Skip to content
2000
Volume 23, Issue 13
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

In this review, we describe the concept of the glymphatic system as a glial-dependent clearance pathway in the brain. The hypothesis of the glymphatic system function suggests that dural lymphatic vessels absorb the cerebrospinal fluid and brain interstitial fluid the glymphatic system and transport fluid into deep cervical lymph nodes. We present the accumulated data of various studies confirming the possible interconnection among the brain interstitial fluid, cerebrospinal fluid, and the glymphatic system. Anatomical features are discussed here together with a possible variety of glymphatic system functions, including the removal of waste products, transport of substances, and immune function. The glymphatic system is hypothesized to be involved in pathogenesis of many diseases, including Alzheimer's disease, stroke, and Parkinson’s disease. We also discuss the role of the glymphatic system in pathophysiology and the complications of brain tumors. Meningeal lymphatics is thoroughly analyzed as well. Finally, we propose new treatment approaches to brain tumors, Parkinson’s disease, and stroke using cervical lymph nodes and backward fluid flow in the meningeal lymphatic vessels.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X359861250224051857
2025-06-03
2025-10-29
Loading full text...

Full text loading...

References

  1. ThomasJ.L. JacobL. BoisserandL. Lymphatic system in central nervous system.Med. Sci.2019351556110.1051/medsci/2018309 30672459
    [Google Scholar]
  2. IliffJ.J. WangM. LiaoY. PloggB.A. PengW. GundersenG.A. BenvenisteH. VatesG.E. DeaneR. GoldmanS.A. NagelhusE.A. NedergaardM. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.Sci. Transl. Med.20124147147ra11110.1126/scitranslmed.3003748 22896675
    [Google Scholar]
  3. AhnJ.H. ChoH. KimJ.H. KimS.H. HamJ.S. ParkI. SuhS.H. HongS.P. SongJ.H. HongY.K. JeongY. ParkS.H. KohG.Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid.Nature20195727767626610.1038/s41586‑019‑1419‑5 31341278
    [Google Scholar]
  4. MagistrettiP.J. AllamanI. A cellular perspective on brain energy metabolism and functional imaging.Neuron201586488390110.1016/j.neuron.2015.03.035 25996133
    [Google Scholar]
  5. BacyinskiA. XuM. WangW. HuJ. The paravascular pathway for brain waste clearance: Current understanding, significance and controversy.Front. Neuroanat.20171110110.3389/fnana.2017.00101 29163074
    [Google Scholar]
  6. RennelsM.L. GregoryT.F. BlaumanisO.R. FujimotoK. GradyP.A. Evidence for a ‘Paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space.Brain Res.19853261476310.1016/0006‑8993(85)91383‑6 3971148
    [Google Scholar]
  7. MascagniP. CiroS. Vasorum Lymphaticorum Corporis Humani Historia et Ichnographia.Siena, ItalyPazzini Carli1787
    [Google Scholar]
  8. VirchowR. On the dilation of smaller vessels.Virchows Arch.18513342746210.1007/BF01960918
    [Google Scholar]
  9. RobinC. Research on some peculiarities of the structure of the capillaries of the brain.J. Physiol. Homme. Anim.18592537548
    [Google Scholar]
  10. KoundalS. ElkinR. NadeemS. XueY. ConstantinouS. SanggaardS. LiuX. MonteB. XuF. Van NostrandW. NedergaardM. LeeH. WardlawJ. BenvenisteH. TannenbaumA. Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system.Sci. Rep.2020101199010.1038/s41598‑020‑59045‑9 32029859
    [Google Scholar]
  11. AspelundA. AntilaS. ProulxS.T. KarlsenT.V. KaramanS. DetmarM. WiigH. AlitaloK. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.J. Exp. Med.2015212799199910.1084/jem.20142290 26077718
    [Google Scholar]
  12. RaperD. LouveauA. KipnisJ. How do meningeal lymphatic vessels drain the CNS?Trends Neurosci.201639958158610.1016/j.tins.2016.07.001 27460561
    [Google Scholar]
  13. BakkerE.N.T.P. BacskaiB.J. Arbel-OrnathM. AldeaR. BedussiB. MorrisA.W.J. WellerR.O. CarareR.O. Lymphatic clearance of the brain: Perivascular, paravascular and significance for neurodegenerative diseases.Cell. Mol. Neurobiol.201636218119410.1007/s10571‑015‑0273‑8 26993512
    [Google Scholar]
  14. MooreJ.E.Jr BertramC.D. Lymphatic system flows.Annu. Rev. Fluid Mech.201850145948210.1146/annurev‑fluid‑122316‑045259 29713107
    [Google Scholar]
  15. LeeH. XieL. YuM. KangH. FengT. DeaneR. LoganJ. NedergaardM. BenvenisteH. The effect of body posture on brain glymphatic transport.J. Neurosci.20153531110341104410.1523/JNEUROSCI.1625‑15.2015 26245965
    [Google Scholar]
  16. MestreH. TithofJ. DuT. SongW. PengW. SweeneyA.M. OlvedaG. ThomasJ.H. NedergaardM. KelleyD.H. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension.Nat. Commun.201891487810.1038/s41467‑018‑07318‑3 30451853
    [Google Scholar]
  17. HeX. LiuD. ZhangQ. LiangF. DaiG. ZengJ. PeiZ. XuG. LanY. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice.Front. Mol. Neurosci.20171014410.3389/fnmol.2017.00144 28579942
