Skip to content
2000
image of The Role of the Microbiota-Gut-Brain Axis in Perinatal Depression: Novel Insights for Treatment

Abstract

Perinatal depression, a prevalent mood disorder complicating pregnancy and childbirth, poses significant threats to maternal health and neonatal development. While psychotherapy and antidepressants constitute current standard treatments, their clinical application faces substantial limitations during pregnancy and lactation, including safety concerns, treatment resistance, and poor adherence rates. These therapeutic constraints have spurred growing interest in novel gut-brain axis (GBA)-targeted interventions. Emerging evidence suggests that the gut microbiota communicates with the brain through a complex network of neural, immune, and endocrine pathways, playing a critical role in regulating mood, behavior, and cognitive functions. Interventions such as probiotics and fecal microbiota transplantation (FMT) are increasingly explored for their potential to restore microbial balance and alleviate depressive symptoms. This review aims to systematically examine the role of the GBA in the context of perinatal depression, offering novel insights to inform clinical treatment strategies. Furthermore, it evaluates the promise and limitations of microbiota-targeted interventions while discussing future directions for personalized microbiome therapeutics.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X380460250710061340
2025-07-18
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X380460250710061340/BMS-CN-2024-HT4-6373-4.html?itemId=/content/journals/cn/10.2174/011570159X380460250710061340&mimeType=html&fmt=ahah

References

  1. The L. Perinatal depression: A neglected aspect of maternal health. Lancet 2023 402 10403 667 10.1016/S0140‑6736(23)01786‑5 37633661
    [Google Scholar]
  2. Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. Switzerland World Health Organization 2011
    [Google Scholar]
  3. Yin X. Sun N. Jiang N. Xu X. Gan Y. Zhang J. Qiu L. Yang C. Shi X. Chang J. Gong Y. Prevalence and associated factors of antenatal depression: Systematic reviews and meta-analyses. Clin. Psychol. Rev. 2021 83 101932 10.1016/j.cpr.2020.101932 33176244
    [Google Scholar]
  4. Wang Z. Liu J. Shuai H. Cai Z. Fu X. Liu Y. Xiao X. Zhang W. Krabbendam E. Liu S. Liu Z. Li Z. Yang B.X. Mapping global prevalence of depression among postpartum women. Transl. Psychiatry 2021 11 1 543 10.1038/s41398‑021‑01663‑6 34671011
    [Google Scholar]
  5. Lara M.A. Navarrete L. Nieto L. Barba Martin.J.P. Navarro J.L. Lara-Tapia H. Prevalence and incidence of perinatal depression and depressive symptoms among Mexican women. J. Affect. Disord. 2015 175 18 24 10.1016/j.jad.2014.12.035 25590762
    [Google Scholar]
  6. Nicolet L. Moayedoddin A. Miafo J.D. Nzebou D. Stoll B. Jeannot E. Teenage Mothers in Yaoundé, Cameroon—Risk Factors and Prevalence of Perinatal Depression Symptoms. J. Clin. Med. 2021 10 18 4164 10.3390/jcm10184164 34575274
    [Google Scholar]
  7. Becker M. Weinberger T. Chandy A. Schmukler S. Depression during pregnancy and postpartum. Curr. Psychiatry Rep. 2016 18 3 32 10.1007/s11920‑016‑0664‑7 26879925
    [Google Scholar]
  8. Rogers A. Obst S. Teague S.J. Rossen L. Spry E.A. Macdonald J.A. Sunderland M. Olsson C.A. Youssef G. Hutchinson D. Association between maternal perinatal depression and anxiety and child and adolescent development. JAMA Pediatr. 2020 174 11 1082 1092 10.1001/jamapediatrics.2020.2910 32926075
    [Google Scholar]
  9. Khanna S. Tosh P.K. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin. Proc. 2014 89 1 107 114 10.1016/j.mayocp.2013.10.011 24388028
    [Google Scholar]
  10. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature 2012 486 7402 207 214 10.1038/nature11234 22699609
    [Google Scholar]
  11. Młynarska E. Gadzinowska J. Tokarek J. Forycka J. Szuman A. Franczyk B. Rysz J. The role of the microbiome-brain-gut axis in the pathogenesis of depressive disorder. Nutrients 2022 14 9 1921 10.3390/nu14091921 35565888
    [Google Scholar]
  12. Dicks L.M.T. Our mental health is determined by an intrinsic interplay between the central nervous system, enteric nerves, and gut microbiota. Int. J. Mol. Sci. 2023 25 1 38 10.3390/ijms25010038 38203207
    [Google Scholar]
  13. Wang J. Zhu N. Su X. Gao Y. Yang R. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis. Cells 2023 12 5 793 10.3390/cells12050793 36899929
    [Google Scholar]
  14. Chen C. Liao J. Xia Y. Liu X. Jones R. Haran J. McCormick B. Sampson T.R. Alam A. Ye K. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 2022 71 11 2233 2252 10.1136/gutjnl‑2021‑326269 35017199
    [Google Scholar]
