Skip to content
2000
Volume 23, Issue 9
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Introduction

The gasotransmitter hydrogen sulfide (HS) modulates various brain functions, including neuron excitability, synaptic plasticity, and Ca2+ dynamics. Furthermore, HS may stimulate nitric oxide (NO) release from cerebrovascular endothelial cells, thereby regulating NO-dependent endothelial functions, such as angiogenesis, vasorelaxation, and cerebral blood flow (CBF). However, the signaling pathway by which HS induces NO release from cerebrovascular endothelial cells is still unclear.

Methods

Herein, we exploited single-cell imaging of intracellular Ca2+, HS, and NO levels to assess how HS induces Ca2+-dependent NO release from the human cerebrovascular endothelial cell line, hCMEC/D3.

Results

Administration of the HS donor, sodium hydrosulfide (NaHS), induced a dose-dependent increase in (Ca2+) only in the presence of extracellular Ca2+. NaHS-induced extracellular Ca2+ entry was mediated by the Ca2+-permeable TRPA1 channel, as shown by pharmacological and genetic manipulation of the TRPA1 protein. Furthermore, NaHS-dependent TRPA1 activation led to NO release that was abolished by buffering the concomitant increase in (Ca2+) and inhibiting eNOS. Furthermore, the endothelial agonist, adenosine trisphosphate (ATP), caused a long-lasting elevation in (Ca2+) that was driven by cystathionine γ-lyase (CSE)-dependent HS production and by TRPA1 activation. Consistent with this, ATP-induced NO release was strongly reduced either by blocking CSE or by inhibiting TRPA1.

Conclusion

These findings demonstrate for the time that HS stimulates TRPA1 to induce NO production in human brain microvascular endothelial cells. Additionally, they show that this signaling pathway can be recruited by an endothelial agonist to modulate NO-dependent events at the human neurovascular unit.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X349872250124124612
2025-02-13
2025-09-13
Loading full text...

Full text loading...

References

  1. O’GallagherK. PuleddaF. O’DalyO. RyanM. DancyL. ChowienczykP.J. ZelayaF. GoadsbyP.J. ShahA.M. Neuronal nitric oxide synthase regulates regional brain perfusion in healthy humans.Cardiovasc. Res.202211851321132910.1093/cvr/cvab155 34120160
    [Google Scholar]
  2. HoilandR.L. CaldwellH.G. HoweC.A. Nowak-FlückD. StaceyB.S. BaileyD.M. PatonJ.F.R. GreenD.J. SekhonM.S. MacleodD.B. AinslieP.N. Nitric oxide is fundamental to neurovascular coupling in humans.J. Physiol.2020598214927493910.1113/JP280162 32785972
    [Google Scholar]
  3. O’GallagherK. RosentreterR.E. Elaine SorianoJ. RoomiA. SaleemS. LamT. RoyR. GordonG.R. RajS.R. ChowienczykP.J. ShahA.M. PhillipsA.A. The effect of a neuronal nitric oxide synthase inhibitor on neurovascular regulation in humans.Circ. Res.20221311295296110.1161/CIRCRESAHA.122.321631 36349758
    [Google Scholar]
  4. LongdenT.A. MughalA. HennigG.W. HarrazO.F. ShuiB. LeeF.K. LeeJ.C. ReiningS. KotlikoffM.I. KönigG.M. KostenisE. Hill-EubanksD. NelsonM.T. Local IP3 receptor-mediated Ca2+ signals compound to direct blood flow in brain capillaries.Sci. Adv.2021730eabh010110.1126/sciadv.abh0101 34290098
    [Google Scholar]
  5. MocciaF. BrunettiV. SodaT. Berra-RomaniR. ScarpellinoG. Cracking the endothelial calcium (Ca2+) Code: A matter of timing and spacing.Int. J. Mol. Sci.202324231676510.3390/ijms242316765 38069089
