Skip to content
2000
Volume 23, Issue 9
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Aim

The investigation aimed to study the outcome of rosiridin in Parkinson's disease (PD) induced by rotenone (ROT) in rodents.

Methods

Rodents were randomized into IV groups and were induced with ROT followed by treatment with rosiridin. Group I-IV received saline as a vehicle, II-ROT (0.5 mg/kg S.C) for 28 consecutive days, III and IV- rosiridin 10 and 20 mg/kg orally with ROT. On completion of the experimental duration, behavioral investigations were carried out. Biochemical variables such as acetylcholinesterase (AChE), oxidative stress and antioxidants markers (Malondialdehyde-MDA, glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), anti-inflammatory (Interleukin-1 beta-IL-1β, IL-6, and tumor necrosis factor alpha-TNF-α), alteration in neurotransmitters (Serotonin-5-HT), norepinephrine, and dopamine-DA, along with metabolites such as 5-hydroxy indole acetic acid (5-HIAA), mitochondrial complex I, II, IV, and caspase-3 activity were evaluated at the end of the experiment. Furthermore, molecular docking and dynamics were performed for target ligands.

Results

Rosiridin significantly restored the level of AChE, oxidative stress and antioxidants markers (MDA, GSH, SOD, and CAT), anti-inflammatory (IL-1β, IL-6, and TNF-α), alteration in neurotransmitters, mitochondrial complex I, II, IV, and caspase-3 activity. Rosiridin has a favorable negative binding affinity to AChE (-8.99 kcal/mol). The results of the molecular dynamics simulations indicate that proteins undergo a substantial change in conformational dynamics when binding to rosiridin.

Conclusion

In this study, rosiridin may exhibit neuroprotective properties against the Parkinson's model for treating PD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X349553250126050134
2025-02-13
2025-10-14
Loading full text...

Full text loading...

References

  1. OrganizationW.H. Parkinson disease: A public health approach. Technical Brief.World Health Organization2022
    [Google Scholar]
  2. PredigerR.D.S. Effects of caffeine in Parkinson’s disease: From neuroprotection to the management of motor and non-motor symptoms.J. Alzheimers Dis.201020Suppl. 1S205S22010.3233/JAD‑2010‑091459 20182024
    [Google Scholar]
  3. MonzaniE. NicolisS. Dell’AcquaS. CapucciatiA. BacchellaC. ZuccaF.A. MosharovE.V. SulzerD. ZeccaL. CasellaL. Dopamine, oxidative stress and protein–quinone modifications in Parkinson’s and other neurodegenerative diseases.Angew. Chem. Int. Ed.201958206512652710.1002/anie.201811122 30536578
    [Google Scholar]
  4. SteinmetzJ.D. SeeherK.M. SchiessN. NicholsE. CaoB. ServiliC. CavalleraV. CousinE. HaginsH. MobergM.E. MehlmanM.L. AbateY.H. AbbasJ. AbbasiM.A. AbbasianM. AbbastabarH. AbdelmassehM. AbdollahiM. AbdollahiM. AbdollahifarM-A. Abd-RabuR. AbdulahD.M. AbdullahiA. AbediA. AbediV. Abeldańo ZuńigaR.A. AbidiH. AbiodunO. AboagyeR.G. AbolhassaniH. AboyansV. AbrhaW.A. AbualhasanA. Abu-GharbiehE. AburuzS. AdamuL.H. AddoI.Y. AdebayoO.M. AdekanmbiV. AdekiyaT.A. AdikusumaW. AdnaniQ.E.S. AdraS. AfeworkT. AfolabiA.A. AfrazA. AfzalS. AghamiriS. AgodiA. Agyemang-DuahW. AhinkorahB.O. AhmadA. AhmadD. AhmadS. AhmadzadeA.M. AhmedA. AhmedA. AhmedH. AhmedJ.Q. AhmedL.A. AhmedM.B. AhmedS.A. AjamiM. AjiB. AjumobiO. AkadeS.E. AkbariM. AkbarialiabadH. AkhlaghiS. AkinosoglouK. AkinyemiR.O. AkondeM. Al HasanS.M. AlahdabF. AL-Ahdal, T.M.A.; Al-amer, R.M.; Albashtawy, M.; AlBataineh, M.T.; Aldawsari, K.A.; Alemi, H.; Alemi, S.; Algammal, A.M.; Al-Gheethi, A.A.S.; Alhalaiqa, F.A.N.; Alhassan, R.K.; Ali, A.; Ali, E.A.; Ali, L.; Ali, M.U.; Ali, M.M.; Ali, R.; Ali, S.; Ali, S.S.S.; Ali, Z.; Alif, S.M.; Alimohamadi, Y.; Aliyi, A.A.; Aljofan, M.; Aljunid, S.M.; Alladi, S.; Almazan, J.U.; Almustanyir, S.; Al-Omari, B.; Alqahtani, J.S.; Alqasmi, I.; Alqutaibi, A.Y.; Al-Shahi Salman, R.; Altaany, Z.; Al-Tawfiq, J.A.; Altirkawi, K.A.; Alvis-Guzman, N.; Al-Worafi, Y.M.; Aly, H.; Aly, S.; Alzoubi, K.H.; Amani, R.; Amindarolzarbi, A.; Amiri, S.; Amirzade-Iranaq, M.H.; Amu, H.; Amugsi, D.A.; Amusa, G.A.; Amzat, J.; Ancuceanu, R.; Anderlini, D.; Anderson, D.B.; Andrei, C.L.; Androudi, S.; Angappan, D.; Angesom, T.W.; Anil, A.; Ansari-Moghaddam, A.; Anwer, R.; Arafat, M.; Aravkin, A.Y.; Areda, D.; Ariffin, H.; Arifin, H.; Arkew, M.; Ärnlöv, J.; Arooj, M.; Artamonov, A.A.; Artanti, K.D.; Aruleba, R.T.; Asadi-Pooya, A.A.; Asena, T.F.; Asghari-Jafarabadi, M.; Ashraf, M.; Ashraf, T.; Atalell, K.A.; Athari, S.S.; Atinafu, B.T.T.; Atorkey, P.; Atout, M.M.W.; Atreya, A.; Aujayeb, A.; Avan, A.; Ayala Quintanilla, B.P.; Ayatollahi, H.; Ayinde, O.O.; Ayyoubzadeh, S.M.; Azadnajafabad, S.; Azizi, Z.; Azizian, K.; Azzam, A.Y.; Babaei, M.; Badar, M.; Badiye, A.D.; Baghdadi, S.; Bagherieh, S.; Bai, R.; Baig, A.A.; Balakrishnan, S.; Balalla, S.; Baltatu, O.C.; Banach, M.; Bandyopadhyay, S.; Banerjee, I.; Baran, M.F.; Barboza, M.A.; Barchitta, M.; Bardhan, M.