Skip to content
2000
image of Effect of Polyaniline Content on the Photoelectric Properties and 
Corrosion Resistance of Titanium Dioxide/Polyaniline/Epoxy Composite Coatings

Abstract

Introduction

Anticorrosion coatings (which are easy to apply) can be used to form a protective barrier on metallic surfaces. They physically or chemically impede corrosive reactions and reduce corrosion rates, making them commonly used in the field of metal corrosion prevention.

Methods

TiO/PANI composite coating nanoparticles with photoelectric conversion function were synthesized by oxidation polymerization and used as functional fillers in EP resin to prepare an anti-corrosion coating. A series of TiO/PANI/EP composite coatings were applied on the surface of Q235 carbon steel, and their photoelectric properties and corrosion resistance were studied using an electrochemical workstation.

Results

Under continuous illumination, the photocurrent stabilized at a relatively steady positive value. When the TiO: PANI ratio was 3:1, the protection of Q235 carbon steel was optimal, achieving the highestcorrosion protection efficiency of 96.20%. The maximum self-corrosion potential was -0.149V, and the minimum self-corrosion current density was 1.768 × 10-6 A/cm2, demonstrating excellent corrosion resistance.

Discussion

Under dark conditions, TiO/PANI/EP coating can effectively prevent the corrosive medium from invading the carbon steel substrate through the synergistic physical shielding of EP resin and the metal passivation effect of PANI. Under light conditions, nanoparticles in TiO/PANI/EP composite coating absorb light energy to produce photogenerated electrons, thereby enhancing the protection of Q235 carbon steel.

Conclusion

TiO/PANI/EP composite coating nanoparticles can enhance the photoelectric performance and corrosion resistance of the polar ion coating on the surface of Q235 carbon steel.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454359469250306070939
2025-03-17
2025-11-08
Loading full text...

Full text loading...

