Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Introduction/Objective

Machining hybrid composites through conventional machining technique was a challenging task as it produces excessive tool wear and exhibits poor surface roughness. In this research work, an attempt was made to electric discharge machining of AA7075/SiC/BC Hybrid Composites produced through the stir casting route. The used engine oil was as the dielectric fluid with the objective of obtaining wealth from waste. The experiments were performed by varying distinct Electric Discharge Machining (EDM) process parameters with the goal of obtaining a high Material Removal Rate (MRR), low Tool Wear Rate (TWR) and least Surface Roughness (Ra). The experimental runs were optimized using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) optimization techniques.

Methods

Experimental runs were designed using the L20 Taguchi orthogonal arrayin which Powder concentration, Current and Pulse on time were varied for three different levels, and two various dielectric fluids were used for investigation. The characteristics of the Used Engine Oil (UEO) were assessed to find its feasibility as a dielectric fluid.

Results

In comparison to EDM oil, the specimen machined in UEO dielectric medium has a somewhat greater MRR. Regardless of the kind of dielectric fluid employed, adding AlO particles increases the MRR because of the bridging effect. Due to its high thermal conductivity, UEO oil produced electrodes with a TWR that was greater than that of EDM oil. The TWR decreases with the addition of AlO particles due to an increase in the spark gap. In comparison to EDM oil, the specimen machined under UEO displays a lower Ra value. Ra decreases with the inclusion of AlO particles due to the thorough flushing of machining waste.

Conclusion

The specimen machined under AlO mixed UEO dielectric medium, with the process parameters tuned at 3 A current and 20 µs Ton, offers better machining performance and was recommended for EDM sector.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230504155532
2023-05-26
2025-10-18
Loading full text...

Full text loading...