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barrow, A.; Bashash, D.; Bashiri, H.; Bashiru, H.A.; Basiru, A.; Basso, J.D.; Basu, S.; Batiha, A-M.M.; Batra, K.; Baune, B.T.; Bedi, N.; Begde, A.; Begum, T.; Behnam, B.; Behnoush, A.H.; Beiranvand, M.; Béjot, Y.; Bekele, A.; Belete, M.A.; Belgaumi, U.I.; Bemanalizadeh, M.; Bender, R.G.; Benfor, B.; Bennett, D.A.; Bensenor, I.M.; Berice, B.; Bettencourt, P.J.G.; Beyene, K.A.; Bhadra, A.; Bhagat, D.S.; Bhangdia, K.; Bhardwaj, N.; Bhardwaj, P.; Bhargava, A.; Bhaskar, S.; Bhat, A.N.; Bhat, V.; Bhatti, G.K.; Bhatti, J.S.; Bhatti, R.; Bijani, A.; Bikbov, B.; Bilalaga, M.M.; Biswas, A.; Bitaraf, S.; Bitra, V.R.; Bjørge, T.; Bodolica, V.; Bodunrin, A.O.; Boloor, A.; Braithwaite, D.; Brayne, C.; Brenner, H.; Briko, A.; Bringas Vega, M.L.; Brown, J.; Budke, C.M.; Buonsenso, D.; Burkart, K.; Burns, R.A.; Bustanji, Y.; Butt, M.H.; Butt, N.S.; Butt, Z.A.; Cabral, L.S.; Caetano dos Santos, F.L.; Calina, D.; Campos-Nonato, I.R.; Cao, C.; Carabin, H.; Cárdenas, R.; Carreras, G.; Carvalho, A.F.; Castańeda-Orjuela, C.A.; Casulli, A.; Catalá-López, F.; Catapano, A.L.; Caye, A.; Cegolon, L.; Cenderadewi, M.; Cerin, E.; Chacón-Uscamaita, P.R.; Chan, J.S.K.; Chanie, G.S.; Charan, J.; Chattu, V.K.; Chekol Abebe, E.; Chen, H.; Chen, J.; Chi, G.; Chichagi, F.; Chidambaram, S.B.; Chimoriya, R.; Ching, P.R.; Chitheer, A.; Chong, Y.Y.; Chopra, H.; Choudhari, S.G.; Chowdhury, E.K.; Chowdhury, R.; Christensen, H.; Chu, D-T.; Chukwu, I.S.; Chung, E.; Coberly, K.; Columbus, A.; Comachio, J.; Conde, J.; Cortesi, P.A.; Costa, V.M.; Couto, R.A.S.; Criqui, M.H.; Cruz-Martins, N.; Dabbagh Ohadi, M.A.; Dadana, S.; Dadras, O.; Dai, X.; Dai, Z.; D’Amico, E.; Danawi, H.A.; Dandona, L.; Dandona, R.; Darwish, A.H.; Das, S.; Das, S.; Dascalu, A.M.; Dash, N.R.; Dashti, M.; De la Hoz, F.P.; de la Torre-Luque, A.; De Leo, D.; Dean, F.E.; Dehghan, A.; Dehghan, A.; Dejene, H.; Demant, D.; Demetriades, A.K.; Demissie, S.; Deng, X.; Desai, H.D.; Devanbu, V.G.C.; Dhama, K.; Dharmaratne, S.D.; Dhimal, M.; Dias da Silva, D.; Diaz, D.; Dibas, M.; Ding, D.D.; Dinu, M.; Dirac, M.A.; Diress, M.; Do, T.C.; Do, T.H.P.; Doan, K.D.K.; Dodangeh, M.; Doheim, M.F.; Dokova, K.G.; Dongarwar, D.; Dsouza, H.L.; Dube, J.; Duraisamy, S.; Durojaiye, O.C.; Dutta, S.; Dziedzic, A.M.; Edinur, H.A.; Eissazade, N.; Ekholuenetale, M.; Ekundayo, T.C.; El Nahas, N.; El Sayed, I.; Elahi Najafi, M.A.; Elbarazi, I.; Elemam, N.M.; Elgar, F.J.; Elgendy, I.Y.; Elhabashy, H.R.; Elhadi, M.; Elilo, L.T.; Ellenbogen, R.G.; Elmeligy, O.A.A.; Elmonem, M.A.; Elshaer, M.; Elsohaby, I.; Emamverdi, M.; Emeto, T.I.; Endres, M.; Esezobor, C.I.; Eskandarieh, S.; Fadaei, A.; Fagbamigbe, A.F.; Fahim, A.; Faramarzi, A.; Fares, J.; Farjoud Kouhanjani, M.; Faro, A.; Farzadfar, F.; Fatehizadeh, A.; Fathi, M.; Fathi, S.; Fatima, S.A.F.; Feizkhah, A.; Fereshtehnejad, S-M.; Ferrari, A.J.; Ferreira, N.; Fetensa, G.; Firouraghi, N.; Fischer, F.; Fonseca, A.C.; Force, L.M.; Fornari, A.; Foroutan, B.; Fukumoto, T.; Gadanya, M.A.; Gaidhane, A.M.; Galali, Y.; Galehdar, N.; Gan, Q.; Gandhi, A.P.; Ganesan, B.; Gardner, W.M.; Garg, N.; Gau, S-Y.; Gautam, R.K.; Gebre, T.; Gebrehiwot, M.; Gebremeskel, G.G.; Gebreslassie, H.G.; Getacher, L.; Ghaderi Yazdi, B.; Ghadirian, F.; Ghaffarpasand, F.; Ghanbari, R.; Ghasemi, M.R.; Ghazy, R.M.; Ghimire, S.; Gholami, A.; Gholamrezanezhad, A.; Ghotbi, E.; Ghozy, S.; Gialluisi, A.; Gill, P.S.; Glasstetter, L.M.; Gnedovskaya, E.V.; Golchin, A.; Golechha, M.; Goleij, P.; Golinelli, D.; Gomes-Neto, M.; Goulart, A.C.; Goyal, A.; Gray, R.J.; Grivna, M.; Guadie, H.A.; Guan, B.; Guarducci, G.; Guicciardi, S.; Gunawardane, D.A.; Guo, H.; Gupta, B.; Gupta, R.; Gupta, S.; Gupta, V.B.; Gupta, V.K.; Gutiérrez, R.A.; Habibzadeh, F.; Hachinski, V.; Haddadi, R.; Hadei, M.; Hadi, N.R.; Haep, N.; Haile, T.G.; Haj-Mirzaian, A.; Hall, B.J.; Halwani, R.; Hameed, S.; Hamiduzzaman, M.; Hammoud, A.; Han, H.; Hanifi, N.; Hankey, G.J.; Hannan, M.A.; Hao, J.; Harapan, H.; Hareru, H.E.; Hargono, A.; Harlianto, N.I.; Haro, J.M.; Hartman, N.N.; Hasaballah, A.I.; Hasan, F.; Hasani, H.; Hasanian, M.; Hassan, A.; Hassan, S.; Hassanipour, S.; Hassankhani, H.; Hassen, M.B.; Haubold, J.; Hay, S.I.; Hayat, K.; Hegazy, M.I.; Heidari, G.; Heidari, M.; Heidari-Soureshjani, R.; Hesami, H.; Hezam, K.; Hiraike, Y.; Hoffman, H.J.; Holla, R.; Hopf, K.P.; Horita, N.; Hossain, M.M.; Hossain, M.B.; Hossain, S.; Hosseinzadeh, H.; Hosseinzadeh, M.; Hostiuc, S.; Hu, C.; Huang, J.; Huda, M.N.; Hussain, J.; Hussein, N.R.; Huynh, H-H.; Hwang, B-F.; Ibitoye, S.E.; Ilaghi, M.