    [Google Scholar]
  18. RoyB. NunezA. AysolaR.S. KangD.W. VacasS. KumarR. Impaired glymphatic system actions in obstructive sleep apnea adults.Front. Neurosci.20221688423410.3389/fnins.2022.884234 35600625
    [Google Scholar]
  19. ThraneV.R. ThraneA.S. PlogB.A. ThiyagarajanM. IliffJ.J. DeaneR. NagelhusE.A. NedergaardM. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain.Sci. Rep.201331258210.1038/srep02582 24002448
    [Google Scholar]
  20. LundgaardI. LiB. XieL. KangH. SanggaardS. HaswellJ.D.R. SunW. GoldmanS. BlekotS. NielsenM. TakanoT. DeaneR. NedergaardM. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.Nat. Commun.201561680710.1038/ncomms7807 25904018
    [Google Scholar]
  21. AchariyarT.M. LiB. PengW. VergheseP.B. ShiY. McConnellE. BenraissA. KasperT. SongW. TakanoT. HoltzmanD.M. NedergaardM. DeaneR. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation.Mol. Neurodegener.20161117410.1186/s13024‑016‑0138‑8 27931262
    [Google Scholar]
  22. HladkyS.B. BarrandM.A. The glymphatic hypothesis: The theory and the evidence.Fluids Barriers CNS2022191910.1186/s12987‑021‑00282‑z 35115036
    [Google Scholar]
  23. AbbottN.J. PizzoM.E. PrestonJ.E. JanigroD. ThorneR.G. The role of brain barriers in fluid movement in the CNS: Is there a ‘glymphatic’ system?Acta Neuropathol.2018135338740710.1007/s00401‑018‑1812‑4 29428972
    [Google Scholar]
  24. von BartheldC.S. BahneyJ. Herculano-HouzelS. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting.J. Comp. Neurol.2016524183865389510.1002/cne.24040 27187682
    [Google Scholar]
  25. ClarkD.D. SokoloffL. Circulation and energy metabolism of the brain.Basic Neurochemistry: Molecular, Cellular and Medical Aspects. SiegelG.J. AgranoffB.W. AlbersR.W. FisherS.K. UhlerM.D. PhiladelphiaLippincott-Raven1999637670
    [Google Scholar]
  26. JiménezA.J. Domínguez-PinosM.D. GuerraM.M. Fernández-LlebrezP. Pérez-FígaresJ.M. Structure and function of the ependymal barrier and diseases associated with ependyma disruption.Tissue Barriers201421e2842610.4161/tisb.28426 25045600
    [Google Scholar]
  27. BrøchnerC.B. HolstC.B. MøllgårdK. Outer brain barriers in rat and human development.Front. Neurosci.201597510.3389/fnins.2015.00075 25852456
    [Google Scholar]
  28. NakadaT. KweeI.L. Fluid dynamics inside the brain barrier: Current concept of interstitial flow, glymphatic flow, and cerebrospinal fluid circulation in the brain.Neuroscientist201925215516610.1177/1073858418775027 29799313
    [Google Scholar]
  29. ZhaoZ. NelsonA.R. BetsholtzC. ZlokovicB.V. Establishment and dysfunction of the blood-brain barrier.Cell201516351064107810.1016/j.cell.2015.10.067 26590417
    [Google Scholar]
  30. SerlinY. ShelefI. KnyazerB. FriedmanA. Anatomy and physiology of the blood-brain barrier.Semin. Cell Dev. Biol.2015382610.1016/j.semcdb.2015.01.002 25681530
    [Google Scholar]
  31. IneichenB.V. OkarS.V. ProulxS.T. EngelhardtB. LassmannH. ReichD.S. Perivascular spaces and their role in neuroinflammation.Neuron2022110213566358110.1016/j.neuron.2022.10.024 36327898
    [Google Scholar]
  32. HaiderL. HametnerS. EndmayrV. MangesiusS. EppensteinerA. FrischerJ.M. IglesiasJ.E. BarkhofF. KasprianG. Post-mortem correlates of Virchow-Robin spaces detected on in vivo MRI.J. Cereb. Blood Flow Metab.20224271224123510.1177/0271678X211067455 35581687
    [Google Scholar]
  33. MathiisenT.M. LehreK.P. DanboltN.C. OttersenO.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction.Glia20105891094110310.1002/glia.20990 20468051
    [Google Scholar]
  34. MacVicarB.A. NewmanE.A. Astrocyte regulation of blood flow in the brain.Cold Spring Harb. Perspect. Biol.201575a02038810.1101/cshperspect.a020388 25818565
    [Google Scholar]
  35. IliffJ.J. WangM. ZeppenfeldD.M. VenkataramanA. PlogB.A. LiaoY. DeaneR. NedergaardM. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain.J. Neurosci.20133346181901819910.1523/JNEUROSCI.1592‑13.2013 24227727
    [Google Scholar]
  36. TakanoT. TianG.F. PengW. LouN. LibionkaW. HanX. NedergaardM. Astrocyte-mediated control of cerebral blood flow.Nat. Neurosci.20069226026710.1038/nn1623 16388306
    [Google Scholar]
  37. KuboteraH. Ikeshima-KataokaH. HatashitaY. Allegra MascaroA.L. PavoneF.S. InoueT. Astrocytic endfeet re-cover blood vessels after removal by laser ablation.Sci. Rep.201991126310.1038/s41598‑018‑37419‑4 30718555
    [Google Scholar]
  38. Ikeshima-KataokaH. Neuroimmunological implications of AQP4 in astrocytes.Int. J. Mol. Sci.2016178130610.3390/ijms17081306 27517922
    [Google Scholar]
  39. KimS.H. TurnbullJ. GuimondS. Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor.J. Endocrinol.2011209213915110.1530/JOE‑10‑0377 21307119
    [Google Scholar]
  40. TimplR. Structure and biological activity of basement membrane proteins.Eur. J. Biochem.1989180348750210.1111/j.1432‑1033.1989.tb14673.x 2653817
    [Google Scholar]
