Skip to content
2000
image of In Vitro and In Vivo Evaluation of Kai-Xin-San Polysaccharides: Antioxidant, Anti-Inflammatory, and Anti-Alzheimer's Disease Activities

Abstract

Introduction

Alzheimer's disease (AD) brings a considerable burden to families and society. Kai-Xin-San (KXS) is a traditional Chinese medicine formula used to treat AD with a good curative effect. The existing literature and our previous work suggest that KXS polysaccharides (KXS-P) may play an important role in the anti-AD effect of KXS. However, there is limited research available on the KXS-P and its potential anti-AD activities.

Objective

To investigate the antioxidant, acetylcholinesterase (AChE) inhibitory effects, and anti-inflammatory activities of KXS-P, as well as to evaluate its anti-AD effect .

Methods

KXS-P was characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and high-performance liquid chromatography (HPLC). The antioxidant activity and AChE inhibitory effects were evaluated. The anti-inflammatory activity of KXS-P was assessed using LPS-stimulated RAW264.7 cells. The anti-AD effects of KXS-P were evaluated using a rat model induced by D-galactose and Aβ. The pharmacodynamic experiments included general behavior, open field test, Morris water maze, laser Doppler flowmetry, histopathological analysis (Nissl and HE staining), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry.

Results

KXS-P exhibited stronger antioxidant activity than single herb polysaccharides. KXS-P showed significant AChE inhibitory effects. KXS-P significantly inhibited the release of NO, TNF-α, IL-1β, and IL-6 in LPS-stimulated RAW264.7 cells. KXS-P effectively alleviated symptoms in AD model rats. Open-field tests and water maze tests demonstrated that KXS-P improved cognitive, learning, and memory functions in AD model rats. Laser Doppler flowmetry showed that KXS-P had a limited effect on cerebral blood flow in AD model rats. Nissl staining and immunohistochemistry of rat hippocampal tissue indicated that KXS-P protected hippocampal neurons. HE staining of rat colon revealed that KXS-P alleviated inflammation induced by intestinal flora imbalance.

Conclusion

KXS-P exhibited potent anti-oxidation, anti-inflammatory activities and AChE inhibitory effects , as well as anti-AD effects . The anti-AD mechanism may be related to antioxidant effects, AChE inhibition, anti-inflammatory properties, and neuroprotection.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X375111250827115723
2025-10-07
2025-11-08
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X375111250827115723/BMS-CN-2024-HT12-6726-5.html?itemId=/content/journals/cn/10.2174/011570159X375111250827115723&mimeType=html&fmt=ahah

References

  1. Lopez-Lee C. Torres E.R.S. Carling G. Gan L. Mechanisms of sex differences in Alzheimer’s disease. Neuron 2024 112 8 1208 1221 10.1016/j.neuron.2024.01.024 38402606
    [Google Scholar]
  2. Jack C.R. Andrews S.J. Beach T.G. Buracchio T. Dunn B. Graf A. Hansson O. Ho C. Jagust W. McDade E. Molinuevo J.L. Okonkwo O.C. Pani L. Rafii M.S. Scheltens P. Siemers E. Snyder H.M. Sperling R. Teunissen C.E. Carrillo M.C. Revised criteria for the diagnosis and staging of Alzheimer’s disease. Nat. Med. 2024 30 8 2121 2124 10.1038/s41591‑024‑02988‑7 38942991
    [Google Scholar]