References

  1. GargP. JamwalA. KumarD. SadasivuniK.K. HussainC.M. GuptaP. Advance research progresses in aluminium matrix composites: Manufacturing & applications.J. Mater. Res. Technol.2019854924493910.1016/j.jmrt.2019.06.028
    [Google Scholar]
  2. NassarM.M.A. AlzebdehK.I. PervezT. Al-HinaiN. MunamA. Progress and challenges in sustainability, compatibility, and production of eco‐composites : A state‐of‐art reviewJ. Appl. Polym. Sci.2021138435128410.1002/app.51284
    [Google Scholar]
  3. MussattoA. AhadI.U.I. MousavianR.T. DelaureY. BrabazonD. Advanced production routes for metal matrix composites.Eng. Rep.202135e1233010.1002/eng2.12330
    [Google Scholar]
  4. RanjithR. GiridharanP.K. DevarajJ. BharathV. Influence of titanium-coated (B4Cp + SiCp) particles on sulphide stress corrosion and wear behaviour of AA7050 hybrid composites (for MLG link).J. Aust. Ceram. Soc.20175321017102510.1007/s41779‑017‑0119‑6
    [Google Scholar]
  5. MohanV.B. LauK. HuiD. BhattacharyyaD. Graphene-based materials and their composites: A review on production, applications and product limitations.Compos., Part B Eng.201814220022010.1016/j.compositesb.2018.01.013
    [Google Scholar]
  6. KrishnanP.K. ChristyJ.V. ArunachalamR. MouradA.H.I. MuralirajaR. Al-MaharbiM. MuraliV. ChandraM.M. Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties.J. Alloys Compd.20197841047106110.1016/j.jallcom.2019.01.115
    [Google Scholar]
  7. RanjithR. GiridharanP.K. VelmuruganC. ChinnusamyC. Formation of lubricated tribo layer, grain boundary precipitates, and white spots on titanium-coated graphite–reinforced hybrid composites.J. Aust. Ceram. Soc.201955364565510.1007/s41779‑018‑0274‑4
    [Google Scholar]
  8. QinJ. WangC. YaoZ. MaZ. GaoQ. WangY. WangQ. WeiH. Growing carbon nanotubes on continuous carbon fibers to produce composites with improved interfacial properties: A step towards commercial production and application.Compos. Sci. Technol.202121110887010.1016/j.compscitech.2021.108870
    [Google Scholar]
  9. JiangX. GongH. LiuQ. SongM. HuangC. In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light.Appl. Catal. B202026811843910.1016/j.apcatb.2019.118439
    [Google Scholar]
  10. RanjithR. GiridharanP.K. Experimental investigation of surface hardness and dry sliding wear behavior of AA7050/B 4 C p.High Temp. Mater. Process.2015193-429130510.1615/HighTempMatProc.2016016824
    [Google Scholar]
  11. El-HofyM.H. El-HofyH. Laser beam machining of carbon fiber reinforced composites: A review.Int. J. Adv. Manuf. Technol.20191019-122965297510.1007/s00170‑018‑2978‑6
    [Google Scholar]
  12. ShahabazS.M. SharmaS. ShettyN. ShettyS.D. GowrishankarM.C. Influence of temperature on mechanical properties and machining of fibre reinforced polymer composites: A review.Eng. Sci.202116264610.30919/es8d553
    [Google Scholar]
  13. VigneshwaranS. JohnK.M. DeepakJ.J.R. UthayakumarM. ArumugaprabuV. KumaranS.T. Conventional and unconventional machining performance of natural fibre-reinforced polymer composites: A review.J. Reinf. Plast. Compos.20214015-1655356710.1177/0731684420958103
    [Google Scholar]
  14. DeshmukhS.P. ShrivastavaR. ThakarC.M. Machining of composite materials through advance machining process.Mater. Today Proc.2022521078108110.1016/j.matpr.2021.10.495
    [Google Scholar]
  15. SivakandhanC. BabuL.G. MuraliG. SureshP.P. MarichamyS. SaiK.G. PradhanR. Material characterization and unconventional machining on synthesized Niobium metal matrix.Mater. Res. Express20207101501810.1088/2053‑1591/ab624d
    [Google Scholar]
  16. MahakurV.K. BhowmikS. PatowariP.K. Machining parametric study on the natural fiber reinforced composites: A review.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2022236116232624910.1177/09544062211063752
    [Google Scholar]
  17. Singh BainsP. SidhuS.S. PayalH.S. Investigation of magnetic field-assisted EDM of composites.Mater. Manuf. Process.201833667067510.1080/10426914.2017.1364857
    [Google Scholar]
  18. Ranjith R, Tamilselvam P, Prakash T, Chinnasamy C. Examinations concerning the electric discharge machining of AZ91/5B 4 C P composites utilizing distinctive electrode materials.Mater. Manuf. Process.201934101120112810.1080/10426914.2019.1628258
    [Google Scholar]
  19. Suresh KumarS. UthayakumarM. Thirumalai KumaranS. VarolT. CanakciA. Investigating the surface integrity of aluminium based composites machined by EDM.Defence Technology201915333834310.1016/j.dt.2018.08.011
    [Google Scholar]
  20. SomuC. RanjithR. GiridharanP.K. RamuM. A novel Cu-Gr composite electrode development for electric discharge machining of Inconel 718 alloy.Surf. Topogr.20219303502510.1088/2051‑672X/ac1f80
    [Google Scholar]
  21. AboobuckerY.P. AbuthakeerS.S. Machining characteristics of Al2O3 powder mixed electric discharge machining of aa7050/SiCp/Al2O3p hybrid composites.ECS J. Solid State Sci. Technol.202110707300710.1149/2162‑8777/ac1650
    [Google Scholar]
