Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Introduction

Yb3+/Ho3+co-doped YPO nano phosphors were synthesized by polyol route, which has both up-conversion (UC) and down-conversion (DC) characteristics and excellent luminescent properties. DC peaks were seen at ~460, ~550, and ~650 nm.

Methods

Switching at ~750 with 300 nm excitation revealed a modest P-O charge-transfer (CT) band of the Ho3+ ion and a little non-radiative resonant energy transfer. We discovered that YPO: Yb3+/Ho3+ is an up-converting (UC) nanophosphor capability. Large-scale creation and amplification of light through green and red emissions.

Result

Strong laser irradiation at 980 nm results in clear up-conversion emission peaks for Ho3+ ions at 550 and 650 nm. This technique yields high-quality nanocrystalline materials with tens of nanometers in size. YPO produced high quantum yield values: Yb3+/Ho3+ when stimulation was applied at 300 nm.

Conclusion

This finding can be used to manufacture high-efficiency phosphors and demonstrates that the nano-phosphor materials covered by this method have a wide range of applications.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230517152942
2023-06-19
2025-10-18
Loading full text...

Full text loading...

References

  1. KhanL.U. KhanZ.U. Rare earth luminescence: Electronic spectroscopy and applications.In: Handbook of Materials Characterization2018345404
    [Google Scholar]
  2. SirishaB. EffectiveNd3+/Ho3+ Doped YPO4MultiphotonNanomaterialsforUp &DownconversionPhotoluminescence studies.Neuroquantology2022201050085016
    [Google Scholar]
  3. ChenY. XiongY. HuangH. YangB. Crystallization behavior and up-conversion optical characteristics based on NaZnPO4: Yb3+/Tb3+/Ho3+ nanocrystals embedded in glass matrix.J. Alloys Compd.202188716134410.1016/j.jallcom.2021.161344
    [Google Scholar]
  4. PeralaR.S. JoshiR. SinghB.P. PuttaV.N.K. AcharyaR. NingthoujamR.S. Brilliant nonlinear optical response of Ho 3+ and Yb 3+ activated YVO 4 nanophosphor and its conjugation with Fe 3 O 4 for smart anticounterfeit and hyperthermia applications.ACS Omega2021630194711948310.1021/acsomega.1c0157234368534
    [Google Scholar]
  5. GirijaV.K. Synthesis, characterization, and photoluminescence study of Nd3+/Ho3+ doped GdPO4 nanomaterials.Neuro Quantology202220926432651
    [Google Scholar]
  6. YuI.S. WuT.H. WuK.Y. ChengH.H. MashanovV.I. NikiforovA.I. PchelyakovO.P. WuX.S. Investigation of Ge1-xSnx/Ge with high Sn composition grown at low-temperature.AIP Adv.20111404211810.1063/1.3656246
    [Google Scholar]
  7. PeralaR.S. SinghB.P. PuttaV.N.K. AcharyaR. NingthoujamR.S. Enrichment of crystal field modification via incorporation of alkali K + Ions in YVO 4 :Ho 3+ /Yb 3+ nanophosphor and its hybrid with superparamagnetic iron oxide nanoparticles for optical, advanced anticounterfeiting, uranyl detection, and hyperthermia applications.ACS Omega2021630195171952810.1021/acsomega.1c0181334368538
    [Google Scholar]
  8. YaiphabaN. NingthoujamR.S. SinghN.R. VatsaR.K. Luminescence properties of redispersible Tb3+-Doped GdPO4 nanoparticles prepared by an ethylene glycol route.Eur. J. Inorg. Chem201026822687
    [Google Scholar]
  9. KumarV. RaniP. SinghD. ChawlaS. Efficient multiphoton upconversion and synthesis route dependent emission tunability in GdPO 4 :Ho 3+, Yb 3+ nanocrystals.RSC Advances2014468361013610510.1039/C4RA04795H
    [Google Scholar]
  10. LiC. QuanZ. YangJ. YangP. LinJ. Highly uniform and monodisperse β-NaYF(4):Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties.Inorg. Chem.200746166329633710.1021/ic070335i17602610