  41. EngelhardtB. SorokinL. The blood-brain and the blood-cerebrospinal fluid barriers: Function and dysfunction.Semin. Immunopathol.200931449751110.1007/s00281‑009‑0177‑0 19779720
    [Google Scholar]
  42. ButtA.M. JonesH.C. AbbottN.J. Electrical resistance across the blood‐brain barrier in anaesthetized rats: A developmental study.J. Physiol.19904291476210.1113/jphysiol.1990.sp018243 2277354
    [Google Scholar]
  43. PardridgeW.M. Blood-brain barrier drug targeting: The future of brain drug development.Mol. Interv.2003329010551.10.1124/mi.3.2.90 14993430
    [Google Scholar]
  44. BaeY.H. ParkK. Advanced drug delivery 2020 and beyond: Perspectives on the future.Adv. Drug Deliv. Rev.202015841610.1016/j.addr.2020.06.018 32592727
    [Google Scholar]
  45. ArmulikA. GenovéG. MäeM. NisanciogluM.H. WallgardE. NiaudetC. HeL. NorlinJ. LindblomP. StrittmatterK. JohanssonB.R. BetsholtzC. Pericytes regulate the blood-brain barrier.Nature2010468732355756110.1038/nature09522 20944627
    [Google Scholar]
  46. SengilloJ.D. WinklerE.A. WalkerC.T. SullivanJ.S. JohnsonM. ZlokovicB.V. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease.Brain Pathol.201323330331010.1111/bpa.12004 23126372
    [Google Scholar]
  47. CaiC. FordsmannJ.C. JensenS.H. GessleinB. LønstrupM. HaldB.O. ZambachS.A. BrodinB. LauritzenM.J. Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses.Proc. Natl. Acad. Sci. USA201811525E5796E580410.1073/pnas.1707702115 29866853
    [Google Scholar]
  48. HallC.N. ReynellC. GessleinB. HamiltonN.B. MishraA. SutherlandB.A. O’FarrellF.M. BuchanA.M. LauritzenM. AttwellD. Capillary pericytes regulate cerebral blood flow in health and disease.Nature20145087494556010.1038/nature13165 24670647
    [Google Scholar]
  49. Alarcon-MartinezL. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection.Elife20187e3486110.7554/eLife.34861 29561727
    [Google Scholar]
  50. GonzalesA.L. KlugN.R. MoshkforoushA. LeeJ.C. LeeF.K. ShuiB. TsoukiasN.M. KotlikoffM.I. Hill-EubanksD. NelsonM.T. Contractile pericytes determine the direction of blood flow at capillary junctions.Proc. Natl. Acad. Sci. USA202011743270222703310.1073/pnas.1922755117 33051294
    [Google Scholar]
  51. KressB.T. IliffJ.J. XiaM. WangM. WeiH.S. ZeppenfeldD. XieL. KangH. XuQ. LiewJ.A. PlogB.A. DingF. DeaneR. NedergaardM. Impairment of paravascular clearance pathways in the aging brain.Ann. Neurol.201476684586110.1002/ana.24271 25204284
    [Google Scholar]
  52. ReevesB.C. KarimyJ.K. KundishoraA.J. MestreH. CerciH.M. MatoukC. AlperS.L. LundgaardI. NedergaardM. KahleK.T. Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus.Trends Mol. Med.202026328529510.1016/j.molmed.2019.11.008 31959516
    [Google Scholar]
  53. StorckS.E. MeisterS. NahrathJ. MeißnerJ.N. SchubertN. Di SpiezioA. BachesS. VandenbrouckeR.E. BouterY. PrikulisI. KorthC. WeggenS. HeimannA. SchwaningerM. BayerT.A. PietrzikC.U. Endothelial LRP1 transports amyloid-β1-42 across the blood-brain barrier.J. Clin. Invest.2015126112313610.1172/JCI81108 26619118
    [Google Scholar]
  54. StorckS.E. HartzA.M.S. BernardJ. WolfA. KachlmeierA. MahringerA. WeggenS. PahnkeJ. PietrzikC.U. The concerted amyloid-beta clearance of LRP1 and ABCB1/P-gp across the blood-brain barrier is linked by PICALM.Brain Behav. Immun.201873213310.1016/j.bbi.2018.07.017 30041013
    [Google Scholar]
  55. MøllgårdK. BeinlichF.R.M. KuskP. MiyakoshiL.M. DelleC. PláV. HauglundN.L. EsmailT. RasmussenM.K. GomolkaR.S. MoriY. NedergaardM. A mesothelium divides the subarachnoid space into functional compartments.Science20233796627848810.1126/science.adc8810 36603070
    [Google Scholar]
  56. HartmannK. NeyaziB. SteinK.P. HaghikiaA. SandalciogluI.E. Is the central nervous system enclosed by a mesothel?Ther. Adv. Neurol. Disord.2023161756286423118033510.1177/17562864231180335 37434877
    [Google Scholar]
  57. PláV. BitsikaS. GiannettoM.J. Ladron-de-GuevaraA. Gahn-MartinezD. MoriY. NedergaardM. MøllgårdK. Structural characterization of SLYM—a 4th meningeal membrane.Fluids Barriers CNS20232019310.1186/s12987‑023‑00500‑w 38098084
    [Google Scholar]
  58. VerkmanA.S. SmithA.J. PhuanP. TradtrantipL. AndersonM.O. The aquaporin-4 water channel as a potential drug target in neurological disorders.Expert Opin. Ther. Targets201721121161117010.1080/14728222.2017.1398236 29072508
    [Google Scholar]
  59. BadautJ. LasbennesF. MagistrettiP.J. RegliL. Aquaporins in brain: distribution, physiology, and pathophysiology.J. Cereb. Blood Flow Metab.200222436737810.1097/00004647‑200204000‑00001 11919508
    [Google Scholar]
  60. PapadopoulosM.C. ManleyG.T. KrishnaS. VerkmanA.S. Aquaporin‐4 facilitates reabsorption of excess fluid in vasogenic brain edema.FASEB J.200418111291129310.1096/fj.04‑1723fje 15208268
    [Google Scholar]
  61. RashJ.E. YasumuraT. HudsonC.S. AgreP. NielsenS. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord.Proc. Natl. Acad. Sci. USA19989520119811198610.1073/pnas.95.20.11981 9751776