  3. Livingston G. Huntley J. Sommerlad A. Ames D. Ballard C. Banerjee S. Brayne C. Burns A. Cohen-Mansfield J. Cooper C. Costafreda S.G. Dias A. Fox N. Gitlin L.N. Howard R. Kales H.C. Kivimäki M. Larson E.B. Ogunniyi A. Orgeta V. Ritchie K. Rockwood K. Sampson E.L. Samus Q. Schneider L.S. Selbæk G. Teri L. Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020 396 10248 413 446 10.1016/S0140‑6736(20)30367‑6 32738937
    [Google Scholar]
  4. Bai R. Guo J. Ye X.Y. Xie Y. Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022 77 101619 10.1016/j.arr.2022.101619 35395415
    [Google Scholar]
  5. Heneka M.T. van der Flier W.M. Jessen F. Hoozemanns J. Thal D.R. Boche D. Brosseron F. Teunissen C. Zetterberg H. Jacobs A.H. Edison P. Ramirez A. Cruchaga C. Lambert J.C. Laza A.R. Sanchez-Mut J.V. Fischer A. Castro-Gomez S. Stein T.D. Kleineidam L. Wagner M. Neher J.J. Cunningham C. Singhrao S.K. Prinz M. Glass C.K. Schlachetzki J.C.M. Butovsky O. Kleemann K. De Jaeger P.L. Scheiblich H. Brown G.C. Landreth G. Moutinho M. Grutzendler J. Gomez-Nicola D. McManus R.M. Andreasson K. Ising C. Karabag D. Baker D.J. Liddelow S.A. Verkhratsky A. Tansey M. Monsonego A. Aigner L. Dorothée G. Nave K.A. Simons M. Constantin G. Rosenzweig N. Pascual A. Petzold G.C. Kipnis J. Venegas C. Colonna M. Walter J. Tenner A.J. O’Banion M.K. Steinert J.R. Feinstein D.L. Sastre M. Bhaskar K. Hong S. Schafer D.P. Golde T. Ransohoff R.M. Morgan D. Breitner J. Mancuso R. Riechers S.P. Neuroinflammation in Alzheimer disease. Nat. Rev. Immunol. 2025 25 5 321 352 10.1038/s41577‑024‑01104‑7 39653749
    [Google Scholar]
  6. Hampel H. Mesulam M.M. Cuello A.C. Farlow M.R. Giacobini E. Grossberg G.T. Khachaturian A.S. Vergallo A. Cavedo E. Snyder P.J. Khachaturian Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018 141 7 1917 1933 10.1093/brain/awy132 29850777
    [Google Scholar]
  7. Angioni D. Delrieu J. Coley N. Ousset P.J. Shi J. Vellas B. Drugs for Alzheimer’s disease: Where are we coming from? Where are we going? Sci. Bull 2024 69 10 1369 1374 10.1016/j.scib.2024.02.021 38461072
    [Google Scholar]
  8. Singh R.K. Recent trends in the management of alzheimer’s disease: Current therapeutic options and drug repurposing approaches. Curr. Neuropharmacol. 2020 18 9 868 882 10.2174/1570159X18666200128121920 31989900
    [Google Scholar]
  9. Shang B. Jia S. Zhang T. Gao F. Lu M. Chen K. Jiao J. Dai Z. Zeng Q. Xu B. Lei H. Study on the chemical constituents and mechanism of Kai-Xin-San based on UPLC-Q-Exactive MS and network pharmacology. J. Ethnopharmacol. 2024 322 117652 10.1016/j.jep.2023.117652 38151178
    [Google Scholar]
  10. Wang H. Zhou L. Zheng Q. Song Y. Huang W. Yang L. Xiong Y. Cai Z. Chen Y. Yuan J. Kai-xin-san improves cognitive impairment in D-gal and Aβ25-35 induced ad rats by regulating gut microbiota and reducing neuronal damage. J. Ethnopharmacol. 2024 329 118161 10.1016/j.jep.2024.118161 38599474
    [Google Scholar]
  11. Guo S. Wang J. Xu H. Rong W. Gao C. Yuan Z. Xie F. Bi K. Zhang Z. Li Q. Classic prescription, Kai-Xin-San, ameliorates Alzheimer’s disease as an effective multitarget treatment: From neurotransmitter to protein signaling pathway. Oxid. Med. Cell. Longev. 2019 2019 1 14 10.1155/2019/9096409 31354916
    [Google Scholar]
  12. Yang L. Liang J. Zheng Q. Zhou L. Xiong Y. Wang H. Yuan J. A comparative study of serum pharmacochemistry of Kai-Xin-San in normal and AD rats using UPLC-LTQ-orbitrap-MS. Pharmaceuticals 2022 16 1 30 10.3390/ph16010030 36678527
    [Google Scholar]