  15. Sampson T.R. Debelius J.W. Thron T. Janssen S. Shastri G.G. Ilhan Z.E. Challis C. Schretter C.E. Rocha S. Gradinaru V. Chesselet M.F. Keshavarzian A. Shannon K.M. Krajmalnik-Brown R. Wittung-Stafshede P. Knight R. Mazmanian S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016 167 6 1469 1480.e12 10.1016/j.cell.2016.11.018 27912057
    [Google Scholar]
  16. Nikolova V.L. Smith M.R.B. Hall L.J. Cleare A.J. Stone J.M. Young A.H. Perturbations in gut microbiota composition in psychiatric disorders. JAMA Psychiatry 2021 78 12 1343 1354 10.1001/jamapsychiatry.2021.2573 34524405
    [Google Scholar]
  17. Foster J.A. McVey Neufeld K.A. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013 36 5 305 312 10.1016/j.tins.2013.01.005 23384445
    [Google Scholar]
  18. Xu R. Wu B. Liang J. He F. Gu W. Li K. Luo Y. Chen J. Gao Y. Wu Z. Wang Y. Zhou W. Wang M. Altered gut microbiota and mucosal immunity in patients with Schizophrenia. Brain Behav. Immun. 2020 85 120 127 10.1016/j.bbi.2019.06.039 31255682
    [Google Scholar]
  19. Liu J.C.W. Gorbovskaya I. Hahn M.K. Müller D.J. The gut microbiome in schizophrenia and the potential benefits of prebiotic and probiotic treatment. Nutrients 2021 13 4 1152 10.3390/nu13041152 33807241
    [Google Scholar]
  20. Maqsood R. Stone T.W. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem. Res. 2016 41 11 2819 2835 10.1007/s11064‑016‑2039‑1 27553784
    [Google Scholar]
  21. Qiu W. Hodges T.E. Clark E.L. Blankers S.A. Galea L.A.M. Perinatal depression: Heterogeneity of disease and in animal models. Front. Neuroendocrinol. 2020 59 100854 10.1016/j.yfrne.2020.100854 32750403
    [Google Scholar]
  22. Chen Y. Xue F. Yu S. Li X. Liu L. Jia Y. Yan W. Tan Q. Wang H. Peng Z. Gut microbiota dysbiosis in depressed women: The association of symptom severity and microbiota function. J. Affect. Disord. 2021 282 391 400 10.1016/j.jad.2020.12.143 33421868
    [Google Scholar]
  23. Liu R.T. Rowan-Nash A.D. Sheehan A.E. Walsh R.F.L. Sanzari C.M. Korry B.J. Belenky P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav. Immun. 2020 88 308 324 10.1016/j.bbi.2020.03.026 32229219
    [Google Scholar]
  24. Kelly J.R. Borre Y. O’ Brien C. Patterson E. El Aidy S. Deane J. Kennedy P.J. Beers S. Scott K. Moloney G. Hoban A.E. Scott L. Fitzgerald P. Ross P. Stanton C. Clarke G. Cryan J.F. Dinan T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016 82 109 118 10.1016/j.jpsychires.2016.07.019 27491067
    [Google Scholar]
  25. Zheng P. Zeng B. Zhou C. Liu M. Fang Z. Xu X. Zeng L. Chen J. Fan S. Du X. Zhang X. Yang D. Yang Y. Meng H. Li W. Melgiri N.D. Licinio J. Wei H. Xie P. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016 21 6 786 796 10.1038/mp.2016.44 27067014
    [Google Scholar]
  26. Yu S. Wang L. Jing X. Wang Y. An C. Features of gut microbiota and short-chain fatty acids in patients with first-episode depression and their relationship with the clinical symptoms. Front. Psychol. 2023 14 1088268 10.3389/fpsyg.2023.1088268 37168424
    [Google Scholar]
  27. Jiang H. Ling Z. Zhang Y. Mao H. Ma Z. Yin Y. Wang W. Tang W. Tan Z. Shi J. Li L. Ruan B. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015 48 186 194 10.1016/j.bbi.2015.03.016 25882912
    [Google Scholar]
  28. Han W. Zheng Y. Wang L. An C. Disordered gut microbiota and changes in short-chain fatty acids and inflammatory processes in stress-vulnerable mice. J. Neuroimmunol. 2023 383 578172 10.1016/j.jneuroim.2023.578172 37659269
    [Google Scholar]
  29. Pearlstein T. Howard M. Salisbury A. Zlotnick C. Postpartum depression. Am. J. Obstet. Gynecol. 2009 200 4 357 364 10.1016/j.ajog.2008.11.033 19318144
    [Google Scholar]
  30. Gavin N.I. Gaynes B.N. Lohr K.N. Meltzer-Brody S. Gartlehner G. Swinson T. Perinatal depression. Obstet. Gynecol. 2005 106 5, Part 1 1071 1083 10.1097/01.AOG.0000183597.31630.db 16260528
    [Google Scholar]
  31. Putnam K.T. Wilcox M. Robertson-Blackmore E. Sharkey K. Bergink V. Munk-Olsen T. Deligiannidis K.M. Payne J. Altemus M. Newport J. Apter G. Devouche E. Viktorin A. Magnusson P. Penninx B. Buist A. Bilszta J. O’Hara M. Stuart S. Brock R. Roza S. Tiemeier H. Guille C. Epperson C.N. Kim D. Schmidt P. Martinez P. Di Florio A. Wisner K.L. Stowe Z. Jones I. Sullivan P.F. Rubinow D. Wildenhaus K. Meltzer-Brody S. Clinical phenotypes of perinatal depression and time of symptom onset: Analysis of data from an international consortium. Lancet Psychiatry 2017 4 6 477 485 10.1016/S2215‑0366(17)30136‑0 28476427
    [Google Scholar]
  32. Heterogeneity of postpartum depression: A latent class analysis. Lancet Psychiatry 2015 2 1 59 67 10.1016/S2215‑0366(14)00055‑8 26359613
    [Google Scholar]
  33. DiGiulio D.B. Callahan B.J. McMurdie P.J. Costello E.K. Lyell D.J. Robaczewska A. Sun C.L. Goltsman D.S.A. Wong R.J. Shaw G. Stevenson D.K. Holmes S.P. Relman D.A. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA 2015 112 35 11060 11065 10.1073/pnas.1502875112 26283357
