M.R.B. Hall L.J. Cleare A.J. Stone J.M. Young A.H. Perturbations in gut microbiota composition in psychiatric disorders. JAMA Psychiatry 2021 78 12 1343 1354 10.1001/jamapsychiatry.2021.2573 34524405
    [Google Scholar]
  8. Huang S. Hu S. Liu S. Tang B. Liu Y. Tang L. Lei Y. Zhong L. Yang S. He S. Lithium carbonate alleviates colon inflammation through modulating gut microbiota and Treg cells in a GPR43-dependent manner. Pharmacol. Res. 2022 175 105992 10.1016/j.phrs.2021.105992 34801681
    [Google Scholar]
  9. Qin J. Li R. Raes J. Arumugam M. Burgdorf K.S. Manichanh C. Nielsen T. Pons N. Levenez F. Yamada T. Mende D.R. Li J. Xu J. Li S. Li D. Cao J. Wang B. Liang H. Zheng H. Xie Y. Tap J. Lepage P. Bertalan M. Batto J.M. Hansen T. Le Paslier D. Linneberg A. Nielsen H.B. Pelletier E. Renault P. Sicheritz-Ponten T. Turner K. Zhu H. Yu C. Li S. Jian M. Zhou Y. Li Y. Zhang X. Li S. Qin N. Yang H. Wang J. Brunak S. Doré J. Guarner F. Kristiansen K. Pedersen O. Parkhill J. Weissenbach J. Bork P. Ehrlich S.D. Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 464 7285 59 65 10.1038/nature08821 20203603
    [Google Scholar]
  10. Structure, function and diversity of the healthy human microbiome. Nature 2012 486 7402 207 214 10.1038/nature11234 22699609
    [Google Scholar]
  11. Kennedy P.J. Cryan J.F. Dinan T.G. Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017 112 Pt B 399 412 10.1016/j.neuropharm.2016.07.002 27392632
    [Google Scholar]
  12. Furness J.B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 2012 9 5 286 294 10.1038/nrgastro.2012.32 22392290
    [Google Scholar]
  13. Agirman G. Yu K.B. Hsiao E.Y. Signaling inflammation across the gut-brain axis. Science 2021 374 6571 1087 1092 10.1126/science.abi6087 34822299
    [Google Scholar]
  14. Margolis K.G. Cryan J.F. Mayer E.A. The microbiota-gut-brain axis: From motility to mood. Gastroenterology 2021 160 5 1486 1501 10.1053/j.gastro.2020.10.066 33493503
    [Google Scholar]
  15. Chevalier G. Siopi E. Guenin-Macé L. Pascal M. Laval T. Rifflet A. Boneca I.G. Demangel C. Colsch B. Pruvost A. Chu-Van E. Messager A. Leulier F. Lepousez G. Eberl G. Lledo P.M. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun. 2020 11 1 6363 10.1038/s41467‑020‑19931‑2 33311466
    [Google Scholar]
  16. Needham B.D. Funabashi M. Adame M.D. Wang Z. Boktor J.C. Haney J. Wu W.L. Rabut C. Ladinsky M.S. Hwang S.J. Guo Y. Zhu Q. Griffiths J.A. Knight R. Bjorkman P.J. Shapiro M.G. Geschwind D.H. Holschneider D.P. Fischbach M.A. Mazmanian S.K. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 2022 602 7898 647 653 10.1038/s41586‑022‑04396‑8 35165440
    [Google Scholar]
  17. Konjevod M. Nikolac Perkovic M. Sáiz J. Svob Strac D. Barbas C. Rojo D. Metabolomics analysis of microbiota-gut-brain axis in neurodegenerative and psychiatric diseases. J. Pharm. Biomed. Anal. 2021 194 113681 10.1016/j.jpba.2020.113681 33279302
    [Google Scholar]
  18. Sharon G. Sampson T.R. Geschwind D.H. Mazmanian S.K. The central nervous system and the gut microbiome. Cell 2016 167 4 915 932 10.1016/j.cell.2016.10.027 27814521
    [Google Scholar]
  19. Rudzki L. Stone T.W. Maes M. Misiak B. Samochowiec J. Szulc A. Gut microbiota-derived vitamins – underrated powers of a multipotent ally in psychiatric health and disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 107 110240 10.1016/j.pnpbp.2020.110240 33428888