    [Google Scholar]
  6. MughalA. SackheimA.M. KoideM. BonsonG. EbnerG. HennigG. FreemanK. LocketteG. NelsonM.T. Pathogenic soluble tau peptide disrupts endothelial calcium signaling and vasodilation in the brain microvasculature.J. Cereb. Blood Flow Metab.202455468068810.1177/0271678X241235790
    [Google Scholar]
  7. ChowB.W. NuñezV. KaplanL. GrangerA.J. BistrongK. ZuckerH.L. KumarP. SabatiniB.L. GuC. Caveolae in CNS arterioles mediate neurovascular coupling.Nature2020579779710611010.1038/s41586‑020‑2026‑1 32076269
    [Google Scholar]
  8. BuscetiC.L. CarrizzoA. BianchiF. De LuciaM. DamatoA. CazzinC. VenturiniE. Di PietroP. GinereteR.P. Di MennaL. CotugnoM. StanzioneR. MarchittiS. MigliarinoS. CiccarelliM. SciarrettaS. BrunoV. BattagliaG. FornaiF. VolpeM. RubattuS. NicolettiF. VecchioneC. Role of Dickkopf-3 in blood pressure regulation in mice and hypertensive rats.Circ. Res.2023132111489150410.1161/CIRCRESAHA.122.321744 37144413
    [Google Scholar]
  9. ZuccoloE. LaforenzaU. NegriS. BottaL. Berra-RomaniR. FarisP. ScarpellinoG. ForcaiaG. PellavioG. SanciniG. MocciaF. Muscarinic M5 receptors trigger acetylcholine‐induced Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells.J. Cell. Physiol.201923444540456210.1002/jcp.27234 30191989
    [Google Scholar]
  10. NegriS. FarisP. ManiezziC. PellavioG. SpaiardiP. BottaL. LaforenzaU. BiellaG. MocciaD.F. NMDA receptors elicit flux-independent intracellular Ca2+ signals via metabotropic glutamate receptors and flux-dependent nitric oxide release in human brain microvascular endothelial cells.Cell Calcium20219910245410.1016/j.ceca.2021.102454 34454368
    [Google Scholar]
  11. NegriS. ScolariF. VismaraM. BrunettiV. FarisP. TerribileG. SanciniG. Berra-RomaniR. MocciaF. GABAA and GABAB receptors mediate GABA-induced intracellular Ca2+ signals in human brain microvascular endothelial cells.Cells20221123386010.3390/cells11233860 36497118
    [Google Scholar]
  12. Berra-RomaniR. FarisP. PellavioG. OrgiuM. NegriS. ForcaiaG. Var-gaz-Guadarrama, V.; Garcia-Carrasco, M.; Botta, L.; Sancini, G.; Laforenza, U.; Moccia, F. Histamine induces intracellular Ca2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation.J. Cell. Physiol.202023521515153010.1002/jcp.29071 31310018
    [Google Scholar]
  13. SodaT. BrunettiV. Berra-RomaniR. MocciaF. The emerging role of N-Methyl-D-Aspartate (NMDA) receptors in the cardiovascular system: physiological implications, pathological consequences, and therapeutic perspectives.Int. J. Mol. Sci.2023244391410.3390/ijms24043914 36835323
    [Google Scholar]
  14. NegriS. FarisP. SodaT. MocciaF. Endothelial signaling at the core of neurovascular coupling: The emerging role of endothelial inward-rectifier K+ (Kir2.1) channels and N-methyl-d-aspartate receptors in the regulation of cerebral blood flow.Int. J. Biochem. Cell Biol.202113510598310.1016/j.biocel.2021.105983 33894355
    [Google Scholar]
  15. WangR. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed.Physiol. Rev.201292279189610.1152/physrev.00017.2011 22535897
    [Google Scholar]
  16. AltaanyZ. MocciaF. MunaronL. MancardiD. WangR. Hydrogen sulfide and endothelial dysfunction: Relationship with nitric oxide.Curr. Med. Chem.201421323646366110.2174/0929867321666140706142930 25005182
    [Google Scholar]
