Skip to content
2000
image of Recent Techniques for Automated Construction Site Monitoring and Management

Abstract

This paper explores the advancements in construction site monitoring and management facilitated by Convolutional Neural Networks (CNNs). Through a comprehensive review of existing literature and emerging trends, the study identifies several key findings and contributions. Firstly, Techniques have greatly improved safety measures on construction sites by automatically detecting potential hazards in real-time, thereby reducing the risk of accidents and injuries. Secondly, these techniques offer a more efficient alternative to traditional progress monitoring methods by automating the analysis of construction site images, enabling timely project delivery. Thirdly, CNNs play a crucial role in quality control by detecting defects and deviations from design specifications during the construction process, thus avoiding costly rework. Finally, they optimize resource allocation by monitoring equipment usage and condition, enabling predictive maintenance and minimizing downtime. While CNN-based solutions offer transformative potential, challenges such as data scarcity and model interpretability need to be addressed to fully realize their benefits in the construction industry.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454355422250331021930
2025-04-16
2025-08-16
Loading full text...

Full text loading...

References

  1. Mostafa K. Hegazy T. Review of image-based analysis and applications in construction. Autom. Construct. 2021 122 103516 10.1016/j.autcon.2020.103516
    [Google Scholar]
  2. Elghaish F. Matarneh S.T. Alhusban M. The application of “deep learning” in construction site management: Scientometric, thematic and critical analysis. Constr. Innov. 2022 22 3 580 603 10.1108/CI‑10‑2021‑0195
    [Google Scholar]
  3. Kim J. Hwang J. Chi S. Seo J. Towards database-free vision-based monitoring on construction sites: A deep active learning approach. Autom. Construct. 2020 120 103376 10.1016/j.autcon.2020.103376
    [Google Scholar]
  4. Sami Ur Rehman M. Shafiq M.T. Ullah F. Automated computer vision-based construction progress monitoring: A systematic review. Buildings 2022 12 7 1037 10.3390/buildings12071037
    [Google Scholar]
  5. Torabi G. Hammad A. Bouguila N. Two-dimensional and three-dimensional CNN-based simultaneous detection and activity classification of construction workers. J. Comput. Civ. Eng. 2022 36 4 04022009 10.1061/(ASCE)CP.1943‑5487.0001024
    [Google Scholar]
  6. Hou L. Chen H. Zhang G.K. Wang X. Deep learning-based applications for safety management in the AEC industry: A review. Appl. Sci. 2021 11 2 821 10.3390/app11020821
    [Google Scholar]
  7. Kim B. Cho S. Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors 2018 18 10 3452 10.3390/s18103452 30322206
    [Google Scholar]
  8. Yu W-D. Liao H-C. Hsiao W-T. Chang H-K. Tsai C-K. Lin C-C. Automatic safety monitoring of construction hazard working zone: A semantic segmentation based deep learning approach Proceedings of the 2020 the 7th International Conference on Automation and Logistics (ICAL) Beijing China: ACM, Jul. 2020, pp. 54–59 10.1145/3412953.3412969
    [Google Scholar]
  9. Xu M. Nie X. Li H. Cheng J.C.P. Mei Z. Smart construction sites: A promising approach to improving on-site HSE management performance. J. Build. Eng. 2022 49 104007 10.1016/j.jobe.2022.104007
    [Google Scholar]
  10. Yamashita R. Nishio M. Do R.K.G. Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018 9 4 611 629 10.1007/s13244‑018‑0639‑9 29934920
    [Google Scholar]
  11. O’Shea K. Nash R An introduction to convolutional neural networks arXiv:1511.08458 2015
    [Google Scholar]
  12. Khan A. Sohail A. Zahoora U. Qureshi A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020 53 8 5455 5516 10.1007/s10462‑020‑09825‑6
    [Google Scholar]
  13. Li Z. Liu F. Yang W. Peng S. Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022 33 12 6999 7019 10.1109/TNNLS.2021.3084827 34111009
    [Google Scholar]
  14. Aloysius N. Geetha M. A review on deep convolutional neural networks 2017 International Conference on Communication and Signal Processing (ICCSP) Chennai, India, 06-08 April 2017, pp. 0588-0592 10.1109/ICCSP.2017.8286426
    [Google Scholar]
  15. Gu J. Wang Z. Kuen J. Ma L. Shahroudy A. Shuai B. Liu T. Wang X. Wang G. Cai J. Chen T. Recent advances in convolutional neural networks. Pattern Recognit. 2018 77 354 377 10.1016/j.patcog.2017.10.013
    [Google Scholar]
  16. Kamilaris A. Prenafeta-Boldú F.X. A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 2018 156 3 312 322 10.1017/S0021859618000436
    [Google Scholar]
  17. Wen J. Thibeau-Sutre E. Diaz-Melo M. Samper-González J. Routier A. Bottani S. Dormont D. Durrleman S. Burgos N. Colliot O. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med. Image Anal. 2020 63 101694 10.1016/j.media.2020.101694 32417716