    [Google Scholar]
  62. PotokarM. JorgačevskiJ. ZorecR. Astrocyte aquaporin dynamics in health and disease.Int. J. Mol. Sci.2016177112110.3390/ijms17071121 27420057
    [Google Scholar]
  63. BadautJ. HirtL. GranzieraC. BogousslavskyJ. MagistrettiP.J. RegliL. Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia.J. Cereb. Blood Flow Metab.200121547748210.1097/00004647‑200105000‑00001 11333357
    [Google Scholar]
  64. SatohJ. TabunokiH. YamamuraT. ArimaK. KonnoH. Human astrocytes express aquaporin‐1 and aquaporin‐4 in vitro and in vivo.Neuropathology200727324525610.1111/j.1440‑1789.2007.00774.x 17645239
    [Google Scholar]
  65. MisawaT. ArimaK. MizusawaH. SatohJ. Close association of water channel AQP1 with amyloid-β deposition in Alzheimer disease brains.Acta Neuropathol.2008116324726010.1007/s00401‑008‑0387‑x 18509662
    [Google Scholar]
  66. PérezE. BarrachinaM. RodríguezA. Torrejón-EscribanoB. BoadaM. HernándezI. SánchezM. FerrerI. Aquaporin expression in the cerebral cortex is increased at early stages of Alzheimer disease.Brain Res.20071128116417410.1016/j.brainres.2006.09.109 17123487
    [Google Scholar]
  67. JorgačevskiJ. ZorecR. PotokarM. Insights into cell surface expression, supramolecular organization, and functions of aquaporin 4 isoforms in astrocytes.Cells2020912262210.3390/cells9122622 33297299
    [Google Scholar]
  68. LisjakM. PotokarM. RituperB. JorgačevskiJ. ZorecR. AQP4e-based orthogonal arrays regulate rapid cell volume changes in astrocytes.J. Neurosci.20173744107481075610.1523/JNEUROSCI.0776‑17.2017 28978666
    [Google Scholar]
  69. JinB.J. RossiA. VerkmanA.S. Model of aquaporin-4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1-M23 isoforms.Biophys. J.2011100122936294510.1016/j.bpj.2011.05.012 21689527
    [Google Scholar]
  70. MacAulayN. Molecular mechanisms of brain water transport.Nat. Rev. Neurosci.202122632634410.1038/s41583‑021‑00454‑8 33846637
    [Google Scholar]
  71. NagelhusE.A. OttersenO.P. Physiological roles of aquaporin-4 in brain.Physiol. Rev.20139341543156210.1152/physrev.00011.2013 24137016
    [Google Scholar]
  72. SmithA.J. YaoX. DixJ.A. JinB.J. VerkmanA.S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.eLife20176e2767910.7554/eLife.27679 28826498
    [Google Scholar]
  73. MestreH. HablitzL.M. XavierA.L.R. FengW. ZouW. PuT. MonaiH. MurlidharanG. Castellanos RiveraR.M. SimonM.J. PikeM.M. PláV. DuT. KressB.T. WangX. PlogB.A. ThraneA.S. LundgaardI. AbeY. YasuiM. ThomasJ.H. XiaoM. HiraseH. AsokanA. IliffJ.J. NedergaardM. Aquaporin-4-dependent glymphatic solute transport in the rodent brain.eLife20187e4007010.7554/eLife.40070 30561329
    [Google Scholar]
  74. YangB. ZhangH. VerkmanA.S. Lack of aquaporin-4 water transport inhibition by antiepileptics and arylsulfonamides.Bioorg. Med. Chem.200816157489749310.1016/j.bmc.2008.06.005 18572411
    [Google Scholar]
  75. Amiry-MoghaddamM. OttersenO.P. The molecular basis of water transport in the brain.Nat. Rev. Neurosci.2003412991100110.1038/nrn1252 14682361
    [Google Scholar]
  76. IgarashiH. HuberV.J. TsujitaM. NakadaT. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema.Neurol. Sci.201132111311610.1007/s10072‑010‑0431‑1 20924629
    [Google Scholar]
  77. PopescuE.S. PiriciI. CiureaR.N. BălşeanuT.A. CătălinB. MărgăritescuC. MogoantăL. HostiucS. PiriciD. Three-dimensional organ scanning reveals brain edema reduction in a rat model of stroke treated with an aquaporin 4 inhibitor.Rom. J. Morphol. Embryol.20175815966 28523299
    [Google Scholar]
  78. ZekeridouA. LennonV.A. Aquaporin-4 autoimmunity.Neurol. Neuroimmunol. Neuroinflamm.201524e11010.1212/NXI.0000000000000110 26185772
    [Google Scholar]
  79. MisuT. FujiharaK. KakitaA. KonnoH. NakamuraM. WatanabeS. TakahashiT. NakashimaI. TakahashiH. ItoyamaY. Loss of aquaporin 4 in lesions of neuromyelitis optica: Distinction from multiple sclerosis.Brain200713051224123410.1093/brain/awm047 17405762
    [Google Scholar]
  80. EmerichD.F. VasconcellosA.V. ElliottR.B. SkinnerS.J.M. BorlonganC.V. The choroid plexus: Function, pathology and therapeutic potential of its transplantation.Expert Opin. Biol. Ther.2004481191120110.1517/14712598.4.8.1191 15268655
    [Google Scholar]
  81. DengS. GanL. LiuC. XuT. ZhouS. GuoY. Roles of ependymal cells in the physiology and pathology of the central nervous system.Aging Dis.202314246848310.14336/AD.2022.0826‑1
    [Google Scholar]
  82. ChenL. EliasG. YostosM.P. StimecB. FaselJ. MurphyK. Pathways of cerebrospinal fluid outflow: A deeper understanding of resorption.Neuroradiology201557213914710.1007/s00234‑014‑1461‑9 25398655
    [Google Scholar]
  83. AlbargothyN.J. JohnstonD.A. MacGregor-SharpM. WellerR.O. VermaA. HawkesC.A. CarareR.O. Convective influx/glymphatic system: Tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways.Acta Neuropathol.2018136113915210.1007/s00401‑018‑1862‑7 29754206