  17. SiracusaR. VoltarelliV.A. SalinaroA.T. ModafferiS. CuzzocreaS. CalabreseE.J. Di PaolaR. OtterbeinL.E. CalabreseV. No, CO and H2S: A trinacrium of bioactive gases in the brain.Biochem. Pharmacol.202220211512210.1016/j.bcp.2022.115122 35679892
    [Google Scholar]
  18. CitiV. MartelliA. GoricaE. BrogiS. TestaiL. CalderoneV. Role of hydrogen sulfide in endothelial dysfunction: Pathophysiology and therapeutic approaches.J. Adv. Res.2021279911310.1016/j.jare.2020.05.015 33318870
    [Google Scholar]
  19. MancardiD. Florio PlaA. MocciaF. TanziF. MunaronL. Old and new gasotransmitters in the cardiovascular system: Focus on the role of nitric oxide and hydrogen sulfide in endothelial cells and cardiomyocytes.Curr. Pharm. Biotechnol.20111291406141510.2174/138920111798281090 21235456
    [Google Scholar]
  20. CirinoG. SzaboC. PapapetropoulosA. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs.Physiol. Rev.202310313127610.1152/physrev.00028.2021 35435014
    [Google Scholar]
  21. DallasM.L. Al-OwaisM.M. HettiarachchiN.T. VandiverM.S. Jarosz-GriffithsH.H. ScraggJ.L. BoyleJ.P. SteeleD. PeersC. Hydrogen sulfide regulates hippocampal neuron excitability via S-sulfhydration of Kv2.1.Sci. Rep.2021111819410.1038/s41598‑021‑87646‑5 33854181
    [Google Scholar]
  22. FuruieH. KimuraY. AkaishiT. YamadaM. MiyasakaY. SaitohA. ShibuyaN. WatanabeA. KusunoseN. MashimoT. YoshikawaT. YamadaM. AbeK. KimuraH. Hydrogen sulfide and polysulfides induce GABA/glutamate/d-serine release, facilitate hippocampal LTP, and regulate behavioral hyperactivity.Sci. Rep.20231311766310.1038/s41598‑023‑44877‑y 37907526
    [Google Scholar]
  23. AbeK. KimuraH. The possible role of hydrogen sulfide as an endogenous neuromodulator.J. Neurosci.19961631066107110.1523/JNEUROSCI.16‑03‑01066.1996 8558235
    [Google Scholar]
  24. TianX.Y. WongW.T. SayedN. LuoJ. TsangS.Y. BianZ.X. LuY. CheangW.S. YaoX. ChenZ.Y. HuangY. NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltage-sensitive Ca2+ channel.Pharmacol. Res.201265223924610.1016/j.phrs.2011.11.006 22133671
    [Google Scholar]
  25. LobovG.I. SokolovaI.B. GorshkovaO.P. ShvetsovaM.E. DvoretskiiD.P. Contribution of hydrogen sulfide to dilation of rat cerebral arteries after ischemia/reperfusion injury.Bull. Exp. Biol. Med.2020168559760110.1007/s10517‑020‑04759‑z 32249400
    [Google Scholar]
  26. LefflerC.W. ParfenovaH. BasuroyS. JaggarJ.H. UmstotE.S. FedinecA.L. Hydrogen sulfide and cerebral microvascular tone in newborn pigs.Am. J. Physiol. Heart Circ. Physiol.20113002H440H44710.1152/ajpheart.00722.2010 21131483
    [Google Scholar]
  27. DongóE. KissL. The potential role of hydrogen sulfide in the regulation of cerebrovascular tone.Biomolecules20201012168510.3390/biom10121685 33339440
    [Google Scholar]
  28. VeerareddyP. DaoN. YunJ.W. StokesK.Y. DisbrowE. KevilC.G. CvekU. TrutschlM. KilgoreP. RamanathanM. ZivadinovR. AlexanderJ.S. Dysregulated sulfide metabolism in multiple sclerosis: Serum and vascular endothelial inflammatory responses.Pathophysiology202229357058210.3390/pathophysiology29030044 36136071
    [Google Scholar]
  29. PatelS. FedinecA.L. LiuJ. WeissM.A. PourcyrousM. HarsonoM. ParfenovaH. LefflerC.W. H2S mediates the vasodilator effect of endothelin-1 in the cerebral circulation.Am. J. Physiol. Heart Circ. Physiol.20183156H1759H176410.1152/ajpheart.00451.2018 30265150
    [Google Scholar]