    [Google Scholar]
  20. McIntyre R.S. Subramaniapillai M. Shekotikhina M. Carmona N.E. Lee Y. Mansur R.B. Brietzke E. Fus D. Coles A.S. Iacobucci M. Park C. Potts R. Amer M. Gillard J. James C. Anglin R. Surette M.G. Characterizing the gut microbiota in adults with bipolar disorder: a pilot study. Nutr. Neurosci. 2021 24 3 173 180 10.1080/1028415X.2019.1612555 31132957
    [Google Scholar]
  21. Vinberg M. Ottesen N.M. Meluken I. Sørensen N. Pedersen O. Kessing L.V. Miskowiak K.W. Remitted affective disorders and high familial risk of affective disorders associate with aberrant intestinal microbiota. Acta Psychiatr. Scand. 2019 139 2 174 184 10.1111/acps.12976 30374951
    [Google Scholar]
  22. Sublette M.E. Cheung S. Lieberman E. Hu S. Mann J.J. Uhlemann A.C. Miller J.M. Bipolar disorder and the gut microbiome: A systematic review. Bipolar Disord. 2021 23 6 544 564 10.1111/bdi.13049 33512753
    [Google Scholar]
  23. Cheng S. Han B. Ding M. Wen Y. Ma M. Zhang L. Qi X. Cheng B. Li P. Kafle O.P. Liang X. Liu L. Du Y. Zhao Y. Zhang F. Identifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Brief. Bioinform. 2020 21 3 1016 1022 10.1093/bib/bbz034 30953055
    [Google Scholar]
  24. Verstreken I. Laleman W. Wauters G. Verhaegen J. Desulfovibrio desulfuricans bacteremia in an immunocompromised host with a liver graft and ulcerative colitis. J. Clin. Microbiol. 2012 50 1 199 201 10.1128/JCM.00987‑11 22075582
    [Google Scholar]
  25. Hu S. Li A. Huang T. Lai J. Li J. Sublette M.E. Lu H. Lu Q. Du Y. Hu Z. Ng C.H. Zhang H. Lu J. Mou T. Lu S. Wang D. Duan J. Hu J. Huang M. Wei N. Zhou W. Ruan L. Li M.D. Xu Y. Gut microbiota changes in patients with bipolar depression. Adv. Sci. (Weinh.) 2019 6 14 1900752 31380217
    [Google Scholar]
  26. Coello K. Hansen T.H. Sørensen N. Munkholm K. Kessing L.V. Pedersen O. Vinberg M. Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain Behav. Immun. 2019 75 112 118 30261302
    [Google Scholar]
  27. Valles-Colomer M. Falony G. Darzi Y. Tigchelaar E.F. Wang J. Tito R.Y. Schiweck C. Kurilshikov A. Joossens M. Wijmenga C. Claes S. Van Oudenhove L. Zhernakova A. Vieira-Silva S. Raes J. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019 4 4 623 632 10.1038/s41564‑018‑0337‑x 30718848
    [Google Scholar]
  28. McGuinness A.J. Davis J.A. Dawson S.L. Loughman A. Collier F. O’Hely M. Simpson C.A. Green J. Marx W. Hair C. Guest G. Mohebbi M. Berk M. Stupart D. Watters D. Jacka F.N. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry 2022 27 4 1920 1935 35194166
    [Google Scholar]
  29. Rong H. Xie X.H. Zhao J. Lai W.T. Wang M.B. Xu D. Liu Y.H. Guo Y.Y. Xu S.X. Deng W.F. Yang Q.F. Xiao L. Zhang Y.L. He F.S. Wang S. Liu T.B. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J. Psychiatr. Res. 2019 113 90 99 30927646
    [Google Scholar]
  30. Zheng P. Yang J. Li Y. Wu J. Liang W. Yin B. Tan X. Huang Y. Chai T. Zhang H. Duan J. Zhou J. Sun Z. Chen X. Marwari S. Lai J. Huang T. Du Y. Zhang P. Perry S.W. Wong M.L. Licinio J. Hu S. Xie P. Wang G. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv. Sci. (Weinh.) 2020 7 7 1902862 32274300