    [Google Scholar]
  84. JessenN.A. MunkA.S.F. LundgaardI. NedergaardM. The glymphatic system: A beginner’s guide.Neurochem. Res.201540122583259910.1007/s11064‑015‑1581‑6 25947369
    [Google Scholar]
  85. ShahT. LeurgansS.E. MehtaR.I. YangJ. GallowayC.A. de Mesy BentleyK.L. SchneiderJ.A. MehtaR.I. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma.J. Exp. Med.20232202e2022061810.1084/jem.20220618 36469302
    [Google Scholar]
  86. RadošM. ŽivkoM. PerišaA. OreškovićD. KlaricaM. No arachnoid granulations—no problems: Number, size, and distribution of arachnoid granulations from birth to 80 years of age.Front. Aging Neurosci.20211369886510.3389/fnagi.2021.698865 34276348
    [Google Scholar]
  87. SmythL.C.D. XuD. OkarS.V. DykstraT. RustenhovenJ. PapadopoulosZ. BhasiinK. KimM.W. DrieuA. MamuladzeT. BlackburnS. GuX. GaitánM.I. NairG. StorckS.E. DuS. WhiteM.A. BayguinovP. SmirnovI. DikranianK. ReichD.S. KipnisJ. Identification of direct connections between the dura and the brain.Nature2024627800216517310.1038/s41586‑023‑06993‑7 38326613
    [Google Scholar]
  88. RustenhovenJ. PavlouG. StorckS.E. DykstraT. DuS. WanZ. QuinteroD. ScallanJ.P. SmirnovI. KammR.D. KipnisJ. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage.J. Exp. Med.20232207e2022192910.1084/jem.20221929 37027179
    [Google Scholar]
  89. MaQ. RiesM. DeckerY. MüllerA. RinerC. BückerA. FassbenderK. DetmarM. ProulxS.T. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain.Acta Neuropathol.2019137115116510.1007/s00401‑018‑1916‑x 30306266
    [Google Scholar]
  90. MestreH. MoriY. NedergaardM. The brain’s glymphatic system: Current controversies.Trends Neurosci.202043745846610.1016/j.tins.2020.04.003 32423764
    [Google Scholar]
  91. FurukawaM. ShimodaH. KajiwaraT. KatoS. YanagisawaS. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy.Biomed. Res.200829628929610.2220/biomedres.29.289 19129672
    [Google Scholar]
  92. KohL. ZakharovA. JohnstonM. Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption?Cerebrospinal Fluid Res.200521610.1186/1743‑8454‑2‑6 16174293
    [Google Scholar]
  93. YağmurluK. SokolowskiJ.D. ÇırakM. UrgunK. SoldozyS. MutM. ShaffreyM.E. TvrdikP. KalaniM.Y.S. Anatomical features of the deep cervical lymphatic system and intrajugular lymphatic vessels in humans.Brain Sci.2020101295310.3390/brainsci10120953 33316930
    [Google Scholar]
  94. BenvenisteH. ElkinR. HeerdtP.M. KoundalS. XueY. LeeH. WardlawJ. TannenbaumA. The glymphatic system and its role in cerebral homeostasis.J. Appl. Physiol.2020129613301340
    [Google Scholar]
  95. AspelundA. TammelaT. AntilaS. NurmiH. LeppänenV.M. ZarkadaG. StanczukL. FrancoisM. MäkinenT. SaharinenP. ImmonenI. AlitaloK. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel.J. Clin. Invest.201412493975398610.1172/JCI75395 25061878
    [Google Scholar]
  96. WellerR.O. SubashM. PrestonS.D. MazantiI. CarareR.O. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease.Brain Pathol.200818225326610.1111/j.1750‑3639.2008.00133.x 18363936
    [Google Scholar]
  97. ProulxS.T. Cerebrospinal fluid outflow: A review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics.Cell. Mol. Life Sci.20217862429245710.1007/s00018‑020‑03706‑5 33427948
    [Google Scholar]
  98. BenvenisteH. HeerdtP.M. FontesM. RothmanD.L. VolkowN.D. Glymphatic system function in relation to anesthesia and sleep states.Anesth. Analg.2019128474775810.1213/ANE.0000000000004069 30883420
    [Google Scholar]
  99. HertzL. RothmanD. Glutamine-glutamate cycle flux is similar in cultured astrocytes and brain and both glutamate production and oxidation are mainly catalyzed by aspartate aminotransferase.Biology2017611710.3390/biology6010017 28245547
    [Google Scholar]
  100. HertzL. RothmanD.L. Glucose, lactate, β-hydroxybutyrate, acetate, gaba, and succinate as substrates for synthesis of glutamate and GABA in the glutamine-glutamate/gaba cycle.Adv. Neurobiol.20161394210.1007/978‑3‑319‑45096‑4_2 27885625
    [Google Scholar]
  101. XieL. KangH. XuQ. ChenM.J. LiaoY. ThiyagarajanM. O’DonnellJ. ChristensenD.J. NicholsonC. IliffJ.J. TakanoT. DeaneR. NedergaardM. Sleep drives metabolite clearance from the adult brain.Science2013342615637337710.1126/science.1241224 24136970
    [Google Scholar]
  102. KangJ.E. LimM.M. BatemanR.J. LeeJ.J. SmythL.P. CirritoJ.R. FujikiN. NishinoS. HoltzmanD.M. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.Science200932659551005100710.1126/science.1180962 19779148
    [Google Scholar]
  103. SpiraA.P. GamaldoA.A. AnY. WuM.N. SimonsickE.M. BilgelM. ZhouY. WongD.F. FerrucciL. ResnickS.M. Self-reported sleep and β-amyloid deposition in community-dwelling older adults.JAMA Neurol.201370121537154310.1001/jamaneurol.2013.4258 24145859
    [Google Scholar]