    [Google Scholar]
  18. Kiranyaz S. Avci O. Abdeljaber O. Ince T. Gabbouj M. Inman D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021 151 107398 10.1016/j.ymssp.2020.107398
    [Google Scholar]
  19. Kattenborn T. Leitloff J. Schiefer F. Hinz S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021 173 24 49 10.1016/j.isprsjprs.2020.12.010
    [Google Scholar]
  20. Fang W. Ding L. Love P.E.D. Luo H. Li H. Peña-Mora F. Zhong B. Zhou C. Computer vision applications in construction safety assurance. Autom. Construct. 2020 110 103013 10.1016/j.autcon.2019.103013
    [Google Scholar]
  21. Luo X. Li H. Cao D. Dai F. Seo J. Lee S. Recognizing diverse construction activities in site images via relevance networks of construction-related objects detected by convolutional neural networks. J. Comput. Civ. Eng. 2018 32 3 04018012 10.1061/(ASCE)CP.1943‑5487.0000756
    [Google Scholar]
  22. Seo J. Han S. Lee S. Kim H. Computer vision techniques for construction safety and health monitoring. Adv. Eng. Inform. 2015 29 2 239 251 10.1016/j.aei.2015.02.001
    [Google Scholar]
  23. Ye X.W. Jin T. Yun C.B. A review on deep learning-based structural health monitoring of civil infrastructures. Smart Struct. Syst. 2019 24 5 567 585
    [Google Scholar]
  24. Baduge S.K. Thilakarathna S. Perera J.S. Arashpour M. Sharafi P. Teodosio B. Shringi A. Mendis P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Construct. 2022 141 104440 10.1016/j.autcon.2022.104440
    [Google Scholar]
  25. Huang L. Li J. Hao H. Li X. Micro-seismic event detection and location in underground mines by using Convolutional Neural Networks (CNN) and deep learning. Tunn. Undergr. Space Technol. 2018 81 265 276 10.1016/j.tust.2018.07.006
    [Google Scholar]
  26. Akinosho T.D. Oyedele L.O. Bilal M. Ajayi A.O. Delgado M.D. Akinade O.O. Ahmed A.A. Deep learning in the construction industry: A review of present status and future innovations. J. Build. Eng. 2020 32 101827 10.1016/j.jobe.2020.101827
    [Google Scholar]
  27. Luo H. Xiong C. Fang W. Love P.E.D. Zhang B. Ouyang X. Convolutional neural networks: Computer vision-based workforce activity assessment in construction. Autom. Construct. 2018 94 282 289 10.1016/j.autcon.2018.06.007
    [Google Scholar]
  28. Xu Y. Zhou Y. Sekula P. Ding L. Machine learning in construction: From shallow to deep learning. Dev. Built Environ 2021 6 100045 10.1016/j.dibe.2021.100045
    [Google Scholar]
  29. Al-Fuqaha A. Khreishah A. Guizani M. Rayes A. Mohammadi M. Toward better horizontal integration among IoT services. IEEE Commun. Mag. 2015 53 9 72 79 10.1109/MCOM.2015.7263375
    [Google Scholar]
  30. Stergiou C. Psannis K.E. Kim B.G. Gupta B. Secure integration of IoT and cloud computing. Future Gener. Comput. Syst. 2018 78 964 975 10.1016/j.future.2016.11.031
    [Google Scholar]
  31. Reyna A. Martín C. Chen J. Soler E. Díaz M. On blockchain and its integration with IoT. Challenges and opportunities. Future Gener. Comput. Syst. 2018 88 173 190 10.1016/j.future.2018.05.046
    [Google Scholar]
  32. Barsom E.Z. Graafland M. Schijven M.P. Systematic review on the effectiveness of augmented reality applications in medical training. Surg. Endosc. 2016 30 10 4174 4183 10.1007/s00464‑016‑4800‑6 26905573
    [Google Scholar]
  33. Quandt M. Knoke B. Gorldt C. Freitag M. Thoben K.D. General requirements for industrial augmented reality applications. Procedia CIRP 2018 72 1130 1135 10.1016/j.procir.2018.03.061
    [Google Scholar]
  34. Palmarini R. Erkoyuncu J.A. Roy R. Torabmostaedi H. A systematic review of augmented reality applications in maintenance. Robot. Comput.-Integr. Manuf. 2018 49 215 228 10.1016/j.rcim.2017.06.002
    [Google Scholar]
  35. ElSayed M.S. Le-Khac N.A. Albahar M.A. Jurcut A. A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique. J. Netw. Comput. Appl. 2021 191 103160 10.1016/j.jnca.2021.103160
    [Google Scholar]
  36. Hashemzehi R. Mahdavi S.J.S. Kheirabadi M. Kamel S.R. Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybern. Biomed. Eng. 2020 40 3 1225 1232 10.1016/j.bbe.2020.06.001
    [Google Scholar]
  37. Li T. A hybrid CNN-LSTM model for forecasting particulate matter (PM2.5) IEEE Access 2020 8 26933 26940
    [Google Scholar]
  38. Zhao B. Zhang X. Zhan Z. Wu Q. A robust construction of normalized CNN for online intelligent condition monitoring of rolling bearings considering variable working conditions and sources. Measurement 2021 174 108973 10.1016/j.measurement.2021.108973
    [Google Scholar]
  39. Xiao B. Yin X. Kang S.C. Vision-based method of automatically detecting construction video highlights by integrating machine tracking and CNN feature extraction. Autom. Construct. 2021 129 103817 10.1016/j.autcon.2021.103817
    [Google Scholar]
/content/journals/cms/10.2174/0126661454355422250331021930
Loading
/content/journals/cms/10.2174/0126661454355422250331021930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test