    [Google Scholar]
  31. Li Y. Zhang H. Zheng P. Yang J. Wu J. Huang Y. Hu X. Tan X. Duan J. Chai T. Zhou J. Sun Z. Liu M. Lai J. Huang T. Du Y. Zhang P. Sun W. Ding Y. Luo C. Zhao J. Perry S.W. Wong M.L. Licinio J. Hu S. Xie P. Wang G. Perturbed gut microbiota is gender-segregated in unipolar and bipolar depression. J. Affect. Disord. 2022 317 166 175 10.1016/j.jad.2022.08.027 35987305
    [Google Scholar]
  32. Hamdani N. Boukouaci W. Hallouche M.R. Charron D. Krishnamoorthy R. Leboyer M. Tamouza R. Resolution of a manic episode treated with activated charcoal: Evidence for a brain–gut axis in bipolar disorder. Aust. N. Z. J. Psychiatry 2015 49 12 1221 1223 10.1177/0004867415595873 26209321
    [Google Scholar]
  33. Painold A. Mörkl S. Kashofer K. Halwachs B. Dalkner N. Bengesser S. Birner A. Fellendorf F. Platzer M. Queissner R. Schütze G. Schwarz M.J. Moll N. Holzer P. Holl A.K. Kapfhammer H.P. Gorkiewicz G. Reininghaus E.Z. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord. 2019 21 1 40 49 10.1111/bdi.12682 30051546
    [Google Scholar]
  34. Wagner-Skacel J. Dalkner N. Moerkl S. Kreuzer K. Farzi A. Lackner S. Painold A. Reininghaus E.Z. Butler M.I. Bengesser S. Sleep and microbiome in psychiatric diseases. Nutrients 2020 12 8 2198 10.3390/nu12082198 32718072
    [Google Scholar]
  35. Dickerson F. Severance E. Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav. Immun. 2017 62 46 52 10.1016/j.bbi.2016.12.010 28003152
    [Google Scholar]
  36. Simeonova D. Stoyanov D. Leunis J.C. Carvalho A.F. Kubera M. Murdjeva M. Maes M. Increased serum immunoglobulin responses to gut commensal gram-negative bacteria in unipolar major depression and bipolar disorder type 1, especially when melancholia is present. Neurotox. Res. 2020 37 2 338 348 10.1007/s12640‑019‑00126‑7 31802379
    [Google Scholar]
  37. Yang L. Zhou Y. Jia H. Qi Y. Tu S. Shao A. Affective immunology: The crosstalk between microglia and astrocytes plays key role? Front. Immunol. 2020 11 1818 10.3389/fimmu.2020.01818 32973758
    [Google Scholar]
  38. Lai J. Jiang J. Zhang P. Xi C. Wu L. Gao X. Fu Y. Zhang D. Chen Y. Huang H. Zhu Y. Hu S. Impaired blood-brain barrier in the microbiota-gut-brain axis: Potential role of bipolar susceptibility gene TRANK1. J. Cell. Mol. Med. 2021 25 14 6463 6469 10.1111/jcmm.16611 34014031
    [Google Scholar]
  39. Więdłocha, M.; Marcinowicz, P.; Janoska-Jaździk, M.; Szulc, A. Gut microbiota, kynurenine pathway and mental disorders - Review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 106 110145 33203568
    [Google Scholar]
  40. Li Z. Lai J. Zhang P. Ding J. Jiang J. Liu C. Huang H. Zhen H. Xi C. Sun Y. Wu L. Wang L. Gao X. Li Y. Fu Y. Jie Z. Li S. Zhang D. Chen Y. Zhu Y. Lu S. Lu J. Wang D. Zhou H. Yuan X. Li X. Pang L. Huang M. Yang H. Zhang W. Brix S. Kristiansen K. Song X. Nie C. Hu S. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol. Psychiatry 2022 27 10 4123 4135 35444255
    [Google Scholar]
  41. Bengesser S.A. Mörkl S. Painold A. Dalkner N. Birner A. Fellendorf F.T. Platzer M. Queissner R. Hamm C. Maget A. Pilz R. Rieger A. Wagner-Skacel J. Reininghaus B. Kapfhammer H.P. Petek E. Kashofer K. Halwachs B. Holzer P. Waha A. Reininghaus E.Z. Epigenetics of the molecular clock and bacterial diversity in bipolar disorder. Psychoneuroendocrinology 2019 101 160 166 30465968