  30. ChenS. GuoF. LiuX. XiJ. XueM. GuoY. WenJ. DongL. ChenZ. Roles of the RhoA-ROCK signaling pathway in the endothelial H 2 S production and vasodilation in rat cerebral arteries.ACS Omega2022722184981850810.1021/acsomega.2c00996 35694456
    [Google Scholar]
  31. SzaboC. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: Mechanisms and implications.Am. J. Physiol. Cell Physiol.20173121C3C1510.1152/ajpcell.00282.2016 27784679
    [Google Scholar]
  32. KidaM. SugiyamaT. YoshimotoT. OgawaY. Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells.Eur. J. Pharm. Sci.2013481-221121510.1016/j.ejps.2012.11.001 23148920
    [Google Scholar]
  33. PotenzaD.M. GuerraG. AvanzatoD. PolettoV. PareekS. GuidoD. GallantiA. RostiV. MunaronL. TanziF. MocciaF. Hydrogen sulphide triggers VEGF-induced intracellular Ca2+ signals in human endothelial cells but not in their immature progenitors.Cell Calcium201456322523410.1016/j.ceca.2014.07.010 25113159
    [Google Scholar]
  34. BauerC.C. BoyleJ.P. PorterK.E. PeersC. Modulation of Ca2+ signalling in human vascular endothelial cells by hydrogen sulfide.Atherosclerosis2010209237438010.1016/j.atherosclerosis.2009.10.004 19875115
    [Google Scholar]
  35. MunaronL. AvanzatoD. MocciaF. MancardiD. Hydrogen sulfide as a regulator of calcium channels.Cell Calcium2013532778410.1016/j.ceca.2012.07.001 22840338
    [Google Scholar]
  36. PupoE. Fiorio PlaA. AvanzatoD. MocciaF. Avelino CruzJ-E. TanziF. MerlinoA. MancardiD. MunaronL. Hydrogen sulfide promotes calcium signals and migration in tumor-derived endothelial cells.Free Radic. Biol. Med.20115191765177310.1016/j.freeradbiomed.2011.08.007 21875664
    [Google Scholar]
  37. MocciaF. BertoniG. Florio PlaA. DragoniS. PupoE. MerlinoA. MancardiD. MunaronL. TanziF. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta.Curr. Pharm. Biotechnol.20111291416142610.2174/138920111798281117 21470138
    [Google Scholar]
  38. HanstedA.K. JensenL.J. OlesenJ. Jansen-OlesenI. Localization of TRPA1 channels and characterization of TRPA1 mediated responses in dural and pial arteries in vivo after intracarotid infusion of Na 2 S.Cephalalgia202040121310132010.1177/0333102420937724 32611244
    [Google Scholar]
  39. DuxM. WillC. VoglerB. FilipovicM.R. MesslingerK. Meningeal blood flow is controlled by H 2 S‐NO crosstalk activating a HNO‐TRPA1‐CGRP signalling pathway.Br. J. Pharmacol.2016173343144510.1111/bph.13164 25884403
    [Google Scholar]
  40. FarisP. FerulliF. VismaraM. TanziM. NegriS. RumoloA. LefkimmiatisK. MaestriM. ShekhaM. PedrazzoliP. GuidettiG.F. MontagnaD. MocciaF. Hydrogen sulfide-evoked intracellular Ca2+ signals in primary cultures of metastatic colorectal cancer cells.Cancers20201211333810.3390/cancers12113338 33187307
    [Google Scholar]
  41. YangR. LiuY. YuT. LiuD. ShiS. ZhouY. ZhouY. Hydrogen sulfide maintains dental pulp stem cell function via TRPV1-mediated calcium influx.Cell Death Discov.2018416910.1038/s41420‑018‑0071‑4 30062050
    [Google Scholar]
  42. WekslerB. RomeroI.A. CouraudP.O. The hCMEC/D3 cell line as a model of the human blood brain barrier.Fluids Barriers CNS20131011610.1186/2045‑8118‑10‑16 23531482
    [Google Scholar]
  43. HelmsH.C. AbbottN.J. BurekM. CecchelliR. CouraudP.O. DeliM.A. FörsterC. GallaH.J. RomeroI.A. ShustaE.V. StebbinsM.J. VandenhauteE. WekslerB. BrodinB. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use.J. Cereb. Blood Flow Metab.201636586289010.1177/0271678X16630991 26868179