  13. Lu C. Shi Z. Sun X. Pan R. Chen S. Li Y. Qu L. Sun L. Dang H. Bu L. Chen L. Liu X. Kai Xin San aqueous extract improves Aβ1-40-induced cognitive deficits on adaptive behavior learning by enhancing memory-related molecules expression in the hippocampus. J. Ethnopharmacol. 2017 201 73 81 10.1016/j.jep.2016.10.002 27751826
    [Google Scholar]
  14. Wang Y. Li X. Jing R. Yang W. Wang Y. Wang C. Yao L. Cui X. Hu Y. KXS balances the tryptophan metabolism in mild to moderate depressed patients and chronic restraint stress induced depressive rats. Neuropsychiatr. Dis. Treat. 2022 18 18 2485 2496 10.2147/NDT.S377982 36345420
    [Google Scholar]
  15. Yuan J. Chen Y. Liang J. Wang C.Z. Liu X. Yan Z. Tang Y. Li J. Yuan C.S. Component analysis and target cell-based neuroactivity screening of Panax ginseng by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016 1038 1 11 10.1016/j.jchromb.2016.10.014 27776327
    [Google Scholar]
  16. Yu L. Wei F. Liang J. Ren G. Liu X. Wang C.Z. Yuan J. Zeng J. Luo Y. Bi Y. Yuan C.S. Target molecular-based neuroactivity screening and analysis of Panax ginseng by affinity ultrafiltration, UPLC-QTOF-MS and molecular docking. Am. J. Chin. Med. 2019 47 6 1345 1363 10.1142/S0192415X19500691 31495181
    [Google Scholar]
  17. Wang X. Zhang Y. Niu H. Geng Y. Wang B. Yang X. Yan P. Li Q. Bi K. Ultra-fast liquid chromatography with tandem mass spectrometry determination of eight bioactive components of Kai-Xin-San in rat plasma and its application to a comparative pharmacokinetic study in normal and Alzheimer’s disease rats. J. Sep. Sci. 2017 40 10 2131 2140 10.1002/jssc.201601343 28342292
    [Google Scholar]
  18. Guo S. Wang J. Wang Y. Zhang Y. Bi K. Zhang Z. Li Q. Study on the multitarget synergistic effects of Kai-Xin-San against Alzheimer’s disease based on systems biology. Oxid. Med. Cell. Longev. 2019 2019 1 15 10.1155/2019/1707218 31976026
    [Google Scholar]
  19. Fu H. Xu Z. Zhang X. Zheng G. Kaixinsan, a well-known chinese herbal prescription, for Alzheimer’s disease and depression: A preclinical systematic review. Front. Neurosci. 2020 13 4 1421 10.3389/fnins.2019.01421 32009890
    [Google Scholar]
  20. Wang X. Zhang A. Kong L. Yu J. Gao H. Liu Z. Sun H. Rapid discovery of quality-markers from Kaixin San using chinmedomics analysis approach. Phytomedicine 2019 54 371 381 10.1016/j.phymed.2017.12.014 30322673
    [Google Scholar]
  21. Cao C. Xiao J. Liu M. Ge Z. Huang R. Qi M. Zhu H. Zhu Y. Duan J. Active components, derived from Kai-xin-san, a herbal formula, increase the expressions of neurotrophic factor NGF and BDNF on mouse astrocyte primary cultures via cAMP-dependent signaling pathway. J. Ethnopharmacol. 2018 224 554 562 10.1016/j.jep.2018.06.007 29890314
    [Google Scholar]
  22. Chen L. Wang X. Sun J. Xue J. Yang X. Zhang Y. Structural characteristics of a heteropolysaccharide from Ganoderma lucidum and its protective effect against Alzheimer’s disease via modulating the microbiota-gut-metabolomics. Int. J. Biol. Macromol. 2025 297 139863 10.1016/j.ijbiomac.2025.139863 39814286
    [Google Scholar]
  23. Zhang S. Liu F. Li J. Jing C. Lu J. Chen X. Wang D. Cao D. Zhao D. Sun L.A. 4.7-kDa polysaccharide from Panax ginseng suppresses Aβ pathology via mitophagy activation in cross-species Alzheimer’s disease models. Biomed. Pharmacother. 2023 167 115442 10.1016/j.biopha.2023.115442 37699318
    [Google Scholar]