    [Google Scholar]
  42. Adiliaghdam F. Amatullah H. Digumarthi S. Saunders T.L. Rahman R.U. Wong L.P. Sadreyev R. Droit L. Paquette J. Goyette P. Rioux J.D. Hodin R. Mihindukulasuriya K.A. Handley S.A. Jeffrey K.L. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci. Immunol. 2022 7 70 eabn6660 35394816
    [Google Scholar]
  43. Quinn L.M. Wong F.S. Narendran P. Environmental determinants of type 1 diabetes: From association to proving causality. Front. Immunol. 2021 12 737964 34659229
    [Google Scholar]
  44. Dallari S. Heaney T. Rosas-Villegas A. Neil J.A. Wong S.Y. Brown J.J. Urbanek K. Herrmann C. Depledge D.P. Dermody T.S. Cadwell K. Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host Microbe 2021 29 6 1014 1029.e8 33894129
    [Google Scholar]
  45. Wan Y. Zhang L. Xu Z. Su Q. Leung T.F. Chan D. Wong O.W.H. Chan S. Chan F.K.L. Tun H.M. Ng S.C. Alterations in fecal virome and bacteriome virome interplay in children with autism spectrum disorder. Cell Rep. Med. 2024 5 2 101409 38307030
    [Google Scholar]
  46. Miyamoto S. Inoue H. Nakamura T. Yamada M. Sakamoto C. Urata Y. Okazaki T. Marumoto T. Takahashi A. Takayama K. Nakanishi Y. Shimizu H. Tani K. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 2012 72 10 2609 2621 10.1158/0008‑5472.CAN‑11‑3185 22461509
    [Google Scholar]
  47. Heisel T. Podgorski H. Staley C.M. Knights D. Sadowsky M.J. Gale C.A. Complementary amplicon-based genomic approaches for the study of fungal communities in humans. PLoS One 2015 10 2 e0116705 10.1371/journal.pone.0116705 25706290
    [Google Scholar]
  48. Gouba N. Raoult D. Drancourt M. Gut microeukaryotes during anorexia nervosa: a case report. BMC Res. Notes 2014 7 1 33 10.1186/1756‑0500‑7‑33 24418238
    [Google Scholar]
  49. Severance E.G. Gressitt K.L. Stallings C.R. Katsafanas E. Schweinfurth L.A. Savage C.L.G. Adamos M.B. Sweeney K.M. Origoni A.E. Khushalani S. Dickerson F.B. Yolken R.H. Probiotic normalization of Candida albicans in schizophrenia: A randomized, placebo-controlled, longitudinal pilot study. Brain Behav. Immun. 2017 62 41 45 10.1016/j.bbi.2016.11.019 27871802
    [Google Scholar]
  50. Musumeci S. Coen M. Leidi A. Schrenzel J. The human gut mycobiome and the specific role of Candida albicans: where do we stand, as clinicians? Clin. Microbiol. Infect. 2022 28 1 58 63 10.1016/j.cmi.2021.07.034 34363944
    [Google Scholar]
  51. Slykerman R.F. Hood F. Wickens K. Thompson J.M.D. Barthow C. Murphy R. Kang J. Rowden J. Stone P. Crane J. Stanley T. Abels P. Purdie G. Maude R. Mitchell E.A. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomised double-blind placebo-controlled trial. EBioMedicine 2017 24 159 165 10.1016/j.ebiom.2017.09.013 28943228
    [Google Scholar]
  52. Dickerson F. Adamos M. Katsafanas E. Khushalani S. Origoni A. Savage C. Schweinfurth L. Stallings C. Sweeney K. Goga J. Yolken R.H. Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: A randomized controlled trial. Bipolar Disord. 2018 20 7 614 621 10.1111/bdi.12652 29693757
    [Google Scholar]