    [Google Scholar]
  34. Koren O. Goodrich J.K. Cullender T.C. Spor A. Laitinen K. Kling Bäckhed.H. Gonzalez A. Werner J.J. Angenent L.T. Knight R. Bäckhed F. Isolauri E. Salminen S. Ley R.E. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012 150 3 470 480 10.1016/j.cell.2012.07.008 22863002
    [Google Scholar]
  35. Gohir W. Whelan F.J. Surette M.G. Moore C. Schertzer J.D. Sloboda D.M. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother’s periconceptional diet. Gut Microbes 2015 6 5 310 320 10.1080/19490976.2015.1086056 26322500
    [Google Scholar]
  36. Naudé P.J.W. Claassen-Weitz S. Gardner-Lubbe S. Botha G. Kaba M. Zar H.J. Nicol M.P. Stein D.J. Association of maternal prenatal psychological stressors and distress with maternal and early infant faecal bacterial profile. Acta Neuropsychiatr. 2020 32 1 32 42 10.1017/neu.2019.43 31753055
    [Google Scholar]
  37. Santacruz A. Collado M.C. García-Valdés L. Segura M.T. Martín-Lagos J.A. Anjos T. Martí-Romero M. Lopez R.M. Florido J. Campoy C. Sanz Y. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010 104 1 83 92 10.1017/S0007114510000176 20205964
    [Google Scholar]
  38. Cox L.M. Blaser M.J. Pathways in microbe-induced obesity. Cell Metab. 2013 17 6 883 894 10.1016/j.cmet.2013.05.004 23747247
    [Google Scholar]
  39. Turnbaugh P.J. Hamady M. Yatsunenko T. Cantarel B.L. Duncan A. Ley R.E. Sogin M.L. Jones W.J. Roe B.A. Affourtit J.P. Egholm M. Henrissat B. Heath A.C. Knight R. Gordon J.I. A core gut microbiome in obese and lean twins. Nature 2009 457 7228 480 484 10.1038/nature07540 19043404
    [Google Scholar]
  40. Sun Z. Pan X.F. Li X. Jiang L. Hu P. Wang Y. Ye Y. Wu P. Zhao B. Xu J. Kong M. Pu Y. Zhao M. Hu J. Wang J. Chen G.C. Yuan C. Yu Y. Gao X. Zhao F. Pan A. Zheng Y. The gut microbiome dynamically associates with host glucose metabolism throughout pregnancy: Longitudinal findings from a matched case‐control study of gestational diabetes mellitus. Adv. Sci. 2023 10 10 2205289 10.1002/advs.202205289 36683149
    [Google Scholar]
  41. Chang Y. Chen Y. Zhou Q. Wang C. Chen L. Di W. Zhang Y. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin. Sci. 2020 134 2 289 302 10.1042/CS20191253 31961431
    [Google Scholar]
  42. Zhang X. Gan Q. Yang H. Ye W. Zhao X. Long Y. Mei S. Ma J. Rehemutula R. Zeng F. Geng Q. Hu Y. Zhu C. Effect of gut microbiotas diversity during 32-39 weeks of gestation on postpartum depression. Res. Square 2020 1 6 10.21203/rs.3.rs‑91665/v1
    [Google Scholar]
  43. Notting F. Pirovano W. Sybesma W. Kort R. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. Gut Microbiome 2023 4 16 10.1017/gmb.2023.14 39295905
    [Google Scholar]
  44. Banti S. Mauri M. Oppo A. Borri C. Rambelli C. Ramacciotti D. Montagnani M.S. Camilleri V. Cortopassi S. Rucci P. Cassano G.B. From the third month of pregnancy to 1 year postpartum. Prevalence, incidence, recurrence, and new onset of depression. Results from the perinatal depression-research & screening unit study. Compr. Psychiatry 2011 52 4 343 351 10.1016/j.comppsych.2010.08.003 21683171
    [Google Scholar]
  45. Gastaldon C. Solmi M. Correll C.U. Barbui C. Schoretsanitis G. Risk factors of postpartum depression and depressive symptoms: Umbrella review of current evidence from systematic reviews and meta-analyses of observational studies. Br. J. Psychiatry 2022 221 4 591 602 10.1192/bjp.2021.222 35081993
    [Google Scholar]
  46. Zhao X. Zhang Z. Risk factors for postpartum depression: An evidence-based systematic review of systematic reviews and meta-analyses. Asian J. Psychiatr. 2020 53 102353 10.1016/j.ajp.2020.102353 32927309
    [Google Scholar]
  47. Hedges V.L. Heaton E.C. Amaral C. Benedetto L.E. Bodie C.L. D’Antonio B.I. Davila Portillo D.R. Lee R.H. Levine M.T. O’Sullivan E.C. Pisch N.P. Taveras S. Wild H.R. Grieb Z.A. Ross A.P. Albers H.E. Been L.E. Estrogen withdrawal increases postpartum anxiety via oxytocin plasticity in the paraventricular hypothalamus and dorsal raphe nucleus. Biol. Psychiatry 2021 89 9 929 938 10.1016/j.biopsych.2020.11.016 33487439
    [Google Scholar]
  48. Jost T. Lacroix C. Braegger C. Chassard C. Stability of the maternal gut microbiota during late pregnancy and early lactation. Curr. Microbiol. 2014 68 4 419 427 10.1007/s00284‑013‑0491‑6 24258611
    [Google Scholar]
  49. Qin S. Liu Y. Wang S. Ma J. Yang H. Distribution characteristics of intestinal microbiota during pregnancy and postpartum in healthy women. J. Matern. Fetal Neonatal Med. 2022 35 15 2915 2922 10.1080/14767058.2020.1812571 33541190
    [Google Scholar]
  50. Browne P.D. Aparicio M. Alba C. Hechler C. Beijers R. Rodríguez J.M. Fernández L. de Weerth C. Human milk microbiome and maternal postnatal psychosocial distress. Front. Microbiol. 2019 10 2333 10.3389/fmicb.2019.02333 31695687
    [Google Scholar]