  24. Liu Y.C. Chen S.Y. Chen Y.Y. Chang H.Y. Chiang I.C. Yen G.C. Polysaccharides extracted from common buckwheat (Fagopyrum esculentum) attenuate cognitive impairment via suppressing RAGE/p38/NF-κB signaling and dysbiosis in AlCl3-treated rats. Int. J. Biol. Macromol. 2024 276 Pt 2 133898 10.1016/j.ijbiomac.2024.133898 39019369
    [Google Scholar]
  25. Yang S. Wang L. Liang X. Pei T. Zeng Y. Xie B. Wang Y. Yang M. Wei D. Cheng W. Radix hedysari Polysaccharides modulate the gut-brain axis and improve cognitive impairment in SAMP8 mice. Int. J. Biol. Macromol. 2025 306 Pt 4 141715 10.1016/j.ijbiomac.2025.141715 40044002
    [Google Scholar]
  26. Tang J. Yousaf M. Wu Y.P. Li Q. Xu Y.Q. Liu D.M. Mechanisms and structure-activity relationships of polysaccharides in the intervention of Alzheimer’s disease: A review. Int. J. Biol. Macromol. 2024 254 Pt 1 127553 10.1016/j.ijbiomac.2023.127553 37865357
    [Google Scholar]
  27. Li Y. Wu H. Liu M. Zhang Z. Ji Y. Xu L. Liu Y. Polysaccharide from Polygala tenuifolia alleviates cognitive decline in Alzheimer’s disease mice by alleviating Aβ damage and targeting the ERK pathway. J. Ethnopharmacol. 2024 321 117564 10.1016/j.jep.2023.117564 38081400
    [Google Scholar]
  28. Yuchen-Zhang Yuchen-Zhang.;Du, M.R.; Zhang, Q.Y.; Yang, S.Y.; Chen, J.Q.; Dan, C.M.; Lian, L.D.; Wang, J. Armillariella tabescens-derived polysaccharides alleviated Ɒ-Gal-induced neuroinflammation and cognitive injury through enterocerebral axis and activation of keap-1/Nrf2 pathway. Int. J. Biol. Macromol. 2024 273 Pt 1 133035 10.1016/j.ijbiomac.2024.133035 38866276
    [Google Scholar]
  29. Wan L. Qian C. Yang C. Peng S. Dong G. Cheng P. Zong G. Han H. Shao M. Gong G. Deng Z. Pan H. Wang H. Liu X. Wang G. Lu Y. Zhao Y. Jiang Z. Ginseng polysaccharides ameliorate ulcerative colitis via regulating gut microbiota and tryptophan metabolism. Int. J. Biol. Macromol. 2024 265 Pt 2 130822 10.1016/j.ijbiomac.2024.130822 38521337
    [Google Scholar]
  30. Zhao B. Lv C. Lu J. Natural occurring polysaccharides from Panax ginseng C. A. Meyer: A review of isolation, structures, and bioactivities. Int. J. Biol. Macromol. 2019 133 324 336 10.1016/j.ijbiomac.2019.03.229 30943421
    [Google Scholar]
  31. Nie A. Chao Y. Zhang X. Jia W. Zhou Z. Zhu C. Phytochemistry and pharmacological activities of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. Front. Pharmacol. 2020 11 505249 10.3389/fphar.2020.505249 33071776
    [Google Scholar]
  32. Zeng Z. Chang X. Zhang D. Chen H. Zhong X. Xie Y. Yu Q. Yan C. Structural elucidation and anti-neuroinflammatory activity of Polygala tenuifolia polysaccharide. Int. J. Biol. Macromol. 2022 219 1284 1296 10.1016/j.ijbiomac.2022.08.161 36037912
    [Google Scholar]
  33. Deng Y. Xie J. Luo Z. Li S.P. Zhao J. Synergistic immunomodulatory effect of complex polysaccharides from seven herbs and their major active fractions. Int. J. Biol. Macromol 2020 165 Pt A 530 541 10.1016/j.ijbiomac.2020.09.199 33002533
    [Google Scholar]
  34. Xu Q. Zhang Y. Research progress on the bioactivity of compound polysaccharides: A review. Int. J. Biol. Macromol. 2025 306 Pt 3 141693 10.1016/j.ijbiomac.2025.141693 40043996
    [Google Scholar]
  35. Masuko T. Minami A. Iwasaki N. Majima T. Nishimura S.I. Lee Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005 339 1 69 72 10.1016/j.ab.2004.12.001 15766712
    [Google Scholar]