References

  1. Pham V.H. Ha Y.W. Kim S.H. Jeong H.T. Jung M.Y. Ko B.S. Hwang Y.J. Chung J.S. Pham V.H. Ha Y.W. Kim S.H. Jeong H.T. Jung M.Y. Ko B.S. Hwang Y.J. Chung J.S. Synthesis of epoxy encapsulated organoclay nanocomposite latex via phase inversion emulsification and its gas barrier property. J. Ind. Eng. Chem. 2014 20 1 108 112 10.1016/j.jiec.2013.04.019
    [Google Scholar]
  2. Dang J. Zhang J. Li M. Dang L. Gu J. Enhancing intrinsic thermal conductivities of epoxy resins by introducing biphenyl mesogen-containing liquid crystalline co-curing agents. Polym. Chem. 2022 13 42 6046 6053 10.1039/D2PY01157C
    [Google Scholar]
  3. Yang X. Zhu J. Yang D. Zhang J. Guo Y. Zhong X. Kong J. Gu J. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Compos., Part B Eng. 2020 185 107784 10.1016/j.compositesb.2020.107784
    [Google Scholar]
  4. Teo Z.X. Chow W.S. Impact, thermal and morphological properties of poly (lactic acid) / poly (methyl methacrylate) / halloysite nanotube nanocomposites. Polym. Plast. Technol. Eng. 2016 55 14 1474 1480 10.1080/03602559.2015.1132464
    [Google Scholar]
  5. Han C. Shao Q. Lei J. Zhu Y. Ge S. Preparation of NiO/TiO2 p-n heterojunction composites and its photocathodic protection properties for 304 stainless steel under simulated solar light. J. Alloys Compd. 2017 703 530 537 10.1016/j.jallcom.2017.01.349
    [Google Scholar]
  6. Xu Y. Zhang W. Yu W. Ding J. Sun H. Polythiophene-sensitized TiO2 nanotube arrays for photo-generated cathodic protection of 304 stainless steel. J. Mater. Sci. 2021 56 6 4470 4483 10.1007/s10853‑020‑05528‑z
    [Google Scholar]
  7. Dorraj M. Goh B.T. Sairi N.A. Woi P.M. Basirun W.J. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine. Appl. Surf. Sci. 2018 439 999 1009 10.1016/j.apsusc.2017.12.248
    [Google Scholar]
  8. Si J. Liu Y. Chang S. Wu D. Tian B. Zhang J. AgBr@TiO2/GO ternary composites with enhanced photocatalytic activity for oxidation of benzyl alcohol to benzaldehyde. Res. Chem. Intermed. 2017 43 4 2067 2080 10.1007/s11164‑016‑2747‑9
    [Google Scholar]
  9. Qiu S. Chen C. Cui M. Li W. Zhao H. Wang L. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber. Appl. Surf. Sci. 2017 407 213 222 10.1016/j.apsusc.2017.02.142
    [Google Scholar]
  10. Hu C. Li T. Yin H. Hu L. Tang J. Ren K. Preparation and corrosion protection of three different acids doped polyaniline/epoxy resin composite coatings on carbon steel. Colloids Surf. A Physicochem. Eng. Asp. 2021 612 126069 10.1016/j.colsurfa.2020.126069
    [Google Scholar]
  11. Jia Z. Fu M. Zhao X. Cui Z. Intelligent identification of metal corrosion based on Corrosion-YOLOv5s. Displays 2023 76 102367 10.1016/j.displa.2022.102367
    [Google Scholar]
  12. Wang X. Jing C. Chen Y. Wang X. Zhao G. Zhang X. Wu L. Liu X. Dong B. Zhang Y. Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg–Al layered double hydroxide coating on AZ31 magnesium alloy. J. Magnesium. Alloys 2020 8 1 291 300 10.1016/j.jma.2019.11.011
    [Google Scholar]
  13. Rahsepar M. Mohebbi F. Hayatdavoudi H. Synthesis and characterization of inhibitor-loaded silica nanospheres for active corrosion protection of carbon steel substrate. J. Alloys Compd. 2017 709 519 530 10.1016/j.jallcom.2017.03.104
    [Google Scholar]
  14. Zheng L.Y. Cao F.H. Liu W.J. Electrochemical study on failure behavior of Q235 steel in simulated natural environment. Equip. Environ. Eng 2011 8 8 15
    [Google Scholar]
  15. Na Z. Shengxue Y. Qian X. Xiaolei C. Mingxian Z. Dejiu S. Corrosion performance of composite MAO/TiO2 sol–gel coatings on magnesium alloy AZ91D. J. Mater. Eng. Perform. 2018 27 11 6080 6086 10.1007/s11665‑018‑3653‑7
    [Google Scholar]
  16. Wessling B. Corrosion prevention with an organic metal (polyaniline): Surface ennobling, passivation, corrosion test results. Mater. Corros. 1996 47 8 439 445 10.1002/maco.19960470804
    [Google Scholar]
  17. Zhou X. Yu S. Guan S. Lv Z. Liu E. Zhao Y. Fabrication and characterization of superhydrophobic TiO2 nanotube coating by a facile anodic oxidation approach. Surf. Coat. Tech. 2018 354 83 91 10.1016/j.surfcoat.2018.09.014
    [Google Scholar]
  18. Wang L. Wang L. Shi Y. Zhao B. Zhang Z. Ding G. Zhang H. Blue TiO2 nanotube electrocatalytic membrane electrode for efficient electrochemical degradation of organic pollutants. Chemosphere 2022 306 135628 10.1016/j.chemosphere.2022.135628 35810871
    [Google Scholar]
  19. Li R. Li T. Zhou Q. Impact of titanium dioxide (TiO2) modification on its application to pollution treatment: A review. Catalysts 2020 10 7 804 10.3390/catal10070804
    [Google Scholar]
  20. Yang S.W. Chang T.J. Corrosion and Protection of Materials. Harbin, China Harbin Engineering University Press 2003 102 108
    [Google Scholar]
  21. Zheng T Y Wang L Liu J Y Corrosion inhibition of ionic liquids on the surface of Q235 steel in methanol/sulfuric acid medium. CIESC J. 2020 71 5 2239
    [Google Scholar]