  51. Aizawa E. Tsuji H. Asahara T. Takahashi T. Teraishi T. Yoshida S. Ota M. Koga N. Hattori K. Kunugi H. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord. 2016 202 254 257 10.1016/j.jad.2016.05.038 27288567
    [Google Scholar]
  52. Zhou Y. Chen C. Yu H. Yang Z. fecal microbiota changes in patients with postpartum depressive disorder. Front. Cell. Infect. Microbiol. 2020 10 567268 10.3389/fcimb.2020.567268 33134190
    [Google Scholar]
  53. Mota A.S. Sparvoli L.G. Vanzele P.A.R. Naspolini N.F. Tobaruela E.C. Yoshizaki C.T. Francisco R.P.V. Oliveira A.M.S.S. Galletta M.A.K. Tess V.L.C. Taddei C.R. Longitudinal gut microbiota composition during perinatal period in women with different intensities of depressive symptoms. Rev. Bras. Psiquiatr. 2024 1 6 10.47626/1516‑4446‑2024‑3721
    [Google Scholar]
  54. Menezes-Garcia Z. Do Nascimento Arifa R.D. Acúrcio L. Brito C.B. Gouvea J.O. Lima R.L. Bastos R.W. Fialho Dias A.C. Antunes Dourado L.P. Bastos L.F.S. Queiroz-Júnior C.M. Igídio C.E.D. Bezerra R.D.O. Vieira L.Q. Nicoli J.R. Teixeira M.M. Fagundes C.T. Souza D.G. Colonization by Enterobacteriaceae is crucial for acute inflammatory responses in murine small intestine via regulation of corticosterone production. Gut Microbes 2020 11 6 1531 1546 10.1080/19490976.2020.1765946 32573321
    [Google Scholar]
  55. Bienenstock J. Kunze W. Forsythe P. Microbiota and the gut–brain axis. Nutr. Rev. 2015 73 Suppl. 1 28 31 10.1093/nutrit/nuv019 26175487
    [Google Scholar]
  56. Tan C. Yan Q. Ma Y. Fang J. Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front. Neurol. 2022 13 1015175 10.3389/fneur.2022.1015175 36438957
    [Google Scholar]
  57. Kelly J.R. Clarke G. Cryan J.F. Dinan T.G. Brain-gut-microbiota axis: Challenges for translation in psychiatry. Ann. Epidemiol. 2016 26 5 366 372 10.1016/j.annepidem.2016.02.008 27005587
    [Google Scholar]
  58. Cruz-Pereira J.S. Rea K. Nolan Y.M. O’Leary O.F. Dinan T.G. Cryan J.F. Depression’s unholy trinity: Dysregulated stress, immunity, and the microbiome. Annu. Rev. Psychol. 2020 71 1 49 78 10.1146/annurev‑psych‑122216‑011613 31567042
    [Google Scholar]
  59. Cheng J. Hu H. Ju Y. Liu J. Wang M. Liu B. Zhang Y. Gut microbiota-derived short-chain fatty acids and depression: Deep insight into biological mechanisms and potential applications. Gen. Psychiatr. 2024 37 1 101374 10.1136/gpsych‑2023‑101374 38390241
    [Google Scholar]
  60. Dickens M.J. Pawluski J.L. The HPA axis during the perinatal period: Implications for perinatal depression. Endocrinology 2018 159 11 3737 3746 10.1210/en.2018‑00677 30256957
    [Google Scholar]
  61. Brunton P.J. Russell J.A. Douglas A.J. Adaptive responses of the maternal hypothalamic-pituitary-adrenal axis during pregnancy and lactation. J. Neuroendocrinol. 2008 20 6 764 776 10.1111/j.1365‑2826.2008.01735.x 18601699
    [Google Scholar]
  62. Iliadis S.I. Comasco E. Sylvén S. Hellgren C. Sundström Poromaa I. Skalkidou A. Prenatal and postpartum evening salivary cortisol levels in association with peripartum depressive symptoms. PLoS One 2015 10 8 0135471 10.1371/journal.pone.0135471 26322643
    [Google Scholar]
  63. Glynn L.M. Davis E.P. Sandman C.A. New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides 2013 47 6 363 370 10.1016/j.npep.2013.10.007 24210135
    [Google Scholar]
  64. Slyepchenko A. Minuzzi L. Reilly J.P. Frey B.N. Longitudinal Changes in Sleep, Biological Rhythms, and Light Exposure From Late Pregnancy to Postpartum and Their Impact on Peripartum Mood and Anxiety. J. Clin. Psychiatry 2022 83 (2) 1m13991 10.4088/JCP.21m13991 35044728
    [Google Scholar]
  65. de Rezende M.G. Garcia-Leal C. de Figueiredo F.P. Cavalli R.C. Spanghero M.S. Barbieri M.A. Bettiol H. de Castro M. Del-Ben C.M. Altered functioning of the HPA axis in depressed postpartum women. J. Affect. Disord. 2016 193 249 256 10.1016/j.jad.2015.12.065 26773916
    [Google Scholar]
  66. Madison A.A. Bailey M.T. Stressed to the core: Inflammation and intestinal permeability link stress-related gut microbiota shifts to mental health outcomes. Biol. Psychiatry 2024 95 4 339 347 10.1016/j.biopsych.2023.10.014 38353184
    [Google Scholar]
  67. Misiak B. Łoniewski I. Marlicz W. Frydecka D. Szulc A. Rudzki L. Samochowiec J. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog. Neuropsychopharmacol. Biol. Psychiatry 2020 102 109951 10.1016/j.pnpbp.2020.109951 32335265
    [Google Scholar]
  68. Madison A.A. Bailey M.T. Link stress-related gut microbiota shifts to mental health outcomes. Biol. Psychiatry 2023 95 4 339 347 10.1016/j.biopsych.2023.10.014 38353184
    [Google Scholar]
  69. Jašarević E. Howard C.D. Morrison K. Misic A. Weinkopff T. Scott P. Hunter C. Beiting D. Bale T.L. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat. Neurosci. 2018 21 8 1061 1071 10.1038/s41593‑018‑0182‑5 29988069