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Immurana, M.; Iravanpour, F.; Islam, S.M.S.; Ismail, F.; Iso, H.; Isola, G.; Iwagami, M.; Iwu, C.C.D.; Iyer, M.; Jaan, A.; Jacob, L.; Jadidi-Niaragh, F.; Jafari, M.; Jafarinia, M.; Jafarzadeh, A.; Jahankhani, K.; Jahanmehr, N.; Jahrami, H.; Jaiswal, A.; Jakovljevic, M.; Jamora, R.D.G.; Jana, S.; Javadi, N.; Javed, S.; Javeed, S.; Jayapal, S.K.; Jayaram, S.; Jiang, H.; Johnson, C.O.; Johnson, W.D.; Jokar, M.; Jonas, J.B.; Joseph, A.; Joseph, N.; Joshua, C.E.; Jürisson, M.; Kabir, A.; Kabir, Z.; Kabito, G.G.; Kadashetti, V.; Kafi, F.; Kalani, R.; Kalantar, F.; Kaliyadan, F.; Kamath, A.; Kamath, S.; Kanchan, T.; Kandel, A.; Kandel, H.; Kanmodi, K.K.; Karajizadeh, M.; Karami, J.; Karanth, S.D.; Karaye, I.M.; Karch, A.; Karimi, A.; Karimi, H.; Karimi Behnagh, A.; Kasraei, H.; Kassebaum, N.J.; Kauppila, J.H.; Kaur, H.; Kaur, N.; Kayode, G.A.; Kazemi, F.; Keikavoosi-Arani, L.; Keller, C.; Keykhaei, M.; Khadembashiri, M.A.; Khader, Y.S.; Khafaie, M.A.; Khajuria, H.; Khalaji, A.; Khamesipour, F.; Khammarnia, M.; Khan, M.; Khan, M.A.B.; Khan, Y.H.; Khan Suheb, M.Z.; Khanmohammadi, S.; Khanna, T.; Khatab, K.; Khatatbeh, H.; Khatatbeh, M.M.; Khateri, S.; Khatib, M.N.; Khayat Kashani, H.R.; Khonji, M.S.; khorashadizadeh, F.; Khormali, M.; Khubchandani, J.; Kian, S.; Kim, G.; Kim, J.; Kim, M.S.; Kim, Y.J.; Kimokoti, R.W.; Kisa, A.; Kisa, S.; Kivimäki, M.; Kochhar, S.; Kolahi, A-A.; Koly, K.N.; Kompani, F.; Koroshetz, W.J.; Kosen, S.; Kourosh Arami, M.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kuddus, M.A.; Kumar, A.; Kumar, G.A.; Kumar, M.; Kumar, N.; Kumsa, N.B.; Kundu, S.; Kurniasari, M.D.; Kusuma, D.; Kuttikkattu, A.; Kyu, H.H.; La Vecchia, C.; Ladan, M.A.; Lahariya, C.; Laksono, T.; Lal, D.K.; Lallukka, T.; Lám, J.; Lami, F.H.; Landires, I.; Langguth, B.; Lasrado, S.; Latief, K.; Latifinaibin, K.; Lau, K.M-M.; Laurens, M.B.; Lawal, B.K.; Le, L.K.D.; Le, T.T.T.; Ledda, C.; Lee, M.; Lee, S.; Lee, S.W.; Lee, W-C.; Lee, Y.H.; Leonardi, M.; Lerango, T.L.; Li, M-C.; Li, W.; Ligade, V.S.; Lim, S.S.; Linehan, C.; Liu, C.; Liu, J.; Liu, W.; Lo, C-H.; Lo, W.D.; Lobo, S.W.; Logroscino, G.; Lopes, G.; Lopukhov, P.D.; Lorenzovici, L.; Lorkowski, S.; Loureiro, J.A.; Lubinda, J.; Lucchetti, G.; Lutzky Saute, R.; Ma, Z.F.; Mabrok, M.; Machoy, M.; Madadizadeh, F.; Magdy Abd El Razek, M.; Maghazachi, A.A.; Maghbouli, N.; Mahjoub, S.; Mahmoudi, M.; Majeed, A.; Malagón-Rojas, J.N.; Malakan Rad, E.; Malhotra, K.; Malik, A.A.; Malik, I.; Mallhi, T.H.; Malta, D.C.; Manilal, A.; Mansouri, V.; Mansournia, M.A.; Marasini, B.P.; Marateb, H.R.; Maroufi, S.F.; Martinez-Raga, J.; Martini, S.; Martins-Melo, F.R.; Martorell, M.; März, W.; Marzo, R.R.; Massano, J.; Mathangasinghe, Y.; Mathews, E.; Maude, R.J.; Maugeri, A.; Maulik, P.K.; Mayeli, M.; Mazaheri, M.; McAlinden, C.; McGrath, J.J.; Meena, J.K.; Mehndiratta, M.M.; Mendez-Lopez, M.A.M.; Mendoza, W.; Mendoza-Cano, O.; Menezes, R.G.; Merati, M.; Meretoja, A.; Merkin, A.; Mersha, A.M.; Mestrovic, T.; Mi, T.; Miazgowski, T.; Michalek, I.M.; Mihretie, E.T.; Minh, L.H.N.; Mirfakhraie, R.; Mirica, A.; Mirrakhimov, E.M.; Mirzaei, M.; Misganaw, A.; Misra, S.; Mithra, P.; Mizana, B.A.; Mohamadkhani, A.; Mohamed, N.S.; Mohammadi, E.; Mohammadi, H.; Mohammadi, S.; Mohammadi, S.; Mohammadshahi, M.; Mohammed, M.; Mohammed, S.; Mohammed, S.; Mohan, S.; Mojiri-forushani, H.; Moka, N.; Mokdad, A.H.; Molinaro, S.; Möller, H.; Monasta, L.; Moniruzzaman, M.; Montazeri, F.; Moradi, M.; Moradi, Y.; Moradi-Lakeh, M.; Moraga, P.; Morovatdar, N.; Morrison, S.D.; Mosapour, A.; Mosser, J.F.; Mossialos, E.; Motaghinejad, M.; Mousavi, P.; Mousavi, S.E.; Mubarik, S.; Muccioli, L.; Mughal, F.; Mukoro, G.D.; Mulita, A.; Mulita, F.; Musaigwa, F.; Mustafa, A.; Mustafa, G.; Muthu, S.; Nagarajan, A.J.; Naghavi, P.; Naik, G.R.; Nainu, F.; Nair, T.S.; Najmuldeen, H.H.R.; Nakhostin Ansari, N.; Nambi, G.; Namdar Areshtanab, H.; Nargus, S.; Nascimento, B.R.; Naser, A.Y.; Nashwan, A.J.J.; Nasoori, H.; Nasreldein, A.; Natto, Z.S.; Nauman, J.; Nayak, B.P.; Nazri-Panjaki, A.; Negaresh, M.; Negash, H.; Negoi, I.; Negoi, R.I.; Negru, S.M.; Nejadghaderi, S.A.; Nematollahi, M.H.; Nesbit, O.D.; Newton, C.R.J.; Nguyen, D.H.; Nguyen, H.T.H.; Nguyen, H.Q.; Nguyen, N-T.T.; Nguyen, P.T.; Nguyen, V.T.; Niazi, R.K.; Nikolouzakis, T.K.; Niranjan, V.; Nnyanzi, L.A.; Noman, E.A.; Noroozi, N.; Norrving, B.; Noubiap, J.J.; Nri-Ezedi, C.A.; Ntaios, G.; Nuńez-Samudio, V.; Nurrika, D.; Oancea, B.; Odetokun, I.A.; O’Donnell, M.J.; Ogunsakin, R.E.; Oguta, J.O.; Oh, I-H.; Okati-Aliabad, H.; Okeke, S.R.; Okekunle, A.P.; Okonji, O.C.; Okwute, P.G.; Olagunju, A.T.; Olaiya, M.T.; Olana, M.D.; Olatubi, M.I.; Oliveira, G.M.M.; Olufadewa, I.I.; Olusanya, B.O.; Omar