  22. Abootalebi O. Kermanpur A. Shishesaz M.R. Golozar M.A. Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary nlm method. Corros. Sci. 2010 52 3 678 687 10.1016/j.corsci.2009.10.025
    [Google Scholar]
  23. Zhang L. Reisner E. Baumberg J.J. Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO 4 photoanodes for solar water oxidation. Energy Environ. Sci. 2014 7 4 1402 1408 10.1039/C3EE44031A
    [Google Scholar]
  24. Ma J.Y. Preparation of molybdenum disulfide based heterojunctions and their photoelectrode properties study. Thesis Northwest University 2021
    [Google Scholar]
  25. Wang X.Y. Preparation of TiO2 composites based on polyaniline and the photocatalytic activity under visible light. Master. Thesis Harbin Institute of Technology 2009
    [Google Scholar]
  26. Hu C.B. Li Y. Kong Y.Z. Preparation and anticorrosion performance of poly(o-chloroaniline)-nanoSiC/epoxy resin composite. Acta Materiae Compositae Sinica 2017 34 6 1167 1176
    [Google Scholar]
  27. Hu J Y Lai L J Wang R Study on photoelectric and semiconductor characteristics of anodic oxide film with FeOOH on TA1 titanium alloy. Mater. Prot. 2024 57 1 65 72
    [Google Scholar]
  28. Liu Z. Xu K. Yu H. Sun Z. Synergistic effect of Ag/ MoS 2 / TiO 2 heterostructure arrays on enhancement of photoelectrochemical and photocatalytic performance. Int. J. Energy Res. 2021 45 5 6850 6862 10.1002/er.6275
    [Google Scholar]
  29. Qiu P. Yang L.J. Song Y. Influence of DMF modified TiO2 film on the photogenerated cathodic protection behavior. Chin. Soc. Corros. Prot. 2018 38 289
    [Google Scholar]
  30. Xu H.M. Liu W. Cao L.X. Preparation of ZnO/TiO2 composite film on 304 stainless steel and its photo-cathodic protection proper‐ tIes. Chin. Soc. Corros. Prot. 2014 34 507
    [Google Scholar]
  31. Cardoso J.C. Stulp S. de Brito J.F. Flor J.B.S. Frem R.C.G. Zanoni M.V.B. MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Appl. Catal. B 2018 225 563 573 10.1016/j.apcatb.2017.12.013
    [Google Scholar]
  32. Xu L. Yang X. Fu X. Wang L. Fan Y. Xu J. Yin Y. Tian L. Zhao J. Fluorinated epoxy based superhydrophobic coating with robust self-healing and anticorrosive performances. Prog. Org. Coat. 2022 171 107045 10.1016/j.porgcoat.2022.107045
    [Google Scholar]
  33. Liu B X An Q Yin F X Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate. J. Mater Sci 2019 54 11357 11377 10.1007/s10853‑019‑03581‑x
    [Google Scholar]
  34. Li H. Li Y. Wang X. Hou B. III 3D ZnIn2S4 nanosheets/TiO2 nanotubes as photoanodes for photocathodic protection of Q235 CS with high efficiency under visible light. J. Alloys Compd. 2019 771 892 899 10.1016/j.jallcom.2018.09.027
    [Google Scholar]
  35. Guo H. Li L. Su C. Yu D. Liu Z. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes. Mater. Chem. Phys. 2021 258 123914 , 123914-11 10.1016/j.matchemphys.2020.123914
    [Google Scholar]
  36. Zhang Y. Yang K. Liu R. Yao J. Yan H. Superior tough, highly wear durable and self-lubricating epoxy composite co-enhanced by soft and hard nanomaterials. Chem. Eng. J. 2023 460 141773 10.1016/j.cej.2023.141773
    [Google Scholar]
  37. Nadiah G. Fariza A.R. Wan J.B. Corrosion protection of mild steel by Polyaniline/Tin-doped titania nanocomposite. J. Nano Res. 2022 75 81 98
    [Google Scholar]
  38. Wang N. Wang J. Zhao Q. Ge C. Hou B. Hu Y. Ning Y. Photogenerated cathodic protection properties of Ag/Ag3PO4/TiO2 nanocomposites. J. Photochem. Photobiol. Chem. 2022 432 114110 10.1016/j.jphotochem.2022.114110
    [Google Scholar]
  39. Yao H.W. Wang H.Q. Pu Z.L. Research progress on photocatalysis of two-dimensional materials/titanium dioxide composites. Trans Mater. Heat Treat.. 2023 44 02 13 29
    [Google Scholar]
  40. Wang Z.Z. Tan L. Xiao Q. Synthesis of MoS2 and its heterostructures for optoelectronic applications. Optics &Optoelectronic Technology 2022 20 4 66 78
    [Google Scholar]
  41. Wei B. Xu J. Pang J. Huang Z. Wu J. Cai Z. Yan M. Sun C. Prediction of electrochemical impedance spectroscopy of high-entropy alloys corrosion by using gradient boosting decision tree. Mater. Today Commun. 2022 32 104047 10.1016/j.mtcomm.2022.104047
    [Google Scholar]
  42. Guo W. Li J. Qi M. Xu Y. Ezatpour H.R. Effects of heat treatment on the microstructure, wear behavior and corrosion resistance of AlCoCrFeNiSi high-entropy alloy. Intermetallics 2021 138 107324 10.1016/j.intermet.2021.107324
    [Google Scholar]
  43. Cui C.X. Fu T.L. Yang Y.R. Effect of two-step anodization on surface properties and corrosion resistance of TA2 pure titanium. Heat Treat. Met. 2017 42 11 112 116
    [Google Scholar]
  44. Sazou D. Deshpande P.P. Conducting polyaniline nanocomposite-based paints for corrosion protection of steel. Chem. Pap. 2017 71 2 459 487 10.1007/s11696‑016‑0044‑0
    [Google Scholar]
/content/journals/cms/10.2174/0126661454359469250306070939
Loading
/content/journals/cms/10.2174/0126661454359469250306070939
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test