    [Google Scholar]
  70. Neufeld K.M. Kang N. Bienenstock J. Foster J.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 2011 23 3 255 264 10.1111/j.1365‑2982.2010.01620.x
    [Google Scholar]
  71. Messaoudi M. Lalonde R. Violle N. Javelot H. Desor D. Nejdi A. Bisson J.F. Rougeot C. Pichelin M. Cazaubiel M. Cazaubiel J.M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011 105 5 755 764 10.1017/S0007114510004319 20974015
    [Google Scholar]
  72. Schiller C.E. Meltzer-Brody S. Rubinow D.R. The role of reproductive hormones in postpartum depression. CNS Spectr. 2015 20 1 48 59 10.1017/S1092852914000480 25263255
    [Google Scholar]
  73. Yang Q. Bränn E. Bertone- Johnson, E.R.; Sjölander, A.; Fang, F.; Oberg, A.S.; Valdimarsdóttir, U.A.; Lu, D. The bidirectional association between premenstrual disorders and perinatal depression: A nationwide register-based study from Sweden. PLoS Med. 2024 21 3 1004363 10.1371/journal.pmed.1004363 38547436
    [Google Scholar]
  74. Jurek B. Neumann I.D. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol. Rev. 2018 98 3 1805 1908 10.1152/physrev.00031.2017 29897293
    [Google Scholar]
  75. Markle J.G.M. Frank D.N. Mortin-Toth S. Robertson C.E. Feazel L.M. Rolle-Kampczyk U. von Bergen M. McCoy K.D. Macpherson A.J. Danska J.S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013 339 6123 1084 1088 10.1126/science.1233521 23328391
    [Google Scholar]
  76. Frokjaer V.G. Pinborg A. Holst K.K. Overgaard A. Henningsson S. Heede M. Larsen E.C. Jensen P.S. Agn M. Nielsen A.P. Stenbæk D.S. da Cunha-Bang S. Lehel S. Siebner H.R. Mikkelsen J.D. Svarer C. Knudsen G.M. Role of serotonin transporter changes in depressive responses to sex-steroid hormone manipulation: A positron emission tomography study. Biol. Psychiatry 2015 78 8 534 543 10.1016/j.biopsych.2015.04.015 26004162
    [Google Scholar]
  77. Welch M.G. Margolis K.G. Li Z. Gershon M.D. Oxytocin regulates gastrointestinal motility, inflammation, macromolecular permeability, and mucosal maintenance in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2014 307 8 G848 G862 10.1152/ajpgi.00176.2014 25147234
    [Google Scholar]
  78. Zhang H. Xie Y. Cao F. Song X. Gut microbiota-derived fatty acid and sterol metabolites: Biotransformation and immunomodulatory functions. Gut Microbes 2024 16 1 2382336 10.1080/19490976.2024.2382336 39046079
    [Google Scholar]
  79. Hu S. Ding Q. Zhang W. Kang M. Ma J. Zhao L. Gut microbial beta-glucuronidase: A vital regulator in female estrogen metabolism. Gut Microbes 2023 15 1 2236749 10.1080/19490976.2023.2236749 37559394
    [Google Scholar]
  80. Devendran S. Méndez-García C. Ridlon J.M. Identification and characterization of a 20β-HSDH from the anaerobic gut bacterium Butyricicoccus desmolans ATCC 43058. J. Lipid Res. 2017 58 5 916 925 10.1194/jlr.M074914 28314858
    [Google Scholar]
  81. Maini Rekdal V. Nol Bernadino P. Luescher M.U. Kiamehr S. Le C. Bisanz J.E. Turnbaugh P.J. Bess E.N. Balskus E.P. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 2020 9 50845 10.7554/eLife.50845 32067637
    [Google Scholar]
  82. Zhu Y. Huan F. Wang J. Xie X. Yu G. Wang X. Jiang L. Gao R. Xiao H. Ding H. Wang J. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced parkinson’s disease in mouse: Potential association between neurotransmitter disturbance and gut microbiota dysbiosis. ACS Chem. Neurosci. 2020 11 20 3366 3376 10.1021/acschemneuro.0c00475 32926778
    [Google Scholar]
  83. Kennedy P. J. Cryan J. F. Dinan T. G. Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 2017 112 (Pt B) 399 412 10.1016/j.neuropharm.2016.07.002,
    [Google Scholar]
  84. O’Mahony S.M. Clarke G. Borre Y.E. Dinan T.G. Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015 277 32 48 10.1016/j.bbr.2014.07.027 25078296
    [Google Scholar]
  85. Morris G. Berk M. Carvalho A. Caso J.R. Sanz Y. Walder K. Maes M. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol. Neurobiol. 2017 54 6 4432 4451 10.1007/s12035‑016‑0004‑2 27349436
    [Google Scholar]
  86. Duranti S. Ruiz L. Lugli G.A. Tames H. Milani C. Mancabelli L. Mancino W. Longhi G. Carnevali L. Sgoifo A. Margolles A. Ventura M. Ruas-Madiedo P. Turroni F. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci. Rep. 2020 10 1 14112 10.1038/s41598‑020‑70986‑z 32839473
    [Google Scholar]
  87. Ma S.R. Yu J.B. Fu J. Pan L.B. Yu H. Han P. Zhang Z.W. Peng R. Xu H. Wang Y. Determination and application of nineteen monoamines in the gut microbiota targeting phenylalanine, tryptophan, and glutamic acid metabolic pathways. Molecules 2021 26 5 1377 10.3390/molecules26051377 33806510
    [Google Scholar]
  88. Kolobaric A. Andreescu C. Jašarević E. Hong C.H. Roh H.W. Cheong J.Y. Kim Y.K. Shin T.S. Kang C.S. Kwon C.O. Yoon S.Y. Hong S.W. Aizenstein H.J. Karim H.T. Son S.J. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol. Psychiatry 2024 29 10 3064 3075 10.1038/s41380‑024‑02551‑3 38664490