  53. Reininghaus E.Z. Wetzlmair L.C. Fellendorf F.T. Platzer M. Queissner R. Birner A. Pilz R. Hamm C. Maget A. Rieger A. Prettenhofer A. Wurm W. Mörkl S. Dalkner N. Probiotic treatment in individuals with euthymic bipolar disorder: A pilot-study on clinical changes and compliance. Neuropsychobiology 2020 79 1 71 79 10.1159/000493867 30343291
    [Google Scholar]
  54. Eslami Shahrbabaki M. Sabouri S. Sabahi A. Barfeh D. Divsalar P. Divsalar P. Esmailzadeh M. Ahmadi A. The efficacy of probiotics for treatment of bipolar disorder- type 1: A randomized, double-blind, placebo-controlled trial. Iran. J. Psychiatry 2020 15 1 10 16 10.18502/ijps.v15i1.2435 32377210
    [Google Scholar]
  55. Bagga D. Reichert J.L. Koschutnig K. Aigner C.S. Holzer P. Koskinen K. Moissl-Eichinger C. Schöpf V. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 2018 9 6 1 11 10.1080/19490976.2018.1460015 29723105
    [Google Scholar]
  56. Flowers S.A. Baxter N.T. Ward K.M. Kraal A.Z. McInnis M.G. Schmidt T.M. Ellingrod V.L. Effects of atypical antipsychotic treatment and resistant starch supplementation on gut microbiome composition in a cohort of patients with bipolar disorder or schizophrenia. Pharmacotherapy 2019 39 2 161 170 10.1002/phar.2214 30620405
    [Google Scholar]
  57. Guo X.J. Wu P. Cui X.H. Jia J. Bao S. Yu F. Ma L.N. Cao X.X. Ren Y. Pre- and post-treatment levels of plasma metabolites in patients with bipolar depression. Front. Psychiatry 2021 12 747595 10.3389/fpsyt.2021.747595 34975567
    [Google Scholar]
  58. Pu Z. Sun Y. Jiang H. Hou Q. Yan H. Wen H. Li G. Effects of Berberine on gut microbiota in patients with mild metabolic disorders induced by olanzapine. Am. J. Chin. Med. 2021 49 8 1949 1963 34961418
    [Google Scholar]
  59. Poolchanuan P. Unagul P. Thongnest S. Wiyakrutta S. Ngamrojanavanich N. Mahidol C. Ruchirawat S. Kittakoop P. An anticonvulsive drug, valproic acid (valproate), has effects on the biosynthesis of fatty acids and polyketides in microorganisms. Sci. Rep. 2020 10 1 9300 10.1038/s41598‑020‑66251‑y 32518288
    [Google Scholar]
  60. Green J.E. Davis J.A. Berk M. Hair C. Loughman A. Castle D. Athan E. Nierenberg A.A. Cryan J.F. Jacka F. Marx W. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis. Gut Microbes 2020 12 1 1854640 10.1080/19490976.2020.1854640 33345703
    [Google Scholar]
  61. Green J. Castle D. Berk M. Hair C. Loughman A. Cryan J. Nierenberg A. Athan E. Jacka F. Faecal microbiota transplants for depression – Who gives a crapsule? Aust. N. Z. J. Psychiatry 2019 53 8 732 734 10.1177/0004867419839776 30957511
    [Google Scholar]
  62. Hinton R. A case report looking at the effects of faecal microbiota transplantation in a patient with bipolar disorder. Aust. N. Z. J. Psychiatry 2020 54 6 649 650 10.1177/0004867420912834 32228039
    [Google Scholar]
  63. Parker G. Spoelma M.J. Rhodes N. Faecal microbiota transplantation for bipolar disorder: A detailed case study. Bipolar Disord. 2022 24 5 559 563 10.1111/bdi.13187 35165993
    [Google Scholar]
  64. Koning E. Vorstman J. McIntyre R.S. Brietzke E. Characterizing eating behavioral phenotypes in mood disorders: a narrative review. Psychol. Med. 2022 52 14 2885 2898 10.1017/S0033291722002446 36004528
    [Google Scholar]
  65. Bruce-Keller A.J. Salbaum J.M. Luo M. Blanchard E. Taylor C.M. Welsh D.A. Berthoud H.R. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 2015 77 7 607 615 10.1016/j.biopsych.2014.07.012 25173628