Bali, A.; Ong, S.; Onwujekwe, O.E.; Ordak, M.; Orji, A.U.; Ortega-Altamirano, D.V.; Osuagwu, U.L.; Otstavnov, N.; Otstavnov, S.S.; Ouyahia, A.; Owolabi, M.O.; P A, M.P.; Pacheco-Barrios, K.; Padubidri, J.R.; Pal, P.K.; Palange, P.N.; Palladino, C.; Palladino, R.; Palma-Alvarez, R.F.; Pan, F.; Panagiotakos, D.; Panda-Jonas, S.; Pandey, A.; Pandey, A.; Pandian, J.D.; Pangaribuan, H.U.; Pantazopoulos, I.; Pardhan, S.; Parija, P.P.; Parikh, R.R.; Park, S.; Parthasarathi, A.; Pashaei, A.; Patel, J.; Patil, S.; Patoulias, D.; Pawar, S.; Pedersini, P.; Pensato, U.; Pereira, D.M.; Pereira, J.; Pereira, M.O.; Peres, M.F.P.; Perico, N.; Perna, S.; Petcu, I-R.; Petermann-Rocha, F.E.; Pham, H.T.; Phillips, M.R.; Pinilla-Monsalve, G.D.; Piradov, M.A.; Plotnikov, E.; Poddighe, D.; Polat, B.; Poluru, R.; Pond, C.D.; Poudel, G.R.; Pouramini, A.; Pourbagher-Shahri, A.M.; Pourfridoni, M.; Pourtaheri, N.; Prakash, P.Y.; Prakash, S.; Prakash, V.; Prates, E.J.S.; Pritchett, N.; Purnobasuki, H.; Qasim, N.H.; Qattea, I.; Qian, G.; Radhakrishnan, V.; Raee, P.; Raeisi Shahraki, H.; Rafique, I.; Raggi, A.; Raghav, P.R.; Rahati, M.M.; Rahim, F.; Rahimi, Z.; Rahimifard, M.; Rahman, M.O.; Rahman, M.H.U.; Rahman, M.; Rahman, M.A.; Rahmani, A.M.; Rahmani, S.; Rahmani Youshanlouei, H.; Rahmati, M.; Raj Moolambally, S.; Rajabpour-Sanati, A.; Ramadan, H.; Ramasamy, S.K.; Ramasubramani, P.; Ramazanu, S.; Rancic, N.; Rao, I.R.; Rao, S.J.; Rapaka, D.; Rashedi, V.; Rashid, A.M.; Rashidi, M-M.; Rashidi Alavijeh, M.; Rasouli-Saravani, A.; Rawaf, S.; Razo, C.; Redwan, E.M.M.; Rekabi Bana, A.; Remuzzi, G.; Rezaei, N.; Rezaei, N.; Rezaei, N.; Rezaeian, M.; Rhee, T.G.; Riad, A.; Robinson, S.R.; Rodrigues, M.; Rodriguez, J.A.B.; Roever, L.; Rogowski, E.L.B.; Romoli, M.; Ronfani, L.; Roy, P.; Roy Pramanik, K.; Rubagotti, E.; Ruiz, M.A.; Russ, T.C.; S Sunnerhagen, K.; Saad, A.M.A.; Saadatian, Z.; Saber, K.; SaberiKamarposhti, M.; Sacco, S.; Saddik, B.; Sadeghi, E.; Sadeghian, S.; Saeed, U.; Saeed, U.; Safdarian, M.; Safi, S.Z.; Sagar, R.; Sagoe, D.; Saheb Sharif-Askari, F.; Saheb Sharif-Askari, N.; Sahebkar, A.; Sahoo, S.S.; Sahraian, M.A.; Sajedi, S.A.; Sakshaug, J.W.; Saleh, M.A.; Salehi Omran, H.; Salem, M.R.; Salimi, S.; Samadi Kafil, H.; Samadzadeh, S.; Samargandy, S.; Samodra, Y.L.; Samuel, V.P.; Samy, A.M.; Sanadgol, N.; Sanjeev, R.K.; Sanmarchi, F.; Santomauro, D.F.; Santri, I.N.; Santric-Milicevic, M.M.; Saravanan, A.; Sarveazad, A.; Satpathy, M.; Saylan, M.; Sayyah, M.; Scarmeas, N.; Schlaich, M.P.; Schuermans, A.; Schwarzinger, M.; Schwebel, D.C.; Selvaraj, S.; Sendekie, A.K.; Sengupta, P.; Senthilkumaran, S.; Serban, D.; Sergindo, M.T.; Sethi, Y.; SeyedAlinaghi, S.A.; Seylani, A.; Shabani, M.; Shabany, M.; Shafie, M.; Shahabi, S.; Shahbandi, A.; Shahid, S.; Shahraki-Sanavi, F.; Shahsavari, H.R.; Shahwan, M.J.; Shaikh, M.A.; Shaji, K.S.; Sham, S.; Shama, A.T.T.; Shamim, M.A.; Shams-Beyranvand, M.; Shamsi, M.A.; Shanawaz, M.; Sharath, M.; Sharfaei, S.; Sharifan, A.; Sharma, M.; Sharma, R.; Shashamo, B.B.; Shayan, M.; Sheikhi, R.A.; Shekhar, S.; Shen, J.; Shenoy, S.M.; Shetty, P.H.; Shiferaw, D.S.; Shigematsu, M.; Shiri, R.; Shittu, A.; Shivakumar, K.M.; Shokri, F.; Shool, S.; Shorofi, S.A.; Shrestha, S.; Siankam Tankwanchi, A.B.; Siddig, E.E.; Sigfusdottir, I.D.; Silva, J.P.; Silva, L.M.L.R.; Sinaei, E.; Singh, B.B.; Singh, G.; Singh, P.; Singh, S.; Sirota, S.B.; Sivakumar, S.; Sohag, A.A.M.; Solanki, R.; Soleimani, H.; Solikhah, S.; Solomon, Y.; Solomon, Y.; Song, S.; Song, Y.; Sotoudeh, H.; Spartalis, M.; Stark, B.A.; Starnes, J.R.; Starodubova, A.V.; Stein, D.J.; Steiner, T.J.; Stovner, L.J.; Suleman, M.; Suliankatchi Abdulkader, R.; Sultana, A.; Sun, J.; Sunkersing, D.; Sunny, A.; Susianti, H.; Swain, C.K.; Szeto, M.D.; Tabarés-Seisdedos, R.; Tabatabaei, S.M.; Tabatabai, S.; Tabish, M.; Taheri, M.; Tahvildari, A.; Tajbakhsh, A.; Tampa, M.; Tamuzi, J.J.L.L.; Tan, K-K.; Tang, H.; Tareke, M.; Tarigan, I.U.; Tat, N.Y.; Tat, V.Y.; Tavakoli Oliaee, R.; Tavangar, S.M.; Tavasol, A.; Tefera, Y.M.; Tehrani-Banihashemi, A.; Temesgen, W.A.; Temsah, M-H.; Teramoto, M.; Tesfaye, A.H.; Tesfaye, E.G.; Tesler, R.; Thakali, O.; Thangaraju, P.; Thapa, R.; Thapar, R.; Thomas, N.K.; Thrift, A.G.; Ticoalu, J.H.V.; Tillawi, T.; Toghroli, R.; Tonelli, M.; Tovani-Palone, M.R.; Traini, E.; Tran, N.M.; Tran, N-H.; Tran, P.V.; Tromans, S.J.; Truelsen, T.C.; Truyen, T.T.T.T.; Tsatsakis, A.; Tsegay, G.M.; Tsermpini, E.E.; Tualeka, A.R.; Tufa, D.G.; Ubah, C.S.; Udoakang, A.J.; Ulhaq, I.; Umair, M.; Umakanthan, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Vaithinathan, A.G.; Vakilian, A.; Valadan Tahbaz, S.; Valizadeh, R.; Van den Eynde, J.; Vart, P.; Varthya, S.B.; Vasankari, T.J.; Vaziri, S.; Vellingiri, B.; Venketasubramanian, N.; Verras, G-I.; Vervoort, D.; Villafańe, J.H.; Villani, L.; Vinueza Veloz, A.F.; Viskadourou, M.; Vladimirov, S.K.; Vlassov, V.; Volovat, S.R.; Vu, L.T.; Vujcic, I.S.; Wagaye, B.; Waheed, Y.; Wahood, W.; Walde, M.T.; Wang, F.; Wang, S.; Wang, Y.; Wang, Y-P.; Waqas, M.; Waris, A.; Weerakoon, K.G.