  22. PrabhakarB.S.M. RanjithR. VenkatesanS. Characterization of electric discharge machining of titanium alloy utilizing MEIOT technique for orthopedic implants.Mater. Res. Express20218808650510.1088/2053‑1591/ac1a2d
    [Google Scholar]
  23. SuryaM.S. GugulothuS.K. Investigations on powder mixed electrical discharge machining of aluminum alloy 7075–4 wt.% TiC in-situ metal matrix composite.Int. J. Interact. Des. Manuf.202217299305
    [Google Scholar]
  24. RR. Prabhakar B SM. P KG. RamuM. Influence of Al 2 0 3 particle mixed dielectric fluid on machining performance of Ti6Al4V.Surf. Topogr.20219404505210.1088/2051‑672X/ac456a
    [Google Scholar]
  25. PrakashT. RanjithR. Krishna MohanS. VenkatesanS. Electric discharge machining of AZ91 magnesium hybrid composites under different dielectric mediums.Adv. Mater. Sci. Eng.2022202211510.1155/2022/3502383
    [Google Scholar]
  26. RajamanickamR. GiridharanP.K. DevarajJ. Influence of titanium-coated (B 4 C+ SiC) particles on electric discharge machining OF AA7050 hybrid composites.High Temp. Mater. Process.201620293105
    [Google Scholar]
  27. ThakurS.S. PatelB. UpadhyayR.K. BagalD.K. BaruaA. Machining characteristics of metal matrix composite in powder-mixed electrical discharge machining – A review.Aust. J. Mech. Eng.202212310.1080/14484846.2022.2030089
    [Google Scholar]
  28. AnbuchezhiyanG. SaravananR. PugazhenthiR. PalaniK. MamidiV.K. Influence of coated electrode in nanopowder mixed EDM of Al–Zn–Mg–Si 3 N 4 composite.Adv. Mater. Sci. Eng.2022 Article ID: 953979010.1155/2022/9539790
    [Google Scholar]
  29. IyyappanS.G. SudhakarapandianR. SakthivelM. Influence of silicon carbide mixed used engine oil dielectric fluid on EDM characteristics of AA7075/SiC p /B 4 C p hybrid composites.Mater. Res. Express20218808651410.1088/2053‑1591/ac1d1c
    [Google Scholar]
  30. PhilipJ.T. MathewJ. KuriachenB. Transition from EDM to PMEDM – Impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: A review.J. Manuf. Process.2021641105114210.1016/j.jmapro.2021.01.056
    [Google Scholar]
  31. SinghS. PatelB. UpadhyayR.K. SinghN.K. Improvement of process performance of powder mixed electrical discharge machining by optimisation-A Review.Adv. Mater. Process. Technol.2021833074310410.1080/2374068X.2021.1945300
    [Google Scholar]
  32. XuB. LianM. ChenS. LeiJ. WuX. GuoC. PengT. YangJ. LuoF. ZhaoH. Combining PMEDM with the tool electrode sloshing to reduce recast layer of titanium alloy generated from EDM.Int. J. Adv. Manuf. Technol.20211175-61535154510.1007/s00170‑021‑07808‑7
    [Google Scholar]
  33. BajajR. TiwariA.K. PramanikA. SrivastavaA.K. DixitA.R. Machining performance and sustainability analysis of PMEDM process using green dielectric fluid.J. Braz. Soc. Mech. Sci. Eng.2022441156310.1007/s40430‑022‑03878‑0
    [Google Scholar]
  34. ChenJ.P. GuL. HeG.J. A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites.Adv. Manuf.20208327931510.1007/s40436‑020‑00313‑2
    [Google Scholar]
  35. SinghG. LamichhaneY. BhuiA.S. SidhuS.S. BainsP.S. MukhiyaP. Surface morphology and microhardness behavior of 316L in HAp-PMEDM.Facta Univ. Ser.: Mech. Eng.2019173445454
    [Google Scholar]
  36. SuraniK. PatelS. Effect of powder mixed electrical discharge machining (PMEDM) on machining parameters of various materials with different powders: A review.20208XII6143010.22214/ijraset.2020.32571
    [Google Scholar]
  37. SchubertA. BuiV.D. SchaarschmidtI. BergerT. MartinA. Developments in powder mixed EDM and its perspective Application for targeted Surface Modification.Procedia CIRP202211310011910.1016/j.procir.2022.09.134
    [Google Scholar]
  38. MajumdarS. BhoiN. K. SinghH. Graphene nano-powder mixed electric discharge machining of Inconel 625 alloy: Optimization of process parameters for material removal rate.Int. J. Interact. Des. Manuf.202210.1007/s12008‑022‑00996‑w
    [Google Scholar]
  39. RoutP.K. JenaP.C. A review of current researches on powder mixed electrical discharge machining (PMEDM) technology.In: Advances in Mechanical Processing and Design20214899710.1007/978‑981‑15‑7779‑6_43
    [Google Scholar]
  40. JoshiA.Y. JoshiA.Y. Multi response optimization of PMEDM of Ti6Al4V using Al2O3 and SiC powder added de-ionized water as dielectric medium using grey relational analysis.SN Appl. Sci.20213771810.1007/s42452‑021‑04712‑3
    [Google Scholar]
  41. SunoriS. VarshneyN. SainiP. Process parameter modelling enhancing electrical discharge composite material machining.Webology202118316211634
    [Google Scholar]
  42. HaqueR. SekhM. KibriaG. HaidarS. Improvement of surface quality of Ti-6Al-4V alloy by powder mixed electrical discharge machining using copper powder.Facta Univ. Ser.: Mech. Eng.202111710.22190/FUME201215042H
    [Google Scholar]
  43. NaikD.K. KhanA. MajumderH. GargR.K. Experimental investigation of the PMEDM of nickel free austenitic stainless steel: A promising coronary stent material.Silicon201911289990710.1007/s12633‑018‑9877‑1
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230504155532
Loading
/content/journals/cms/10.2174/2666145416666230504155532
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test