  104. SundaramS. HughesR.L. PetersonE. Müller-OehringE.M. Brontë-StewartH.M. PostonK.L. FaermanA. BhowmickC. SchulteT. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease.Neurosci. Biobehav. Rev.201910330531510.1016/j.neubiorev.2019.05.016 31132378
    [Google Scholar]
  105. BolteA.C. DuttaA.B. HurtM.E. SmirnovI. KovacsM.A. McKeeC.A. EnnerfeltH.E. ShapiroD. NguyenB.H. FrostE.L. LammertC.R. KipnisJ. LukensJ.R. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis.Nat. Commun.2020111452410.1038/s41467‑020‑18113‑4 32913280
    [Google Scholar]
  106. HertzL. GibbsM.E. DienelG.A. Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline.Front. Neurosci.2014826110.3389/fnins.2014.00261 25249930
    [Google Scholar]
  107. TavaresG.A. LouveauA. Meningeal lymphatics: An immune gateway for the central nervous system.Cells202110123385
    [Google Scholar]
  108. BauerJ. BradlM. HickeyW.F. Forss-PetterS. BreitschopfH. LiningtonC. WekerleH. LassmannH. T-cell apoptosis in inflammatory brain lesions: Destruction of T cells does not depend on antigen recognition.Am. J. Pathol.1998153371572410.1016/S0002‑9440(10)65615‑5 9736022
    [Google Scholar]
  109. EngelhardtB. VajkoczyP. WellerR.O. The movers and shapers in immune privilege of the CNS.Nat. Immunol.201718212313110.1038/ni.3666 28092374
    [Google Scholar]
  110. BartholomäusI. KawakamiN. OdoardiF. SchlägerC. MiljkovicD. EllwartJ.W. KlinkertW.E.F. Flügel-KochC. IssekutzT.B. WekerleH. FlügelA. EffectorT. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions.Nature20094627269949810.1038/nature08478 19829296
    [Google Scholar]
  111. FlügelA. OdoardiF. NosovM. KawakamiN. Autoaggressive effector T cells in the course of experimental autoimmune encephalomyelitis visualized in the light of two-photon microscopy.J. Neuroimmunol.20071911-2869710.1016/j.jneuroim.2007.09.017 17976745
    [Google Scholar]
  112. LouveauA. SmirnovI. KeyesT.J. EcclesJ.D. RouhaniS.J. PeskeJ.D. DereckiN.C. CastleD. MandellJ.W. LeeK.S. HarrisT.H. KipnisJ. Structural and functional features of central nervous system lymphatic vessels.Nature2015523756033734110.1038/nature14432 26030524
    [Google Scholar]
  113. LouveauA. HerzJ. AlmeM.N. SalvadorA.F. DongM.Q. ViarK.E. HerodS.G. KnoppJ. SetliffJ.C. LupiA.L. Da MesquitaS. FrostE.L. GaultierA. HarrisT.H. CaoR. HuS. LukensJ.R. SmirnovI. OverallC.C. OliverG. KipnisJ. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature.Nat. Neurosci.201821101380139110.1038/s41593‑018‑0227‑9 30224810
    [Google Scholar]
  114. SongE. MaoT. DongH. BoisserandL.S.B. AntilaS. BosenbergM. AlitaloK. ThomasJ.L. IwasakiA. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours.Nature2020577779268969410.1038/s41586‑019‑1912‑x 31942068
    [Google Scholar]
  115. HuX. DengQ. MaL. LiQ. ChenY. LiaoY. ZhouF. ZhangC. ShaoL. FengJ. HeT. NingW. KongY. HuoY. HeA. LiuB. ZhangJ. AdamsR. HeY. TangF. BianX. LuoJ. Meningeal lymphatic vessels regulate brain tumor drainage and immunity.Cell Res.202030322924310.1038/s41422‑020‑0287‑8 32094452
    [Google Scholar]
  116. MapundaJ.A. TibarH. RegraguiW. EngelhardtB. How does the immune system enter the brain?Front. Immunol.20221380565710.3389/fimmu.2022.805657 35273596
    [Google Scholar]
  117. LunM. LokE. GautamS. WuE. WongE.T. The natural history of extracranial metastasis from glioblastoma multiforme.J. Neurooncol.2011105226127310.1007/s11060‑011‑0575‑8 21512826
    [Google Scholar]
  118. PizzoM.E. WolakD.J. KumarN.N. BrunetteE. BrunnquellC.L. HannocksM.J. AbbottN.J. MeyerandM.E. SorokinL. StanimirovicD.B. ThorneR.G. Intrathecal antibody distribution in the rat brain: Surface diffusion, perivascular transport and osmotic enhancement of delivery.J. Physiol.2018596344547510.1113/JP275105 29023798
    [Google Scholar]
  119. AbbottN.J. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology.Neurochem. Int.200445454555210.1016/j.neuint.2003.11.006 15186921
    [Google Scholar]
  120. HannocksM.J. PizzoM.E. HuppertJ. DeshpandeT. AbbottN.J. ThorneR.G. SorokinL. Molecular characterization of perivascular drainage pathways in the murine brain.J. Cereb. Blood Flow Metab.201838466968610.1177/0271678X17749689 29283289
    [Google Scholar]
  121. CserrH.F. OstrachL.H. Bulk flow of interstitial fluid after intracranial injection of Blue Dextran 2000.Exp. Neurol.1974451506010.1016/0014‑4886(74)90099‑5 4137563
    [Google Scholar]
  122. NicholsonC. TaoL. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging.Biophys. J.19936562277229010.1016/S0006‑3495(93)81324‑9 7508761
    [Google Scholar]
  123. CserrH.F. CooperD.N. MilhoratT.H. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus.Exp. Eye Res.197725Suppl.46147310.1016/S0014‑4835(77)80041‑9 590401
    [Google Scholar]
  124. RosenbergG.A. KynerW.T. EstradaE. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions.Am. J. Physiol.19802381F42F49 7356021
    [Google Scholar]
  125. AsgariM. de ZélicourtD. KurtcuogluV. Glymphatic solute transport does not require bulk flow.Sci. Rep.2016613863510.1038/srep38635 27929105