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Whisnant, J.L.; Wickramasinghe, D.P.; Wickramasinghe, N.D.; Willekens, B.; Wilner, L.B.; Winkler, A.S.; Wolfe, C.D.A.; Wu, A-M.; Wulf Hanson, S.; Xu, S.; Xu, X.; Yadollahpour, A.; Yaghoubi, S.; Yahya, G.; Yamagishi, K.; Yang, L.; Yano, Y.; Yao, Y.; Yehualashet, S.S.; Yeshaneh, A.; Yesiltepe, M.; Yi, S.; Yiğit, A.; Yiğit, V.; Yon, D.K.; Yonemoto, N.; You, Y.; Younis, M.Z.; Yu, C.; Yusuf, H.; Zadey, S.; Zahedi, M.; Zakham, F.; Zaki, N.; Zali, A.; Zamagni, G.; Zand, R.; Zandieh, G.G.Z.; Zangiabadian, M.; Zarghami, A.; Zastrozhin, M.S.; Zeariya, M.G.M.; Zegeye, Z.B.; Zeukeng, F.; Zhai, C.; Zhang, C.; Zhang, H.; Zhang, Y.; Zhang, Z-J.; Zhao, H.; Zhao, Y.; Zheng, P.; Zhou, H.; Zhu, B.; Zhumagaliuly, A.; Zielińska, M.; Zikarg, Y.T.; Zoladl, M.; Murray, C.J.L.; Ong, K.L.; Feigin, V.L.; Vos, T.; Dua, T. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021.Lancet Neurol.202423434438110.1016/S1474‑4422(24)00038‑3 38493795
    [Google Scholar]
  5. ZafarS. YaddanapudiS.S. Parkinson disease. StatPearls.StatPearls Publishing2025
    [Google Scholar]
  6. MarinoB.L.B. de SouzaL.R. SousaK.P.A. FerreiraJ.V. PadilhaE.C. da SilvaC.H.T.P. TaftC.A. Hage-MelimL.I.S. Parkinson’s disease: A review from pathophysiology to treatment.Mini Rev. Med. Chem.202020975476710.2174/1389557519666191104110908 31686637
    [Google Scholar]
  7. LeeT.K. YankeeE.L. A review on Parkinson’s disease treatment.Neuroimmunol. Neuroinflamm.2022822224410.20517/2347‑8659.2020.58
    [Google Scholar]
  8. JavedH. MeeranM.F.N. AzimullahS. Bader EddinL. DwivediV.D. JhaN.K. OjhaS. α-Bisabolol, a dietary bioactive phytochemical attenuates dopaminergic neurodegeneration through modulation of oxidative stress, neuroinflammation and apoptosis in rotenone-induced rat model of Parkinson’s disease.Biomolecules20201010142110.3390/biom10101421 33049992
    [Google Scholar]
  9. Nolfi-DoneganD. BraganzaA. ShivaS. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement.Redox Biol.20203710167410.1016/j.redox.2020.101674 32811789
    [Google Scholar]
  10. YamamoriT. YasuiH. YamazumiM. WadaY. NakamuraY. NakamuraH. InanamiO. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.Free Radic. Biol. Med.201253226027010.1016/j.freeradbiomed.2012.04.033 22580337
    [Google Scholar]
  11. ChanC.S. GertlerT.S. SurmeierD.J. A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson’s disease.Mov. Disord.201025Suppl. 1S63S7010.1002/mds.22801 20187241
    [Google Scholar]
  12. TestaC.M. ShererT.B. GreenamyreJ.T. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures.Brain Res. Mol. Brain Res.2005134110911810.1016/j.molbrainres.2004.11.007 15790535
    [Google Scholar]
  13. JohnsonM.E. BobrovskayaL. An update on the rotenone models of Parkinson’s disease: Their ability to reproduce the features of clinical disease and model gene–environment interactions.Neurotoxicology20154610111610.1016/j.neuro.2014.12.002 25514659
    [Google Scholar]
  14. RadadK. Al-ShraimM. Al-EmamA. WangF. KrannerB. RauschW.D. MoldzioR. Rotenone: from modelling to implication in Parkinson’s disease.Folia Neuropathol.201957431732610.5114/fn.2019.89857 32337944
    [Google Scholar]
  15. DutyS. JennerP. Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease.Br. J. Pharmacol.201116441357139110.1111/j.1476‑5381.2011.01426.x 21486284
    [Google Scholar]
  16. ElfawyH.A. DasB. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies.Life Sci.201921816518410.1016/j.lfs.2018.12.029 30578866
    [Google Scholar]
  17. JayarajR.L. BeiramR. AzimullahS. M F, N.M.; Ojha, S.K.; Adem, A.; Jalal, F.Y. Noscapine prevents rotenone-induced neurotoxicity: involvement of oxidative stress, neuroinflammation and autophagy pathways.Molecules20212615462710.3390/molecules26154627 34361780
    [Google Scholar]
  18. ShaoX. XieY. ZhangY. LiuJ. DingY. WuM. WangX. DengX. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection.Expert Opin. Drug Discov.202015121403142310.1080/17460441.2020.1803274 32880507