    [Google Scholar]
  89. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res 2018 1693 (Pt B) 128 133 10.1016/j.brainres.2018.03.015
    [Google Scholar]
  90. Huang F. Wu X. Brain neurotransmitter modulation by gut microbiota in anxiety and depression. Front. Cell Dev. Biol. 2021 9 649103 10.3389/fcell.2021.649103 33777957
    [Google Scholar]
  91. Pearson-Leary J. Zhao C. Bittinger K. Eacret D. Luz S. Vigderman A.S. Dayanim G. Bhatnagar S. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol. Psychiatry 2020 25 5 1068 1079 10.1038/s41380‑019‑0380‑x 30833676
    [Google Scholar]
  92. Kéri S. Szabó C. Kelemen O. Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav. Immun. 2014 40 235 243 10.1016/j.bbi.2014.03.020 24726793
    [Google Scholar]
  93. Yang E.J. Frolinger T. Iqbal U. Estill M. Shen L. Trageser K.J. Pasinetti G.M. The role of the Toll like receptor 4 signaling in sex-specific persistency of depression-like behavior in response to chronic stress. Brain Behav. Immun. 2024 115 169 178 10.1016/j.bbi.2023.10.006 37838079
    [Google Scholar]
  94. Alexandrov P.N. Hill J.M. Zhao Y. Bond T. Taylor C.M. Percy M.E. Li W. Lukiw W.J. Aluminum-induced generation of lipopolysaccharide (LPS) from the human gastrointestinal (GI)-tract microbiome-resident Bacteroides fragilis. J. Inorg. Biochem. 2020 203 110886 10.1016/j.jinorgbio.2019.110886 31707334
    [Google Scholar]
  95. Ma X. Shin Y.J. Park H.S. Jeong J.W. Kim J.Y. Shim J.J. Lee J.L. Kim D.H. Lactobacillus casei and its supplement alleviate stress-induced depression and anxiety in mice by the regulation of bdnf expression and NF-κB activation. Nutrients 2023 15 11 2488 10.3390/nu15112488 37299451
    [Google Scholar]
  96. Roager H.M. Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018 9 1 3294 10.1038/s41467‑018‑05470‑4 30120222
    [Google Scholar]
  97. Lee J.H. Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 2010 34 4 426 444 10.1111/j.1574‑6976.2009.00204.x 20070374
    [Google Scholar]
  98. Konopelski P. Ufnal M. Indoles - gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr. Drug Metab. 2018 19 10 883 890 10.2174/1389200219666180427164731 29708069
    [Google Scholar]
  99. Hestad K. Alexander J. Rootwelt H. Aaseth J.O. The role of tryptophan dysmetabolism and quinolinic acid in depressive and neurodegenerative diseases. Biomolecules 2022 12 7 998 10.3390/biom12070998 35883554
    [Google Scholar]
  100. Rahman A. Al-Qenaie S. Rao M.S. Khan K.M. Guillemin G.J. Memantine is protective against cytotoxicity caused by lead and quinolinic acid in cultured rat embryonic hippocampal cells. Chem. Res. Toxicol. 2019 32 6 1134 1143 10.1021/acs.chemrestox.8b00421 30950269
    [Google Scholar]
  101. Bhatia R. Sharma S. Bhadada S.K. Bishnoi M. Kondepudi K.K. Lactic acid bacterial supplementation ameliorated the lipopolysaccharide-induced gut inflammation and dysbiosis in mice. Front. Microbiol. 2022 13 930928 10.3389/fmicb.2022.930928 35770157
    [Google Scholar]
  102. Yoo J.W. Shin Y.J. Ma X. Son Y.H. Jang H.M. Lee C.K. Kim D.H. The alleviation of gut microbiota-induced depression and colitis in mice by anti-inflammatory probiotics NK151, NK173, and NK175. Nutrients 2022 14 10 2080 10.3390/nu14102080 35631220
    [Google Scholar]
  103. Caspani G. Kennedy S. Foster J.A. Swann J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell 2019 6 10 454 481 10.15698/mic2019.10.693 31646148
    [Google Scholar]
  104. Skonieczna-Żydecka K. Grochans E. Maciejewska D. Szkup M. Schneider-Matyka D. Jurczak A. Łoniewski I. Kaczmarczyk M. Marlicz W. Czerwińska-Rogowska M. Pełka-Wysiecka J. Dec K. Stachowska E. Faecal short chain fatty acids profile is changed in polish depressive women. Nutrients 2018 10 12 1939 10.3390/nu10121939 30544489
    [Google Scholar]
  105. Rong H. Xie X. Zhao J. Lai W. Wang M. Xu D. Liu Y. Guo Y. Xu S. Deng W. Yang Q. Xiao L. Zhang Y. He F. Wang S. Liu T. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J. Psychiatr. Res. 2019 113 90 99 10.1016/j.jpsychires.2019.03.017 30927646
    [Google Scholar]
  106. Suda K. Matsuda K. How microbes affect depression: Underlying mechanisms via the gut–brain axis and the modulating role of probiotics. Int. J. Mol. Sci. 2022 23 3 1172 10.3390/ijms23031172 35163104
    [Google Scholar]
  107. Mueller N.T. Differding M.K. Zhang M. Maruthur N.M. Juraschek S.P. Miller E.R. Appel L.J. Yeh H.C. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: A randomized trial. Diabetes Care 2021 44 7 1462 1471 10.2337/dc20‑2257 34006565
    [Google Scholar]
  108. MacFabe D.F. Cain N.E. Boon F. Ossenkopp K.P. Cain D.P. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav. Brain Res. 2011 217 1 47 54 10.1016/j.bbr.2010.10.005 20937326