  36. Zhang W. Yu L. Yang Q. Zhang J. Wang W. Hu X. Li J. Zheng G. Smilax China L. polysaccharide prevents HFD induced-NAFLD by regulating hepatic fat metabolism and gut microbiota. Phytomedicine 2024 127 155478 10.1016/j.phymed.2024.155478 38452696
    [Google Scholar]
  37. Chen W. Shen Z. Dong W. Huang G. Yu D. Chen W. Yan X. Yu Z. Polygonatum sibiricum polysaccharide ameliorates skeletal muscle aging via mitochondria-associated membrane-mediated calcium homeostasis regulation. Phytomedicine 2024 129 155567 10.1016/j.phymed.2024.155567 38579644
    [Google Scholar]
  38. Qi X. Lu X. Han Y. Xing Y. Zheng Y. Cui C. Ginseng polysaccharide reduces autoimmune hepatitis inflammatory response by inhibiting PI3K/AKT and TLRs/NF-κB signaling pathways. Phytomedicine 2023 116 154859 10.1016/j.phymed.2023.154859 37209603
    [Google Scholar]
  39. Duan Y. Huang J. Sun M. Jiang Y. Wang S. Wang L. Yu N. Peng D. Wang Y. Chen W. Zhang Y. Poria cocos polysaccharide improves intestinal barrier function and maintains intestinal homeostasis in mice. Int. J. Biol. Macromol. 2023 249 125953 10.1016/j.ijbiomac.2023.125953 37517750
    [Google Scholar]
  40. Xie X. Tang M. Yi S. He Y. Chen S. Zhao Y. Chen Q. Cao M. Yu M. Wei Y. Yu W. Hu T. Polysaccharide of Asparagus cochinchinensis (Lour.) Merr regulates macrophage immune response and epigenetic memory through TLR4-JNK/p38/ERK signaling pathway and histone modification. Phytomedicine 2024 124 155294 10.1016/j.phymed.2023.155294 38176271
    [Google Scholar]
  41. Hou Y. Chen X. Zhang M. Yang S. Liao A. Pan L. Wang Z. Shen X. Yuan X. Huang J. Selenium-chelating peptide derived from wheat gluten: In vitro functional properties. Foods 2024 13 12 1819 10.3390/foods13121819 38928761
    [Google Scholar]
  42. Panchal G. Hati S. Sakure A. Characterization and production of novel antioxidative peptides derived from fermented goat milk by L. fermentum. Lebensm. Wiss. Technol. 2020 119 108887 10.1016/j.lwt.2019.108887
    [Google Scholar]
  43. Pagliosa L.B. Monteiro S.C. Silva K.B. de Andrade J.P. Dutilh J. Bastida J. Cammarota M. Zuanazzi J.A.S. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine 2010 17 8-9 698 701 10.1016/j.phymed.2009.10.003 19969445
    [Google Scholar]
  44. Meng X. Wei Q. Wang S. Liang S. Wang D. Kuang H. Wang Q. Xie T. Anti-inflammatory effect of polysaccharides from Sambucus williamsii Hance roots in lipopolysaccharide-stimulated RAW264.7 macrophages and acute lung injury in mice. Int. J. Biol. Macromol. 2025 306 Pt 1 141368 10.1016/j.ijbiomac.2025.141368 39988171
    [Google Scholar]
  45. Zhang Y. Pan X. Ran S. Wang K. Purification, structural elucidation and anti-inflammatory activity in vitro of polysaccharides from Smilax china L. Int. J. Biol. Macromol. 2019 139 233 243 10.1016/j.ijbiomac.2019.07.209 31376447
    [Google Scholar]
  46. Meng W.S. Sun J. Lu Y. Cao T.T. Chi M.Y. Gong Z.P. Li Y.T. Zheng L. Liu T. Huang Y. Biancaea decapetala (Roth) O.Deg. extract exerts an anti-inflammatory effect by regulating the TNF/Akt/NF-κB pathway. Phytomedicine 2023 119 154983 10.1016/j.phymed.2023.154983
    [Google Scholar]
  47. Bian L. Wang S. Li W. Li J. Yin Y. Ye F. Guo J. Cryptotanshinone regulates gut microbiota and PI3K-AKT pathway in rats to alleviate CUMS induced depressive symptoms. Biomed. Pharmacother. 2023 169 115921 10.1016/j.biopha.2023.115921 38011787
    [Google Scholar]