    [Google Scholar]
  19. LiJ. ZhengM. ShimoniO. BanksW.A. BushA.I. GambleJ.R. ShiB. Development of novel therapeutics targeting the blood–brain barrier: From barrier to carrier.Adv. Sci.2021816210109010.1002/advs.202101090 34085418
    [Google Scholar]
  20. RafieH.D. HamidpourS. HamidpourM.R. ShahlariM.M. SohrabyM.M. ShahlariM.N. Rhodiola rosea from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases.Glob. J. Med. Res.2015153
    [Google Scholar]
  21. JagtapP.N. MhetreO.S. MalavdkarP.R. A review article on rhodiola rosea: An adaptogen having multiple benefits.Int. J. Pharmacogn.202076269
    [Google Scholar]
  22. AfzalM. AlzareaS.I. AlharbiK.S. AlzareaA.I. AleneziS.K. AlshammariM.S. AlqurainiA.H. KazmiI. Rosiridin attenuates scopolamine-induced cognitive impairments in rats via inhibition of oxidative and nitrative stress leaded caspase-3/9 and TNF-α signaling pathways.Molecules20222718588810.3390/molecules27185888 36144623
    [Google Scholar]
  23. PuW. ZhangM. BaiR. SunL. LiW. YuY. ZhangY. SongL. WangZ. PengY. ShiH. ZhouK. LiT. Anti-inflammatory effects of Rhodiola rosea L.: A review.Biomed. Pharmacother.202012110955210.1016/j.biopha.2019.109552 31715370
    [Google Scholar]
  24. MorganL.A. GrundmannO. Preclinical and potential applications of common western herbal supplements as complementary treatment in Parkinson’s disease.J. Diet. Suppl.201714445346610.1080/19390211.2016.1263710 28095073
    [Google Scholar]
  25. AfzalM. SayyedN. AlharbiK.S. AlzareaS.I. AlshammariM.S. AlomarF.A. AleneziS.K. QuaziA.M. AlzareaA.I. KazmiI. Anti-huntington’s effect of rosiridin via oxidative stress/ache inhibition and modulation of succinate dehydrogenase, nitrite, and bdnf levels against 3-nitropropionic acid in rodents.Biomolecules2022128102310.3390/biom12081023 35892333
    [Google Scholar]
  26. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  27. AlharbiK.S. AfzalM. AlzareaS.I. KhanS.A. AlomarF.A. KazmiI. Rosinidin protects streptozotocin-induced memory impairment-activated neurotoxicity by suppressing oxidative stress and inflammatory mediators in rats.Medicina202258899310.3390/medicina58080993 35893108
    [Google Scholar]
  28. BalakrishnanR. TamilselvamK. SulthanaA. MohankumarT. ManimaranD. ElangovanN. Isolongifolene attenuates oxidative stress and behavioral impairment in rotenone-induced rat model of Parkinson’s disease.Int. J. Nutr. Pharmacol. Neurol. Dis.201813745438
    [Google Scholar]
  29. FanY. HanJ. ZhaoL. WuC. WuP. HuangZ. Experimental models of cognitive impairment for use in Parkinson’s disease research: The distance between reality and ideal.Front. Aging Neurosci.2021833
    [Google Scholar]
  30. KuniishiH. IchisakaS. YamamotoM. IkuboN. MatsudaS. FutoraE. HaradaR. IshiharaK. HataY. Early deprivation increases high-leaning behavior, a novel anxiety-like behavior, in the open field test in rats.Neurosci. Res.2017123273510.1016/j.neures.2017.04.012 28450152
    [Google Scholar]
  31. SunC. WangY. MoM. SongC. WangX. ChenS. LiuY. Minocycline protects against rotenone-induced neurotoxicity correlating with upregulation of Nurr1 in a Parkinson’s disease rat model.BioMed Res. Int.201920191684326510.1155/2019/6843265
    [Google Scholar]
  32. TyagiE. AgrawalR. NathC. ShuklaR. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain.Eur. J. Pharmacol.20106401-320621010.1016/j.ejphar.2010.04.041 20450904
    [Google Scholar]
  33. EllmanG.L. CourtneyK.D. AndresV.Jr FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  34. GilaniS.J. Bin-JumahM.N. Al-AbbasiF.A. NadeemM.S. ImamS.S. AlshehriS. AhmedM.M. GhoneimM.M. AfzalM. AlzareaS.I. SayyedN. KazmiI. Protective effect of fustin against ethanol-activated gastric ulcer via downregulation of biochemical parameters in rats.ACS Omega2022727232452325410.1021/acsomega.2c01341 35847266
    [Google Scholar]
  35. Bin-JumahM.N. GilaniS.J. AlabbasiA.F. Al-AbbasiF.A. AlGhamdiS.A. AlshehriO.Y. AlghamdiA.M. SayyedN. KazmiI. Protective effect of fustin against huntington’s disease in 3-nitropropionic treated rats via downregulation of oxidative stress and alteration in neurotransmitters and brain-derived neurotrophic factor activity.Biomedicines20221012302110.3390/biomedicines10123021 36551777
    [Google Scholar]
  36. GarabaduD. ShahA. AhmadA. JoshiV.B. SaxenaB. PalitG. KrishnamurthyS. Eugenol as an anti-stress agent: Modulation of hypothalamic–pituitary–adrenal axis and brain monoaminergic systems in a rat model of stress.Stress201114214515510.3109/10253890.2010.521602 21034296
    [Google Scholar]
  37. KumarN. SharmaN. KheraR. GuptaR. MehanS. Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain.Metab. Brain Dis.202136591192510.1007/s11011‑021‑00691‑x 33635478