    [Google Scholar]
  109. Nickodem C.A. Menon R. McDonald T. Taylor B.D. Circulating short-chain fatty acids in preterm birth: A pilot case-control study. Reprod. Sci. 2020 27 5 1181 1186 10.1007/s43032‑019‑00126‑0 32046422
    [Google Scholar]
  110. Mansuy-Aubert V. Ravussin Y. Short chain fatty acids: The messengers from down below. Front. Neurosci. 2023 17 1197759 10.3389/fnins.2023.1197759 37483350
    [Google Scholar]
  111. Liśkiewicz P. Kaczmarczyk M. Misiak B. Wroński M. Bąba-Kubiś A. Skonieczna-Żydecka K. Marlicz W. Bieńkowski P. Misera A. Pełka-Wysiecka J. Kucharska-Mazur J. Konopka A. Łoniewski I. Samochowiec J. Analysis of gut microbiota and intestinal integrity markers of inpatients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 106 110076 10.1016/j.pnpbp.2020.110076 32827611
    [Google Scholar]
  112. Kratsman N. Getselter D. Elliott E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 2016 102 136 145 10.1016/j.neuropharm.2015.11.003 26577018
    [Google Scholar]
  113. Deng Y. Zhou M. Wang J. Yao J. Yu J. Liu W. Wu L. Wang J. Gao R. Involvement of the microbiota-gut-brain axis in chronic restraint stress: Disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes 2021 13 1 1869501 10.1080/19490976.2020.1869501 33535879
    [Google Scholar]
  114. Du Y. Gao X.R. Peng L. Ge J.F. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon 2020 6 6 04097 10.1016/j.heliyon.2020.e04097 32529075
    [Google Scholar]
  115. Kazemi A. Noorbala A.A. Azam K. Eskandari M.H. Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr. 2019 38 2 522 528 10.1016/j.clnu.2018.04.010 29731182
    [Google Scholar]
  116. Navarro-Tapia E. Sebastiani G. Sailer S. Almeida Toledano L. Serra-Delgado M. García-Algar Ó. Andreu-Fernández V. Probiotic supplementation during the perinatal and infant period: Effects on gut dysbiosis and disease. Nutrients 2020 12 8 2243 10.3390/nu12082243 32727119
    [Google Scholar]
  117. Yang Y. Zhao S. Yang X. Li W. Si J. Yang X. The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci. Lett. 2022 774 136474 10.1016/j.neulet.2022.136474 35085691
    [Google Scholar]
  118. Lonstein J.S. Meinhardt T.A. Pavlidi P. Kokras N. Dalla C. Charlier T.D. Pawluski J.L. Maternal probiotic Lactocaseibacillus rhamnosus HN001 treatment alters postpartum anxiety, cortical monoamines, and the gut microbiome. Psychoneuroendocrinology 2024 165 107033 10.1016/j.psyneuen.2024.107033 38569396
    [Google Scholar]
  119. Slykerman R.F. Hood F. Wickens K. Thompson J.M.D. Barthow C. Murphy R. Kang J. Rowden J. Stone P. Crane J. Stanley T. Abels P. Purdie G. Maude R. Mitchell E.A. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomised double-blind placebo-controlled trial. EBioMedicine 2017 24 159 165 10.1016/j.ebiom.2017.09.013 28943228
    [Google Scholar]
  120. Hulkkonen P. Kataja E.L. Vahlberg T. Koivuniemi E. Houttu N. Pellonperä O. Mokkala K. Karlsson H. Laitinen K. The efficacy of probiotics and/or n-3 long-chain polyunsaturated fatty acids intervention on maternal prenatal and postnatal depressive and anxiety symptoms among overweight and obese women. J. Affect. Disord. 2021 289 21 30 10.1016/j.jad.2021.04.006 33930612
    [Google Scholar]
  121. Dawe J.P. McCowan L.M.E. Wilson J. Okesene-Gafa K.A.M. Serlachius A.S. Probiotics and maternal mental health: A randomised controlled trial among pregnant women with obesity. Sci. Rep. 2020 10 1 1291 10.1038/s41598‑020‑58129‑w 31992802
    [Google Scholar]
  122. Browne P.D. Bolte A.C. Besseling-van der Vaart I. Claassen E. de Weerth C. Probiotics as a treatment for prenatal maternal anxiety and depression: A double-blind randomized pilot trial. Sci. Rep. 2021 11 1 3051 10.1038/s41598‑021‑81204‑9 33542275
    [Google Scholar]
  123. Vicariotto F. Malfa P. Torricelli M. Lungaro L. Caio G. De Leo V. Beneficial effects of Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077 on mood imbalance, self-confidence, and breastfeeding in women during the first trimester postpartum. Nutrients 2023 15 16 3513 10.3390/nu15163513 37630704
    [Google Scholar]
  124. van de Wouw M. Boehme M. Lyte J.M. Wiley N. Strain C. O’Sullivan O. Clarke G. Stanton C. Dinan T.G. Cryan J.F. Short‐chain fatty acids: Microbial metabolites that alleviate stress‐induced brain–gut axis alterations. J. Physiol. 2018 596 20 4923 4944 10.1113/JP276431 30066368
    [Google Scholar]
  125. Valles-Colomer M. Falony G. Darzi Y. Tigchelaar E.F. Wang J. Tito R.Y. Schiweck C. Kurilshikov A. Joossens M. Wijmenga C. Claes S. Van Oudenhove L. Zhernakova A. Vieira-Silva S. Raes J. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019 4 4 623 632 10.1038/s41564‑018‑0337‑x 30718848
    [Google Scholar]
  126. Tian P. O’Riordan K.J. Lee Y. Wang G. Zhao J. Zhang H. Cryan J.F. Chen W. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol. Stress 2020 12 100216 10.1016/j.ynstr.2020.100216 32258258