  48. Zheng H. Liu X. Liang X. Guo S. Qin B. Liu E. Duan J. Mechanisms and structure-activity relationships of natural polysaccharides as potential anti-osteoporosis agents: A review. Int. J. Biol. Macromol. 2025 298 139852 10.1016/j.ijbiomac.2025.139852 39814301
    [Google Scholar]
  49. Zhou W. He Y. Lv J.M. Wang R. He H. Wu M. Zhang R. He J. Preparation technologies, structural characteristics and biological activities of polysaccharides from bee pollen: A review. Int. J. Biol. Macromol. 2025 306 Pt 2 141545 10.1016/j.ijbiomac.2025.141545 40020838
    [Google Scholar]
  50. Liu X. Huang L. Zhang X. Xu X. Polysaccharides with antioxidant activity: Extraction, beneficial roles, biological mechanisms, structure-function relationships, and future perspectives: A review. Int. J. Biol. Macromol. 2025 300 140221 10.1016/j.ijbiomac.2025.140221 39855511
    [Google Scholar]
  51. Lv Y. Yang Y. Chen Y. Wang D. Lei Y. Pan M. Wang Z. Xiao W. Dai Y. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Poria cocos. Int. J. Biol. Macromol. 2024 261 Pt 2 129878 10.1016/j.ijbiomac.2024.129878 38309394
    [Google Scholar]
  52. Xue H. Zhang P. Zhang C. Gao Y. Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int. J. Biol. Macromol. 2024 262 Pt 1 129923 10.1016/j.ijbiomac.2024.129923 38325677
    [Google Scholar]
  53. Zou Z. Wu F. Chen L. Yao H. Wang Z. Chen Y. Qi M. Jiang Y. Tang L. Gan X. Kong L. Yang Z. Huang X. Shu W. Li B. Tan X. Huang L. Bai S. Wu L. Mo J. Hu H. Liu H. Zou R. Wei Y. The J bs-5YP peptide can alleviate dementia in senile mice by restoring the transcription of Slc40a1 to secrete the excessive iron from brain. J. Adv. Res. 2025 69 51 59 38527587
    [Google Scholar]
  54. Ramachandran A.K. Das S. Joseph A. Shenoy G.G. Alex A.T. Mudgal J. Neurodegenerative pathways in Alzheimer’s disease: A review. Curr. Neuropharmacol. 2021 19 5 679 692 10.2174/1570159X18666200807130637 32851951
    [Google Scholar]
  55. Kvansakul M. Caria S. Hinds M. The Bcl-2 family in host-virus interactions. Viruses 2017 9 10 290 10.3390/v9100290 28984827
    [Google Scholar]
  56. Han J. Du Z. Lim M.H. Mechanistic insight into the design of chemical tools to control multiple pathogenic features in Alzheimer’s disease. Acc. Chem. Res. 2021 54 20 3930 3940 10.1021/acs.accounts.1c00457 34606227
    [Google Scholar]
  57. Liu Y. Ma C. Li Y. Li M. Cui T. Zhao X. Li Z. Jia H. Wang H. Xiu X. Hu D. Zhang R. Wang N. Liu P. Yang H. Cheng M. Design, synthesis and biological evaluation of carbamate derivatives incorporating multifunctional carrier scaffolds as pseudo-irreversible cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2024 265 116071 10.1016/j.ejmech.2023.116071 38157596
    [Google Scholar]
  58. Xie J. Van Hoecke L. Vandenbroucke R.E. The impact of systemic inflammation on Alzheimer’s disease pathology. Front. Immunol. 2022 12 796867 10.3389/fimmu.2021.796867 35069578
    [Google Scholar]
  59. Iturria-Medina Y. Sotero R.C. Toussaint P.J. Mateos-Pérez J.M. Evans A.C. Weiner M.W. Aisen P. Petersen R. Jack C.R. Jagust W. Trojanowki J.Q. Toga A.W. Beckett L. Green R.C. Saykin A.J. Morris J. Shaw L.M. Khachaturian Z. Sorensen G. Kuller L. Raichle M. Paul S. Davies P. Fillit H. Hefti F. Holtzman D. Mesulam M.M. Potter W. Snyder P. Schwartz A. Montine T. Thomas R.G. Donohue M. Walter S. Gessert D. Sather T. Jiminez G. Harvey D. Bernstein M. Fox N. Thompson P. Schuff N. Borowski B. Gunter J. Senjem M. Vemuri P. Jones D. Kantarci K. Ward C. Koeppe