    [Google Scholar]
  44. Fasler-KanE. SuenderhaufC. BartenevaN. PollerB. GygaxD. HuwylerJ. Cytokine signaling in the human brain capillary endothelial cell line hCMEC/D3.Brain Res.20101354152210.1016/j.brainres.2010.07.077 20692239
    [Google Scholar]
  45. QiD. LinH. HuB. WeiY. A review on in vitro model of the blood-brain barrier (BBB) based on hCMEC/D3 cells.J. Control. Release2023358789710.1016/j.jconrel.2023.04.020 37076016
    [Google Scholar]
  46. BintigW. BegandtD. SchlingmannB. GerhardL. PangalosM. DreyerL. HohnjecN. CouraudP.O. RomeroI.A. WekslerB.B. NgezahayoA. Purine receptors and Ca2+ signalling in the human blood-brain barrier endothelial cell line hCMEC/D3.Purinergic Signal.201281718010.1007/s11302‑011‑9262‑7 21956217
    [Google Scholar]
  47. BaderA. BintigW. BegandtD. KlettA. SillerI.G. GregorC. SchaarschmidtF. WekslerB. RomeroI. CouraudP.O. HellS.W. NgezahayoA. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide‐gated channels.J. Physiol.201759582497251710.1113/JP273150 28075020
    [Google Scholar]
  48. LuoH. RossiE. SaubameaB. ChasseigneauxS. CochoisV. ChoublierN. SmirnovaM. GlacialF. PerrièreN. BourdoulousS. SmadjaD.M. MenetM.C. CouraudP.O. CisterninoS. DeclèvesX. Cannabidiol increases proliferation, migration, tubulogenesis, and integrity of human brain endothelial cells through TRPV2 activation.Mol. Pharm.20191631312132610.1021/acs.molpharmaceut.8b01252 30721081
    [Google Scholar]
  49. Berra-RomaniR. BrunettiV. PellavioG. SodaT. LaforenzaU. ScarpellinoG. MocciaF. Allyl isothiocianate induces Ca2+ signals and nitric oxide release by inducing reactive oxygen species production in the human cerebrovascular endothelial cell line hCMEC/D3.Cells20231213173210.3390/cells12131732 37443764
    [Google Scholar]
  50. MussanoF. GenovaT. LaurentiM. GagliotiD. ScarpellinoG. RivoloP. FagaM.G. Fiorio PlaA. MunaronL. MandracciP. CarossaS. Beta1-integrin and TRPV4 are involved in osteoblast adhesion to different titanium surface topographies.Appl. Surf. Sci.202050714511210.1016/j.apsusc.2019.145112
    [Google Scholar]
  51. FarisP. RumoloA. PellavioG. TanziM. VismaraM. Berra-RomaniR. GerbinoA. CoralloS. PedrazzoliP. LaforenzaU. MontagnaD. MocciaF. Transient receptor potential ankyrin 1 (TRPA1) mediates reactive oxygen species-induced Ca2+ entry, mitochondrial dysfunction, and caspase-3/7 activation in primary cultures of metastatic colorectal carcinoma cells.Cell Death Discov.20239121310.1038/s41420‑023‑01530‑x 37393347
    [Google Scholar]
  52. Berra-RomaniR. Guzmán-SilvaA. Vargaz-GuadarramaA. Flores-AlonsoJ.C. Alonso-RomeroJ. TreviñoS. Sánchez-GómezJ. Coyotl-SantiagoN. García-CarrascoM. MocciaF. Type 2 diabetes alters intracellular Ca2+ handling in native endothelium of excised rat aorta.Int. J. Mol. Sci.201921125010.3390/ijms21010250 31905880
    [Google Scholar]
  53. HennigB. DienerM. Actions of hydrogen sulphide on ion transport across rat distal colon.Br. J. Pharmacol.200915851263127510.1111/j.1476‑5381.2009.00385.x 19785650
    [Google Scholar]
  54. MocciaF. MontagnaD. Transient receptor potential Ankyrin 1 (TRPA1) channel as a sensor of oxidative stress in cancer cells.Cells2023129126110.3390/cells12091261 37174661
    [Google Scholar]
  55. TalaveraK. StartekJ.B. Alvarez-CollazoJ. BoonenB. AlpizarY.A. SanchezA. NaertR. NiliusB. Mammalian transient receptor potential TRPA1 channels: From structure to disease.Physiol. Rev.2020100272580310.1152/physrev.00005.2019 31670612