    [Google Scholar]
  127. Tsai W.H. Yeh W.L. Chou C.H. Wu C.L. Lai C.H. Yeh Y.T. Liao C.A. Wu C.C. Suppressive effects of Lactobacillus on depression through regulating the gut microbiota and metabolites in C57BL/6J mice induced by ampicillin. Biomedicines 2023 11 4 1068 10.3390/biomedicines11041068 37189686
    [Google Scholar]
  128. Wang S. Ishima T. Zhang J. Qu Y. Chang L. Pu Y. Fujita Y. Tan Y. Wang X. Hashimoto K. Ingestion of Lactobacillus intestinalis and Lactobacillus reuteri causes depression- and anhedonia-like phenotypes in antibiotic-treated mice via the vagus nerve. J. Neuroinflammation 2020 17 1 241 10.1186/s12974‑020‑01916‑z 32799901
    [Google Scholar]
  129. Erny D. Hrabě de Angelis A.L. Jaitin D. Wieghofer P. Staszewski O. David E. Keren-Shaul H. Mahlakoiv T. Jakobshagen K. Buch T. Schwierzeck V. Utermöhlen O. Chun E. Garrett W.S. McCoy K.D. Diefenbach A. Staeheli P. Stecher B. Amit I. Prinz M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015 18 7 965 977 10.1038/nn.4030 26030851
    [Google Scholar]
  130. Zhang K. Chen L. Yang J. Liu J. Li J. Liu Y. Li X. Chen L. Hsu C. Zeng J. Xie X. Wang Q. Gut microbiota-derived short-chain fatty acids ameliorate methamphetamine-induced depression- and anxiety-like behaviors in a Sigmar-1 receptor-dependent manner. Acta Pharm. Sin. B 2023 13 12 4801 4822 10.1016/j.apsb.2023.09.010 38045052
    [Google Scholar]
  131. Liu Z. Li L. Ma S. Ye J. Zhang H. Li Y. Sair A.T. Pan J. Liu X. Li X. Yan S. Liu X. High-dietary fiber intake alleviates antenatal obesity-induced postpartum depression: Roles of gut microbiota and microbial metabolite short-chain fatty acid involved. J. Agric. Food Chem. 2020 68 47 13697 13710 10.1021/acs.jafc.0c04290 33151669
    [Google Scholar]
  132. Zhao R. Zhou Y. Shi H. Ye W. Lyu Y. Wen Z. Li R. Xu Y. Effect of gestational diabetes on postpartum depression-like behavior in rats and its mechanism. Nutrients 2022 14 6 1229 10.3390/nu14061229 35334886
    [Google Scholar]
  133. Tian T. Mao Q. Xie J. Wang Y. Shao W. Zhong Q. Chen J. Multi-omics data reveals the disturbance of glycerophospholipid metabolism caused by disordered gut microbiota in depressed mice. J. Adv. Res. 2022 39 135 145 10.1016/j.jare.2021.10.002 35777903
    [Google Scholar]
  134. Liu Z.F. Sylivris A. Gordon M. Sundram S. The association between tryptophan levels and postpartum mood disorders: A systematic review and meta-analysis. BMC Psychiatry 2022 22 1 539 10.1186/s12888‑022‑04178‑6 35941560
    [Google Scholar]
  135. Liu P. Liu Z. Wang J. Wang J. Gao M. Zhang Y. Yang C. Zhang A. Li G. Li X. Liu S. Liu L. Sun N. Zhang K. Immunoregulatory role of the gut microbiota in inflammatory depression. Nat. Commun. 2024 15 1 3003 10.1038/s41467‑024‑47273‑w 38589368
    [Google Scholar]
  136. Fond G.B. Lagier J.C. Honore S. Lancon C. Korchia T. Verville P-L.S.D. Llorca P.M. Auquier P. Guedj E. Boyer L. Microbiota-orientated treatments for major depression and schizophrenia. Nutrients 2020 12 4 1024 10.3390/nu12041024 32276499
    [Google Scholar]
  137. Hu B. Das P. Lv X. Shi M. Aa J. Wang K. Duan L. Gilbert J.A. Nie Y. Wu X.L. Effects of ‘healthy’ fecal microbiota transplantation against the deterioration of depression in fawn-hooded rats. mSystems 2022 7 3 e00218 e00222 10.1128/msystems.00218‑22 35481347
    [Google Scholar]
  138. Jiang X. Gao X. Ding J. Pang B. Pei Y. Zhao Z. Zhao N. Wang Z. Chen C. Gao D. Yan F. Wang F. Liu C. Zhang Z. Li Z. Zhao Z. Fecal microbiota transplantation alleviates mild‐moderate COVID‐19 associated diarrhoea and depression symptoms: A prospective study of a randomized, double‐blind clinical trial. J. Med. Virol. 2024 96 8 29812 10.1002/jmv.29812 39056206
    [Google Scholar]
  139. Xu Q. Sun L. Chen Q. Jiao C. Wang Y. Li H. Xie J. Zhu F. Wang J. Zhang W. Xie L. Wu H. Zuo Z. Chen X. Gut microbiota dysbiosis contributes to depression-like behaviors via hippocampal NLRP3-mediated neuroinflammation in a postpartum depression mouse model. Brain Behav. Immun. 2024 119 220 235 10.1016/j.bbi.2024.04.002 38599497
    [Google Scholar]
  140. Zheng Q. Wang S. Tian X. Liu W. Gao P. Fecal microbiota transplantation confirmed that 919 Syrup reduced the ratio of erucamide to 5-AVAB in hippocampus to alleviate postpartum depression by regulating gut microbes. Front. Immunol. 2023 14 1203015 10.3389/fimmu.2023.1203015 37292211
    [Google Scholar]
  141. Cai T. Shi X. Yuan L. Tang D. Wang F. Fecal microbiota transplantation in an elderly patient with mental depression. Int. Psychogeriatr. 2019 31 10 1525 1526 10.1017/S1041610219000115 30782238
    [Google Scholar]
/content/journals/cn/10.2174/011570159X380460250710061340
Loading
/content/journals/cn/10.2174/011570159X380460250710061340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test