    [Google Scholar]
  38. BozorgiF. MirabiA. GhaffariA. RasouliL. JafarpourH. MontazerS.H. Epidemiological characteristics of patients presenting with poisoning at Imam Khomeini Hospital of Sari in 2018.Tabari Biomed. Stud. Res. J.2019132125
    [Google Scholar]
  39. AlzareaS.I. AfzalM. AlharbiK.S. AlzareaA.I. AleneziS.K. AlshammariM.S. AlqurainiA. KazmiI. Hibiscetin attenuates oxidative, nitrative stress and neuroinflammation via suppression of TNF-α signaling in rotenone induced parkinsonism in rats.Saudi Pharm. J.202230121710171710.1016/j.jsps.2022.09.016 36601498
    [Google Scholar]
  40. GarabaduD. AgrawalN. SharmaA. SharmaS. Mitochondrial metabolism: A common link between neuroinflammation and neurodegeneration.Behav. Pharmacol.201930864165110.1097/FBP.0000000000000505 31625975
    [Google Scholar]
  41. SinghS. KumarR. GargG. SinghA.K. VermaA.K. BissoyiA. RizviS.I. Spermidine, a caloric restriction mimetic, provides neuroprotection against normal and d-galactose-induced oxidative stress and apoptosis through activation of autophagy in male rats during aging.Biogerontology2021221354710.1007/s10522‑020‑09900‑z 32979155
    [Google Scholar]
  42. DeyM. SinghR.K. Chronic oral exposure of aluminum chloride in rat modulates molecular and functional neurotoxic markers relevant to Alzheimer’s disease.Toxicol. Mech. Methods202232861662710.1080/15376516.2022.2058898 35341471
    [Google Scholar]
  43. SarojP. BansalY. SinghR. AkhtarA. SodhiR.K. BishnoiM. SahS.P. KuhadA. Neuroprotective effects of roflumilast against quinolinic acid-induced rat model of Huntington’s disease through inhibition of NF-κB mediated neuroinflammatory markers and activation of cAMP/CREB/BDNF signaling pathway.Inflammopharmacology202129249951110.1007/s10787‑020‑00787‑3 33517508
    [Google Scholar]
  44. OldS.L. JohnsonM.A. Methods of microphotometric assay of succinate dehydrogenase and cytochromec oxidase activities for use on human skeletal muscle.Histochem. J.1989219-1054555510.1007/BF01753355 2556354
    [Google Scholar]
  45. GarabaduD. AgrawalN. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents.Neuromolecular Med.202022231433010.1007/s12017‑019‑08590‑2 31916219
    [Google Scholar]
  46. Scalable algorithms for molecular dynamics simulations on commodity clusters. Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.Gregersen, B.A., Eds.; Proceedings of the 2006 ACM/IEEE Conference on SupercomputingTampa, FL, USA, 11-17 November2006434310.1109/SC.2006.54
    [Google Scholar]
  47. ChowE. RendlemanC.A. BowersK.J. DrorR.O. HughesD.H. GullingsrudJ. Desmond performance on a cluster of] multicore processors.2008Available from: https://www.deshawresearch.com/publications/Desmond_Performance_Cluster.pdf
  48. ShivakumarD. WilliamsJ. WuY. DammW. ShelleyJ. ShermanW. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field.J. Chem. Theory Comput.2010651509151910.1021/ct900587b 26615687
    [Google Scholar]
  49. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  50. MartynaG.J. TobiasD.J. KleinM.L. Constant pressure molecular dynamics algorithms.J. Chem. Phys.199410154177418910.1063/1.467468
    [Google Scholar]
  51. GilaniS.J. Bin-JumahM.N. Al-AbbasiF.A. NadeemM.S. ImamS.S. AlshehriS. GhoneimM.M. AfzalM. AlzareaS.I. SayyedN. KazmiI. Rosinidin flavonoid ameliorates hyperglycemia, lipid pathways and proinflammatory cytokines in streptozotocin-induced diabetic rats.Pharmaceutics202214354710.3390/pharmaceutics14030547 35335923
    [Google Scholar]
  52. CarradoriS. D’AscenzioM. ChimentiP. SecciD. BolascoA. Selective MAO-B inhibitors: A lesson from natural products.Mol. Divers.201418121924310.1007/s11030‑013‑9490‑6 24218136
    [Google Scholar]
  53. NatarajanS. ShunmugiahK.P. KasiP.D. Plants traditionally used in age-related brain disorders (dementia): An ethanopharmacological survey.Pharm. Biol.201351449252310.3109/13880209.2012.738423 23336528
    [Google Scholar]
  54. AlqurashiM. Al-AbbasiF. ZeyadiM. BawadoodA. AfzalM. SheikhR. Hibiscetin mitigates cisplatin-evoked renal toxicity through the modulation of activated caspase-3/COX-2/iNOS/p53.J. Biol. Regul. Homeost. Agents202438212631277
    [Google Scholar]
  55. LiuY. Zebrafish as a model organism for studying pathologic mechanisms of neurodegenerative diseases and other neural disorders.Cell. Mol. Neurobiol.20234362603262010.1007/s10571‑023‑01340‑w 37004595
    [Google Scholar]
  56. HaeberleH.S. HelmJ.M. NavarroS.M. KarnutaJ.M. SchafferJ.L. CallaghanJ.J. MontM.A. KamathA.F. KrebsV.E. RamkumarP.N. Artificial intelligence and machine learning in lower extremity arthroplasty: A review.J. Arthroplasty201934102201220310.1016/j.arth.2019.05.055 31253449