    [Google Scholar]
  126. LunM.P. MonukiE.S. LehtinenM.K. Development and functions of the choroid plexus-cerebrospinal fluid system.Nat. Rev. Neurosci.201516844545710.1038/nrn3921 26174708
    [Google Scholar]
  127. Durand-FardelM. Treatise on the softening of the brain: Work co-authored by the Royal Academy of Medicine.Baillières1843
    [Google Scholar]
  128. RingstadG. ValnesL.M. DaleA.M. PrippA.H. VatneholS.A.S. EmblemK.E. MardalK.A. EideP.K. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI.JCI Insight2018313e12153710.1172/jci.insight.121537 29997300
    [Google Scholar]
  129. AbsintaM. HaS.K. NairG. SatiP. LucianoN.J. PalisocM. LouveauA. ZaghloulK.A. PittalugaS. KipnisJ. ReichD.S. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI.eLife20176e2973810.7554/eLife.29738 28971799
    [Google Scholar]
  130. VisanjiN.P. LangA.E. MunozD.G. Lymphatic vasculature in human dural superior sagittal sinus: Implications for neurodegenerative proteinopathies.Neurosci. Lett.2018665182110.1016/j.neulet.2017.11.001 29133178
    [Google Scholar]
  131. GoodmanJ.R. AdhamZ.O. WoltjerR.L. LundA.W. IliffJ.J. Characterization of dural sinus-associated lymphatic vasculature in human Alzheimer’s dementia subjects.Brain Behav. Immun.201873344010.1016/j.bbi.2018.07.020 30055243
    [Google Scholar]
  132. EideP.K. VatneholS.A.S. EmblemK.E. RingstadG. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes.Sci. Rep.201881719410.1038/s41598‑018‑25666‑4 29740121
    [Google Scholar]
  133. KuoP.H. StuehmC. SquireS. JohnsonK. Meningeal lymphatic vessel flow runs countercurrent to venous flow in the superior sagittal sinus of the human brain.Tomography2018439910410.18383/j.tom.2018.00013 30320209
    [Google Scholar]
  134. PlogB.A. NedergaardM. The glymphatic system in central nervous system health and disease: Past, present, and future.Annu. Rev. Pathol.201813137939410.1146/annurev‑pathol‑051217‑111018 29195051
    [Google Scholar]
  135. NauenD.W. TroncosoJ.C. Amyloid‐beta is present in human lymph nodes and greatly enriched in those of the cervical region.Alzheimers Dement.202218220521010.1002/alz.12385 34057798
    [Google Scholar]
  136. Tarasoff-ConwayJ.M. CarareR.O. OsorioR.S. GlodzikL. ButlerT. FieremansE. AxelL. RusinekH. NicholsonC. ZlokovicB.V. FrangioneB. BlennowK. MénardJ. ZetterbergH. WisniewskiT. de LeonM.J. Clearance systems in the brain-implications for Alzheimer disease.Nat. Rev. Neurol.201511845747010.1038/nrneurol.2015.119 26195256
    [Google Scholar]
  137. SchubertJ.J. VeroneseM. MarchitelliL. BodiniB. ToniettoM. StankoffB. BrooksD.J. BertoldoA. EdisonP. TurkheimerF.E. Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in Alzheimer disease and multiple sclerosis.J. Nucl. Med.201960101452146010.2967/jnumed.118.223834 30850505
    [Google Scholar]
  138. XuZ. XiaoN. ChenY. HuangH. MarshallC. GaoJ. CaiZ. WuT. HuG. XiaoM. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits.Mol. Neurodegener.20151015810.1186/s13024‑015‑0056‑1 26526066
    [Google Scholar]
  139. HughesT.M. KullerL.H. Barinas-MitchellE.J.M. MackeyR.H. McDadeE.M. KlunkW.E. AizensteinH.J. CohenA.D. SnitzB.E. MathisC.A. DeKoskyS.T. LopezO.L. Pulse wave velocity is associated with β-amyloid deposition in the brains of very elderly adults.Neurology201381191711171810.1212/01.wnl.0000435301.64776.37 24132374
    [Google Scholar]
  140. ZeppenfeldD.M. SimonM. HaswellJ.D. D’AbreoD. MurchisonC. QuinnJ.F. GrafeM.R. WoltjerR.L. KayeJ. IliffJ.J. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains.JAMA Neurol.2017741919910.1001/jamaneurol.2016.4370 27893874
    [Google Scholar]
  141. ChungS.J. YooH.S. ShinN.Y. ParkY.W. LeeH.S. HongJ.M. KimY.J. LeeS.K. LeeP.H. SohnY.H. Perivascular spaces in the basal ganglia and long-term motor prognosis in newly diagnosed parkinson disease.Neurology20219616e2121e213110.1212/WNL.0000000000011797 33653906
    [Google Scholar]
  142. ParkY.W. ShinN.Y. ChungS.J. KimJ. LimS.M. LeeP.H. LeeS.K. AhnK.J. Magnetic resonance imaging-visible perivascular spaces in basal ganglia predict cognitive decline in parkinson’s disease.Mov. Disord.201934111672167910.1002/mds.27798 31322758
    [Google Scholar]
  143. LiY. ZhuZ. ChenJ. ZhangM. YangY. HuangP. Dilated perivascular space in the midbrain may reflect dopamine neuronal degeneration in Parkinson’s disease.Front. Aging Neurosci.20201216110.3389/fnagi.2020.00161 32581771
    [Google Scholar]
  144. ZhangJ. LiuS. WuY. TangZ. WuY. QiY. DongF. WangY. Enlarged perivascular space and index for diffusivity along the perivascular space as emerging neuroimaging biomarkers of neurological diseases.Cell. Mol. Neurobiol.20244411410.1007/s10571‑023‑01440‑7 38158515
    [Google Scholar]
  145. DonahueE.K. MurdosA. JakowecM.W. Sheikh-BahaeiN. TogaA.W. PetzingerG.M. SepehrbandF. Global and regional changes in perivascular space in idiopathic and familial Parkinson’s disease.Mov. Disord.20213651126113610.1002/mds.28473 33470460