    [Google Scholar]
  56. Berra-RomaniR. FarisP. NegriS. BottaL. GenovaT. MocciaF. Arachidonic acid evokes an increase in intracellular Ca2+ concentration and nitric oxide production in endothelial cells from human brain microcirculation.Cells20198768910.3390/cells8070689 31323976
    [Google Scholar]
  57. ScarpellinoG. GenovaT. AvanzatoD. BernardiniM. BiancoS. PetrilloS. TolosanoE. de Almeida VieiraJ.R. BussolatiB. Fiorio PlaA. MunaronL. Purinergic calcium signals in tumor-derived endothelium.Cancers201911676610.3390/cancers11060766 31159426
    [Google Scholar]
  58. ScarpellinoG. GenovaT. QuartaE. DistasiC. DionisiM. Fiorio PlaA. MunaronL. P2X purinergic receptors are multisensory detectors for micro-environmental stimuli that control migration of tumoral endothelium.Cancers20221411274310.3390/cancers14112743 35681724
    [Google Scholar]
  59. ForcaiaG. FormicolaB. TerribileG. NegriS. LimD. BiellaG. ReF. MocciaF. SanciniG. Multifunctional liposomes modulate purinergic receptor-induced calcium wave in cerebral microvascular endothelial cells and astrocytes: New insights for alzheimer’s disease.Mol. Neurobiol.20215862824283510.1007/s12035‑021‑02299‑9 33511502
    [Google Scholar]
  60. LiuX. ZhangN. DingY. CaoD. HuangY. ChenX. WangR. LuN. Hydrogen sulfide regulates the (Ca2+)i level in the primary medullary neurons.Oxid. Med. Cell. Longev.201620161273534710.1155/2016/2735347 27840667
    [Google Scholar]
  61. AlamS. PardueS. ShenX. GlaweJ.D. YagiT. BhuiyanM.A.N. PatelR.P. DominicP.S. VirkC.S. BhuiyanM.S. OrrA.W. PetitC. KolluruG.K. KevilC.G. Hypoxia increases persulfide and polysulfide formation by AMP kinase dependent cystathionine gamma lyase phosphorylation.Redox Biol.20236810294910.1016/j.redox.2023.102949 37922764
    [Google Scholar]
  62. LinV.S. LippertA.R. ChangC.J. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H 2 O2-dependent H2S production.Proc. Natl. Acad. Sci. USA2013110187131713510.1073/pnas.1302193110 23589874
    [Google Scholar]
  63. GeddoF. QuerioG. AsteggianoA. AntoniottiS. PorcuA. OcchipintiA. MedanaC. GalloM.P. Improving endothelial health with food-derived H2S donors: An in vitro study with S -allyl cysteine and with a black-garlic extract enriched in sulfur-containing compounds.Food Funct.20231494163417210.1039/D3FO00412K 37062967
    [Google Scholar]
  64. FurneJ. SaeedA. LevittM.D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values.Am. J. Physiol. Regul. Integr. Comp. Physiol.20082955R1479R148510.1152/ajpregu.90566.2008 18799635
    [Google Scholar]
  65. ThakoreP. AlvaradoM.G. AliS. MughalA. PiresP.W. YamasakiE. PritchardH.A.T. IsaksonB.E. TranC.H.T. EarleyS. Brain endothelial cell TRPA1 channels initiate neurovascular coupling.eLife202110e6304010.7554/eLife.63040 33635784
    [Google Scholar]
  66. ShangS. ZhuF. LiuB. ChaiZ. WuQ. HuM. WangY. HuangR. ZhangX. WuX. SunL. WangY. WangL. XuH. TengS. LiuB. ZhengL. ZhangC. ZhangF. FengX. ZhuD. WangC. LiuT. ZhuM.X. ZhouZ. Intracellular TRPA1 mediates Ca2+ release from lysosomes in dorsal root ganglion neurons.J. Cell Biol.2016215336938110.1083/jcb.201603081 27799370
    [Google Scholar]
  67. WangY. NiX. ChadhaR. McCartneyC. LamY. BrummettB. RamushG. XianM. Methods for suppressing hydrogen sulfide in biological systems.Antioxid. Redox Signal.2022364-629430810.1089/ars.2021.0088 34162216