R.A. Foster N. Reiman E.M. Chen K. Mathis C. Landau S. Cairns N.J. Householder E. Taylor-Reinwald L. Lee V. Korecka M. Figurski M. Crawford K. Neu S. Foroud T.M. Potkin S. Shen L. Faber K. Kim S. Nho K. Thal L. Buckholtz N. Albert M. Frank R. Hsiao J. Kaye J. Quinn J. Lind B. Carter R. Dolen S. Schneider L.S. Pawluczyk S. Beccera M. Teodoro L. Spann B.M. Brewer J. Vanderswag H. Fleisher A. Heidebrink J.L. Lord J.L. Mason S.S. Albers C.S. Knopman D. Johnson K. Doody R.S. Villanueva-Meyer J. Chowdhury M. Rountree S. Dang M. Stern Y. Honig L.S. Bell K.L. Ances B. Carroll M. Leon S. Mintun M.A. Schneider S. Oliver A. Marson D. Griffith R. Clark D. Geldmacher D. Brockington J. Roberson E. Grossman H. Mitsis E. de Toledo-Morrell L. Shah R.C. Duara R. Varon D. Greig M.T. Roberts P. Albert M. Onyike C. D’Agostino D. Kielb S. Galvin J.E. Cerbone B. Michel C.A. Rusinek H. de Leon M.J. Glodzik L. De Santi S. Doraiswamy P.M. Petrella J.R. Wong T.Z. Arnold S.E. Karlawish J.H. Wolk D. Smith C.D. Jicha G. Hardy P. Sinha P. Oates E. Conrad G. Lopez O.L. Oakley M.A. Simpson D.M. Porsteinsson A.P. Goldstein B.S. Martin K. Makino K.M. Ismail M.S. Brand C. Mulnard R.A. Thai G. Mc-Adams-Ortiz C. Womack K. Mathews D. Quiceno M. Diaz-Arrastia R. King R. Weiner M. Martin-Cook K. DeVous M. Levey A.I. Lah J.J. Cellar J.S. Burns J.M. Anderson H.S. Swerdlow R.H. Apostolova L. Tingus K. Woo E. Silverman D.H.S. Lu P.H. Bartzokis G. Graff-Radford N.R. Parfitt F. Kendall T. Johnson H. Farlow M.R. Hake A.M. Matthews B.R. Herring S. Hunt C. van Dyck C.H. Carson R.E. MacAvoy M.G. Chertkow H. Bergman H. Hosein C. Black S. Stefanovic B. Caldwell C. Hsiung G-Y.R. Feldman H. Mudge B. Assaly M. Kertesz A. Rogers J. Bernick C. Munic D. Kerwin D. Mesulam M-M. Lipowski K. Wu C-K. Johnson N. Sadowsky C. Martinez W. Villena T. Turner R.S. Johnson K. Reynolds B. Sperling R.A. Johnson K.A. Marshall G. Frey M. Lane B. Rosen A. Tinklenberg J. Sabbagh M.N. Belden C.M. Jacobson S.A. Sirrel S.A. Kowall N. Killiany R. Budson A.E. Norbash A. Johnson P.L. Allard J. Lerner A. Ogrocki P. Hudson L. Fletcher E. Carmichael O. Olichney J. DeCarli C. Kittur S. Borrie M. Lee T-Y. Bartha R. Johnson S. Asthana S. Carlsson C.M. Potkin S.G. Preda A. Nguyen D. Tariot P. Reeder S. Bates V. Capote H. Rainka M. Scharre D.W. Kataki M. Adeli A. Zimmerman E.A. Celmins D. Brown A.D. Pearlson G.D. Blank K. Anderson K. Santulli R.B. Kitzmiller T.J. Schwartz E.S. Sink K.M. Williamson J.D. Garg P. Watkins F. Ott B.R. Querfurth H. Tremont G. Salloway S. Malloy P. Correia S. Rosen H.J. Miller B.L. Mintzer J. Spicer K. Bachman D. Finger E. Pasternak S. Rachinsky I. Drost D. Pomara N. Hernando R. Sarrael A. Schultz S.K. Ponto L.L.B. Shim H. Smith K.E. Relkin N. Chaing G. Raudin L. Smith A. Fargher K. Raj B.A. Neylan T. Grafman J. Davis M. Morrison R. Hayes J. Finley S. Friedl K. Fleischman D. Arfanakis K. James O. Massoglia D. Fruehling J.J. Harding S. Peskind E.R. Petrie E.C. Li G. Yesavage J.A. Taylor J.L. Furst A.J. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 2016 7 1 11934 10.1038/ncomms11934
    [Google Scholar]
  60. Nortley R. Korte N. Izquierdo P. Hirunpattarasilp C. Mishra A. Jaunmuktane Z. Kyrargyri V. Pfeiffer T. Khennouf L. Madry C. Gong H. Richard-Loendt A. Huang W. Saito T. Saido T.C. Brandner S. Sethi H. Attwell D. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 2019 365 6450 eaav9518 10.1126/science.aav9518 31221773