    [Google Scholar]
  11. Hao-Ying Lu, Meng-Han Tsai, The High-Temperature Synthesis of the Nanoscaled White-Light Phosphors Applied in the White-Light LEDs, Advances in Materials Science and Engineering, vol. 2015, Article ID 976106, 6 pages, 2015.10.1155/2015/976106
    [Google Scholar]
  12. NingombamG.S. SinghN.R. Lanthanide-doped orthometallate phosphors.In: Spectroscopy of Lanthanide Doped Oxide Materials.Woodhead Publishing202011323410.1016/B978‑0‑08‑102935‑0.00005‑8
    [Google Scholar]
  13. KumarV. WangG. Tuning green-to-red ratio of Ho3+/Yb3+ activated GdPO4 upconversion luminescence through Eu3+ doping.J. Lumin.201819918819310.1016/j.jlumin.2018.03.037
    [Google Scholar]
  14. KumarV. WangG. Tuning green-to-red ratio of Ho3+/Yb3+ activated GdPO4 upconversion luminescence through Eu3+ doping.J. Lumin.201819918819310.1016/j.jlumin.2018.03.037
    [Google Scholar]
  15. DwivediA. RaiE. KumarD. RaiS.B. Effect of synthesis techniques on the optical properties of Ho3+/Yb3+ Co-doped YVO4 phosphor: A comparative study.ACS Omega2019446903691310.1021/acsomega.8b0360631459805
    [Google Scholar]
  16. MahataK. ManojT.K. KumarK. HofsässH. VetterU. Demonstration of temperature-dependent energy migration in dual-mode YVO4: Ho3+/Yb3+ nanocrystals for low-temperature thermometry.Sci. Rep.20166111128442746
    [Google Scholar]
  17. ParchurA.K. AnsariA.A. SinghB.P. HasanT.N. SyedN.A. RaiS.B. NingthoujamR.S. Enhanced luminescence of CaMoO 4 :Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe 3 O 4 : Ctotoxicity assessment on human liver cancer cells and mesenchymal stem cells.Integr. Biol.201461536410.1039/C3IB40148K24287920
    [Google Scholar]
  18. LisieckiR. Dominiak-DzikG. Ryba-RomanowskiW. ŁukasiewiczT. Conversion of infrared radiation into visible emission in YVO4 crystals doped with ytterbium and holmium.J. Appl. Phys.200496116323633010.1063/1.1809270
    [Google Scholar]
  19. LyuT. DorenbosP. Charge carrier trapping processes in lanthanide doped LaPO 4, GdPO 4, YPO 4, and LuPO 4.J. Mater. Chem. C Mater. Opt. Electron. Devices20186236937910.1039/C7TC05221A
    [Google Scholar]
  20. YaiphabaN. NingthoujamM.S. SinghN.R. VatsaR.K. Luminescence properties of redispersible Tb3+‐Doped CePO4 nanoparticles prepared by an ethylene glycol route.Ber. Dtsch201020101826822687
    [Google Scholar]
  21. HuF. WeiX. QinY. JiangS. LiX. ZhouS. ChenY. DuanC.K. YinM. Yb3+/Tb3+ co-doped GdPO4 transparent magnetic glass-ceramics for spectral conversion.J. Alloys Compd.201667416216710.1016/j.jallcom.2016.03.040
    [Google Scholar]
  22. Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles: Hyperthermia application.Dalton Transactions2013421410.1039/c2dt32508j
    [Google Scholar]
  23. RenW. TianG. ZhouL. YinW. YanL. JinS. ZuY. LiS. GuZ. ZhaoY. Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties.Nanoscale20124123754376010.1039/c2nr30683b22622654
    [Google Scholar]
  24. WangZ. FengJ. PangM. PanS. ZhangH. Multicolor and bright white upconversion luminescence from rice-shaped lanthanide doped BiPO4 submicron particles.Dalton Trans.20134234121011210810.1039/c3dt51010g23824139
    [Google Scholar]
  25. AitMellalO. OufniL. MessousM.Y. TahriM. NeatuŞ. FloreaM. NeatuF. SecuM. Structural properties and near-infrared light from Ce3+/Nd3+-co-doped LaPO4 nanophosphors for solar cell applications.J. Mater. Sci. Mater. Electron.20223374197421010.1007/s10854‑021‑07615‑6
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230517152942
Loading
/content/journals/cms/10.2174/2666145416666230517152942
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test