    [Google Scholar]
  68. NegriS. FarisP. MocciaF. Reactive oxygen species and endothelial Ca2+ Signaling: Brothers in arms or partners in crime?Int. J. Mol. Sci.20212218982110.3390/ijms22189821 34575985
    [Google Scholar]
  69. NegriS. FarisP. PellavioG. BottaL. OrgiuM. ForcaiaG. SanciniG. LaforenzaU. MocciaF. Group 1 metabotropic glutamate receptors trigger glutamate-induced intracellular Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells.Cell. Mol. Life Sci.202077112235225310.1007/s00018‑019‑03284‑1 31473770
    [Google Scholar]
  70. KimuraH. Hydrogen sulfide (H2S)/Polysulfides (H2Sn) signalling and TRPA1 channels modification on sulfur metabolism.Biomolecules202414112910.3390/biom14010129 38275758
    [Google Scholar]
  71. JiangW. LiuC. DengM. WangF. RenX. FanY. DuJ. WangY.H. 2 S promotes developmental brain angiogenesis via the NOS/NO pathway in zebrafish.Stroke Vasc. Neurol.20216224425110.1136/svn‑2020‑000584 33246971
    [Google Scholar]
  72. MocciaF. NegriS. FarisP. AngeloneT. Targeting endothelial ion signalling to rescue cerebral blood flow in cerebral disorders.Vascul. Pharmacol.202214510699710.1016/j.vph.2022.106997 35526818
    [Google Scholar]
  73. AlvaradoM.G. ThakoreP. EarleyS. Transient receptor potential channel ankyrin 1: A unique regulator of vascular function.Cells2021105116710.3390/cells10051167 34064835
    [Google Scholar]
  74. SanchoM. KlugN.R. MughalA. KoideM. Huerta de la CruzS. HeppnerT.J. BonevA.D. Hill-EubanksD. NelsonM.T. Adenosine signaling activates ATP-sensitive K+ channels in endothelial cells and pericytes in CNS capillaries.Sci. Signal.202215727eabl540510.1126/scisignal.abl5405 35349300
    [Google Scholar]
  75. SullivanM.N. GonzalesA.L. PiresP.W. BruhlA. LeoM.D. LiW. OulidiA. BoopF.A. FengY. JaggarJ.H. WelshD.G. EarleyS. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation.Sci. Signal.20158358ra210.1126/scisignal.2005659 25564678
    [Google Scholar]
  76. ScarpellinoG. GenovaT. MunaronL. Purinergic P2X7 receptor: A cation channel sensitive to tumor microenvironment.Recent Patents Anticancer Drug Discov.2019141323810.2174/1574892814666190116122256 30652649
    [Google Scholar]
  77. LodolaF. LaforenzaU. CattaneoF. RuffinattiF.A. PolettoV. MassaM. TancrediR. ZuccoloE. KhdarD.A. RiccardiA. BiggiogeraM. RostiV. GuerraG. MocciaF. VEGF-induced intracellular Ca2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells.Oncotarget2017856952239524610.18632/oncotarget.20255 29221123
    [Google Scholar]
  78. HolmesA.M. RoderickH.L. McDonaldF. BootmanM.D. Interaction between store-operated and arachidonate-activated calcium entry.Cell Calcium200741111210.1016/j.ceca.2006.04.005 16765441
    [Google Scholar]
  79. MoneerZ. PinoI. TaylorE.J.A. BroadL.M. LiuY. ToveyS.C. StaaliL. TaylorC.W. Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells.Biochem. J.2005389382182910.1042/BJ20050145 15918794
    [Google Scholar]
  80. FresquezA.M. WhiteC. Extracellular cysteines C226 and C232 mediate hydrogen sulfide-dependent inhibition of Orai3-mediated store-operated calcium entry.Am. J. Physiol. Cell Physiol.20223221C38C4810.1152/ajpcell.00490.2019 34788146
    [Google Scholar]
/content/journals/cn/10.2174/011570159X349872250124124612
Loading
/content/journals/cn/10.2174/011570159X349872250124124612
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test