    [Google Scholar]
  146. HoshiA. TsunodaA. TadaM. NishizawaM. UgawaY. KakitaA. Expression of aquaporin 1 and aquaporin 4 in the temporal neocortex of patients with Parkinson’s disease.Brain Pathol.201727216016810.1111/bpa.12369 26919570
    [Google Scholar]
  147. ZhouY. HuangX. ZhaoT. QiaoM. ZhaoX. ZhaoM. XuL. ZhaoY. WuL. WuK. ChenR. FanM. ZhuL. Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice.Brain Behav. Immun.20176426627510.1016/j.bbi.2017.04.013 28433745
    [Google Scholar]
  148. LouveauA. HarrisT.H. KipnisJ. Revisiting the mechanisms of CNS immune privilege.Trends Immunol.2015361056957710.1016/j.it.2015.08.006 26431936
    [Google Scholar]
  149. WillisC.L. CamireR.B. BruleS.A. RayD.E. Partial recovery of the damaged rat blood-brain barrier is mediated by adherens junction complexes, extracellular matrix remodeling and macrophage infiltration following focal astrocyte loss.Neuroscience201325077378510.1016/j.neuroscience.2013.06.061 23845748
    [Google Scholar]
  150. GaberelT. GakubaC. GoulayR. De LizarrondoS.M. HanouzJ.L. EmeryE. TouzeE. VivienD. GaubertiM. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: A new target for fibrinolysis?Stroke201445103092309610.1161/STROKEAHA.114.006617 25190438
    [Google Scholar]
  151. CaliasP. BanksW.A. BegleyD. ScarpaM. DicksonP. Intrathecal delivery of protein therapeutics to the brain: A critical reassessment.Pharmacol. Ther.2014144211412210.1016/j.pharmthera.2014.05.009 24854599
    [Google Scholar]
  152. BellettatoC.M. ScarpaM. Possible strategies to cross the blood-brain barrier.Ital. J. Pediatr.201844S213110.1186/s13052‑018‑0563‑0 30442184
    [Google Scholar]
  153. SoderquistR.G. MahoneyM.J. Central nervous system delivery of large molecules: Challenges and new frontiers for intrathecally administered therapeutics.Expert Opin. Drug Deliv.20107328529310.1517/17425240903540205 20201735
    [Google Scholar]
  154. ZhouY. CaiJ. ZhangW. GongX. YanS. ZhangK. LuoZ. SunJ. JiangQ. LouM. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human.Ann. Neurol.202087335736910.1002/ana.25670 31916277
    [Google Scholar]
  155. RustenhovenJ. DrieuA. MamuladzeT. de LimaK.A. DykstraT. WallM. PapadopoulosZ. KanamoriM. SalvadorA.F. BakerW. LemieuxM. Da MesquitaS. CugurraA. FitzpatrickJ. SvibenS. KossinaR. BayguinovP. TownsendR.R. ZhangQ. Erdmann-GilmoreP. SmirnovI. LopesM.B. HerzJ. KipnisJ. Functional characterization of the dural sinuses as a neuroimmune interface.Cell2021184410001016.e2710.1016/j.cell.2020.12.040 33508229
    [Google Scholar]
  156. JinP. MunsonJ.M. Fluids and flows in brain cancer and neurological disorders.WIREs Mech. Dis.2023151e158210.1002/wsbm.1582 36000149
    [Google Scholar]
  157. SaadounS. PapadopoulosM.C. DaviesD.C. KrishnaS. BellB.A. Aquaporin-4 expression is increased in oedematous human brain tumours.J. Neurol. Neurosurg. Psychiatry200272226226510.1136/jnnp.72.2.262 11796780
    [Google Scholar]
  158. XuD. ZhouJ. MeiH. LiH. SunW. XuH. Impediment of cerebrospinal fluid drainage through glymphatic system in glioma.Front. Oncol.20221179082110.3389/fonc.2021.790821 35083148
    [Google Scholar]
  159. TohC.H. SiowT.Y. Factors associated with dysfunction of glymphatic system in patients with glioma.Front. Oncol.20211174431810.3389/fonc.2021.744318 34631582
    [Google Scholar]
  160. MaQ. SchlegelF. BachmannS.B. SchneiderH. DeckerY. RudinM. WellerM. ProulxS.T. DetmarM. Lymphatic outflow of cerebrospinal fluid is reduced in glioma.Sci. Rep.2019911481510.1038/s41598‑019‑51373‑9 31616011
    [Google Scholar]
  161. FredericoS.C. HancockJ.C. BrettschneiderE.E.S. RatnamN.M. GilbertM.R. TerabeM. Making a cold tumor hot: The role of vaccines in the treatment of glioblastoma.Front. Oncol.20211167250810.3389/fonc.2021.672508 34041034
    [Google Scholar]
  162. MogensenF.L.H. DelleC. NedergaardM. The glymphatic system (En)during inflammation.Int. J. Mol. Sci.20212214749110.3390/ijms22147491 34299111
    [Google Scholar]
  163. IliffJ.J. ChenM.J. PlogB.A. ZeppenfeldD.M. SolteroM. YangL. SinghI. DeaneR. NedergaardM. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury.J. Neurosci.20143449161801619310.1523/JNEUROSCI.3020‑14.2014 25471560
    [Google Scholar]
  164. HershenhouseK.S. ShaulyO. GouldD.J. PatelK.M. Meningeal lymphatics: A review and future directions from a clinical perspective.Neurosci. Insights201914117906951988902710.1177/1179069519889027 32363346
    [Google Scholar]
  165. HsuM. LaakerC. SandorM. FabryZ. Neuroinflammation-driven lymphangiogenesis in CNS diseases.Front. Cell. Neurosci.20211568367610.3389/fncel.2021.683676
    [Google Scholar]
/content/journals/cn/10.2174/011570159X359861250224051857
Loading
/content/journals/cn/10.2174/011570159X359861250224051857
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test