    [Google Scholar]
  57. ZhangL. QiaoC. WangM. TangJ-J. WangL-X. YuJ. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease.Neural Regen. Res.20211671353135810.4103/1673‑5374.301026 33318417
    [Google Scholar]
  58. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  59. Di RosaG. BrunettiG. ScutoM. Trovato SalinaroA. CalabreseE.J. CreaR. Schmitz-LinneweberC. CalabreseV. SaulN. Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models.Int. J. Mol. Sci.20202111389310.3390/ijms21113893 32486023
    [Google Scholar]
  60. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. Giuffrida StellaA.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn2214 17882254
    [Google Scholar]
  61. JosiahS.S. FamusiwaC.D. CrownO.O. LawalA.O. OlaleyeM.T. AkindahunsiA.A. AkinmoladunA.C. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of] IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats.Neurotoxicology20229015817110.1016/j.neuro.2022.03.004 35337893
    [Google Scholar]
  62. TsengH.C. WangM.H. ChangK.C. SoungH.S. FangC.H. LinY.W. LiK.Y. YangC.C. TsaiC.C. Protective effect of (−) epigallocatechin-3-gallate on rotenone-induced parkinsonism-like symptoms in rats.Neurotox. Res.202037366968210.1007/s12640‑019‑00143‑6 31811588
    [Google Scholar]
  63. MurrayK.N. GirardS. HolmesW.M. ParkesL.M. WilliamsS.R. Parry-JonesA.R. AllanS.M. Systemic inflammation impairs tissue reperfusion through endothelin-dependent mechanisms in cerebral ischemia.Stroke201445113412341910.1161/STROKEAHA.114.006613 25228257
    [Google Scholar]
  64. DarbinyanL.V. HambardzumyanL.E. SimonyanK.V. ChavushyanV.A. ManukyanL.P. BadalyanS.A. KhalajiN. SarkisianV.H. Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: In vivo electrophysiological and behavioral study.Metab. Brain Dis.20173261791180310.1007/s11011‑017‑0060‑y 28695411
    [Google Scholar]
  65. Abdel-RahmanR.F. El AwdanS.A. HegazyR.R. MansourD.F. OgalyH.A. AbdelbasetM. Neuroprotective effect of Crocus sativus against cerebral ischemia in rats.Metab. Brain Dis.202035342743910.1007/s11011‑019‑00505‑1 31728890
    [Google Scholar]
  66. MoghaddamS.H. Zare-ShahabadiA. RahmaniF. RezaeiN. Neurotransmission systems in Parkinson’s disease.Rev. Neurosci.201728550953610.1515/revneuro‑2016‑0068 28328536
    [Google Scholar]
  67. LeemE. NamJ.H. JeonM.T. ShinW.H. WonS.Y. ParkS.J. ChoiM.S. JinB.K. JungU.J. KimS.R. Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson’s disease.J. Nutr. Biochem.201425780180610.1016/j.jnutbio.2014.03.006 24797334
    [Google Scholar]
  68. RafeeqM. Al-AbbasiF.A. AfzalM. MogladE. Al-QahtaniS.D. AlzreaS.I. AlmalkiN.A.R. ImamF. SayyedN. KazmiI. 6-shogaol abrogates parkinson’s disease in rotenone-induced rodents: Based on in silico study and inhibiting TNF-α/NF-κB/IL-1β/] MAO-B.Pharmaceuticals20241710134810.3390/ph17101348 39458989
    [Google Scholar]
  69. AltaybH.N. YassinN.F. HosawiS. KazmiI. In-vitro and in-silico antibacterial activity of Azadirachta indica (Neem), methanolic extract, and identification of Beta.d-Mannofuranoside as a promising antibacterial agent.BMC Plant Biol.202222126210.1186/s12870‑022‑03650‑5 35610569
    [Google Scholar]
  70. AblatN. LiuR. AblimitM. SunY. XuF. ZhaoX. HanH. PuX. Preventive effects of a standardized flavonoid extract of safflower in rotenone-induced Parkinson’s disease rat model.Neuropharmacology202221710920910.1016/j.neuropharm.2022.109209 35940347
    [Google Scholar]
  71. LiJ. YuJ. GuoJ. LiuJ. WanG. WeiX. YangX. ShiJ. Nardostachys jatamansi and levodopa combination alleviates Parkinson’s disease symptoms in rats through activation of Nrf2 and inhibition of NLRP3 signaling pathways.Pharm. Biol.20236111175118510.1080/13880209.2023.2244176 37559448
    [Google Scholar]
  72. AnushaC. SumathiT. JosephL.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis.Chem. Biol. Interact.2017269677910.1016/j.cbi.2017.03.016 28389404
    [Google Scholar]
  73. FarombiE.O. AwogbindinI.O. FarombiT.H. OladeleJ.O. IzomohE.R. AladelokunO.B. EzekielI.O. AdebamboO.I. AbahV.O. Neuroprotective role of kolaviron in striatal redo-inflammation associated with rotenone model of Parkinson’s disease.Neurotoxicology20197313214110.1016/j.neuro.2019.03.005 30930291
    [Google Scholar]
  74. SharmaS.K. Al-BadiA.H. GovindaluriS.M. Al-KharusiM.H. Predicting motivators of cloud computing adoption: A developing country perspective.Comput. Human Behav.201662616910.1016/j.chb.2016.03.073
    [Google Scholar]
/content/journals/cn/10.2174/011570159X349553250126050134
Loading
/content/journals/cn/10.2174/011570159X349553250126050134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test