    [Google Scholar]
  61. Ashkenazi A. Fairbrother W.J. Leverson J.D. Souers A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 2017 16 4 273 284 10.1038/nrd.2016.253 28209992
    [Google Scholar]
  62. Yang M. Zhang X. Qiao O. Ji H. Zhang Y. Han X. Wang W. Li X. Wang J. Guo L. Huang L. Gao W. Rosmarinic acid potentiates and detoxifies tacrine in combination for Alzheimer’s disease. Phytomedicine 2023 109 154600 10.1016/j.phymed.2022.154600 36610144
    [Google Scholar]
  63. Lim J.Y. Lee J.H. Yun D.H. Lee Y.M. Kim D.K. Inhibitory effects of nodakenin on inflammation and cell death in lipopolysaccharide-induced liver injury mice. Phytomedicine 2021 81 153411 10.1016/j.phymed.2020.153411 33310307
    [Google Scholar]
  64. Socała K. Doboszewska U. Szopa A. Serefko A. Włodarczyk M. Zielińska A. Poleszak E. Fichna J. Wlaź P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 2021 172 105840 10.1016/j.phrs.2021.105840 34450312
    [Google Scholar]
  65. Cao C. Liu M. Qu S. Huang R. Qi M. Zhu Z. Zheng J. Chen Z. Wang Z. Han Z. Zhu Y. Huang F. Duan J. Chinese medicine formula Kai-Xin-San ameliorates depression-like behaviours in chronic unpredictable mild stressed mice by regulating gut microbiota-inflammation-stress system. J. Ethnopharmacol. 2020 261 113055 10.1016/j.jep.2020.113055 32592887
    [Google Scholar]
  66. Cai Z. Zhang M. Zhou L. Xiong Y. Wang H. Chen Y. Yuan J. Kai-Xin-San polysaccharides exert therapeutic effects on D-gal and Aβ25-35-induced AD rats by regulating gut microbiota and metabolic profile. Int. J. Biol. Macromol. 2025 306 141850 10.1016/j.ijbiomac.2025.141850 40058438
    [Google Scholar]
  67. Liang C. Pereira R. Zhang Y. Rojas O.L. Gut microbiome in Alzheimer’s disease: from mice to humans. Curr. Neuropharmacol. 2024 22 14 2314 2329 10.2174/1570159X22666240308090741 39403057
    [Google Scholar]
  68. Wojtunik-Kulesza K.A. Oniszczuk A. Oniszczuk T. Waksmundzka-Hajnos M. The influence of common free radicals and antioxidants on development of Alzheimer’s disease. Biomed. Pharmacother. 2016 78 39 49 10.1016/j.biopha.2015.12.024 26898423
    [Google Scholar]
  69. Hashioka S. Wu Z. Klegeris A. Glia-driven neuroinflammation and systemic inflammation in Alzheimer’s disease. Curr. Neuropharmacol. 2021 19 7 908 924 10.2174/1570159X18666201111104509 33176652
    [Google Scholar]
  70. Viña J. Borrás C. Mas-Bargues C. Free radicals in Alzheimer’s disease: From pathophysiology to clinical trial results. Free Radic. Biol. Med. 2024 225 296 301 10.1016/j.freeradbiomed.2024.09.051 39370055
    [Google Scholar]
  71. Mosteiro L. Pantoja C. Alcazar N. Marión R.M. Chondronasiou D. Rovira M. Fernandez-Marcos P.J. Muñoz-Martin M. Blanco-Aparicio C. Pastor J. Gómez-López G. De Martino A. Blasco M.A. Abad M. Serrano M. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 2016 354 6315 aaf4445 10.1126/science.aaf4445
    [Google Scholar]
  72. Liu P. Wang Y. Sun Y. Peng G. Neuroinflammation as a potential therapeutic target in Alzheimer’s disease. Clin. Interv. Aging 2022 17 665 674 10.2147/CIA.S357558 35520949
    [Google Scholar]
/content/journals/cn/10.2174/011570159X375111250827115723
Loading
/content/journals/cn/10.2174/011570159X375111250827115723
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Kai-Xin-San ; anti-inflammation ; polysaccharide ; antioxidant ; Alzheimer's disease ; AChE inhibition
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test