    [Google Scholar]
  66. Rantala M.J. Luoto S. Borráz-León J.I. Krams I. Bipolar disorder: An evolutionary psychoneuroimmunological approach. Neurosci. Biobehav. Rev. 2021 122 28 37 10.1016/j.neubiorev.2020.12.031 33421542
    [Google Scholar]
  67. Opie R.S. O’Neil A. Jacka F.N. Pizzinga J. Itsiopoulos C. A modified Mediterranean dietary intervention for adults with major depression: Dietary protocol and feasibility data from the SMILES trial. Nutr. Neurosci. 2018 21 7 487 501 10.1080/1028415X.2017.1312841 28424045
    [Google Scholar]
  68. Sá Filho A.S. Cheniaux E. de Paula C.C. Murillo-Rodriguez E. Teixeira D. Monteiro D. Cid L. Yamamoto T. Telles-Correia D. Imperatori C. Budde H. Machado S. Exercise is medicine: a new perspective for health promotion in bipolar disorder. Expert Rev. Neurother. 2020 20 11 1099 1107 10.1080/14737175.2020.1807329 32762382
    [Google Scholar]
  69. Sylvia L.G. Ametrano R.M. Nierenberg A.A. Exercise treatment for bipolar disorder: potential mechanisms of action mediated through increased neurogenesis and decreased allostatic load. Psychother. Psychosom. 2010 79 2 87 96 10.1159/000270916 20051706
    [Google Scholar]
  70. Clark A. Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 2016 13 1 43 10.1186/s12970‑016‑0155‑6 27924137
    [Google Scholar]
  71. Dalton A. Mermier C. Zuhl M. Exercise influence on the microbiome–gut–brain axis. Gut Microbes 2019 10 5 555 568 10.1080/19490976.2018.1562268 30704343
    [Google Scholar]
  72. Cervenka I. Agudelo L.Z. Ruas J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017 357 6349 eaaf9794 10.1126/science.aaf9794 28751584
    [Google Scholar]
  73. Markey L. Hooper A. Melon L.C. Baglot S. Hill M.N. Maguire J. Kumamoto C.A. Colonization with the commensal fungus Candida albicans perturbs the gut-brain axis through dysregulation of endocannabinoid signaling. Psychoneuroendocrinology 2020 121 104808 10.1016/j.psyneuen.2020.104808 32739746
    [Google Scholar]
  74. Chilton P.M. Ghare S.S. Charpentier B.T. Myers S.A. Rao A.V. Petrosino J.F. Hoffman K.L. Greenwell J.C. Tyagi N. Behera J. Wang Y. Sloan L.J. Zhang J. Shields C.B. Cooper G.E. Gobejishvili L. Whittemore S.R. McClain C.J. Barve S.S. Age-associated temporal decline in butyrate-producing bacteria plays a key pathogenic role in the onset and progression of neuropathology and memory deficits in 3×Tg-AD mice. Gut Microbes 2024 16 1 2389319 10.1080/19490976.2024.2389319 39182227
    [Google Scholar]
  75. Chen L. A system biology perspective on environment-host-microbe interactions. Hum. Mol. Genet. 2018 27 R2 R187 R194 10.1093/hmg/ddy137
    [Google Scholar]
  76. Zou, Lili High-cholesterol diet promotes depression- and anxietylike behaviors in mice by impact gut microbe and neuroinflammation. J. Affect Disord. 2023 327 425 438 10.1016/j.jad.2023.01.122.
    [Google Scholar]
  77. Putignani L. Dallapiccola B. Foodomics as part of the host-microbiota-exposome interplay. J. Proteomics 216 147 3 20 10.1016/j.jprot.2016.04.033
    [Google Scholar]
/content/journals/cn/10.2174/011570159X379789250626044050
Loading
/content/journals/cn/10.2174/011570159X379789250626044050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test