Current Molecular Pharmacology - Volume 15, Issue 5, 2022
Volume 15, Issue 5, 2022
-
-
Caveolin-1: A Promising Therapeutic Target for Diverse Diseases
Authors: Shivani Gokani and Lokesh K. BhattThe plasma membrane of eukaryotic cells contains small flask-shaped invaginations known as caveolae that are involved in the regulation of cellular signaling. Caveolin-1 is a 21-24k- Da protein localized in the caveolar membrane. Caveolin-1 (Cav-1) has been considered as a master regulator among the various signaling molecules. It has been emerging as a chief protein regulating cellular events associated with homeostasis, caveolae formation, and caveolae trafficking. In addition to the physiological role of cav-1, it has a complex role in the progression of various diseases. Caveolin-1 has been identified as a prognosticator in patients with cancer and has a dual role in tumorigenesis. The expression of Cav-1 in hippocampal neurons and synapses is related to neurodegeneration, cognitive decline, and aging. Despite the ubiquitous association of caveolin-1 in various pathological processes, the mechanisms associated with these events are still unclear. Caveolin- 1 has a significant role in various events of the viral cycle, such as viral entry. This review will summarize the role of cav-1 in the development of cancer, neurodegeneration, glaucoma, cardiovascular diseases, and infectious diseases. The therapeutic perspectives involving clinical applications of Caveolin-1 have also been discussed. The understanding of the involvement of caveolin-1 in various diseased states provides insights into how it can be explored as a novel therapeutic target.
-
-
-
Therapeutic Potential of Resveratrol in Diabetic Nephropathy According to Molecular Signaling
Background: Diabetic nephropathy (DN), as a severe complication of diabetes mellitus (DM), is a crucial menace for human health and survival and remarkably elevates the healthcare systems’ costs. Therefore, it is worth noting to identify novel preventive and therapeutic strategies to alleviate the disease conditions. Resveratrol, as a well-defined anti-diabetic/ antioxidant agent has capabilities to counteract diabetic complications. It has been predicted that resveratrol will be a fantastic natural polyphenol for diabetes therapy in the next few years. Objective: Accordingly, the current review aims to depict the role of resveratrol in the regulation of different signaling pathways that are involved in the reactive oxygen species (ROS) production, inflammatory processes, autophagy, and mitochondrial dysfunction, as critical contributors to DN pathophysiology. Results: The pathogenesis of DN can be multifactorial; hyperglycemia is one of the prominent risk factors of DN development that is closely related to oxidative stress. Resveratrol, as a well-defined polyphenol, has various biological and medicinal properties, including anti-diabetic, anti-inflammatory, and anti-oxidative effects. Conclusion: Resveratrol prevents kidney damages that are caused by oxidative stress, enhances antioxidant capacity, and attenuates the inflammatory and fibrotic responses. For this reason, resveratrol is considered an interesting target in DN research due to its therapeutic possibilities during diabetic disorders and renal protection.
-
-
-
Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets
Aging is a multifactorial process accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue- specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on the role of miRNAs in the aging process, and the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan have been highlighted.
-
-
-
A Clinical Perspective of Soluble Epoxide Hydrolase Inhibitors in Metabolic and Related Cardiovascular Diseases
Authors: Kanika Verma, Smita Jain, Swati Paliwal, Sarvesh Paliwal and Swapnil SharmaEpoxide hydrolase (EH) is a crucial enzyme responsible for catabolism, detoxification, and regulation of signaling molecules in various organisms including human beings. In mammals, EHs are classified according to their DNA sequence, sub-cellular location, and activity into eight major classes: soluble EH (sEH), microsomal EH (mEH), leukotriene A4 hydrolase (LTA4H), cholesterol EH (ChEH), hepoxilin EH, paternally expressed gene 1 (peg1/MEST), EH3, and EH4. The sEH, an α/β-hydrolase fold family enzyme, is an emerging pharmacological target in multiple diseases namely, cardiovascular disease, neurodegenerative disease, chronic pain, fibrosis, diabetes, pulmonary diseases, and immunological disease. It exhibits prominent physiological effects including anti-inflammatory, anti-migratory, and vasodilatory effects. Its efficacy has been documented in various clinical trials and observational studies. This review specifically highlights the development of soluble epoxide hydrolase inhibitors (sEHIs) in the clinical setting for the management of metabolic syndrome and related disorders, such as cardiovascular effects, endothelial dysfunction, arterial disease, hypertension, diabetes, obesity, heart failure, and dyslipidemia. In addition, limitations and future aspects of sEHIs have also been highlighted which will help the investigators to bring the sEHI to the clinics.
-
-
-
Immunopharmacological Properties of VitD3: 1, 25VitD3 Modulates Regulatory T Cells and Th17 Cells and the Cytokine Balance in PBMCs from Women with Unexplained Recurrent Spontaneous Abortion (URSA)
Authors: Jiefan Gao, Li Wang, Lei Bu, Yangyang Song, Xiao Huang and Jing ZhaoBackground: VitD3 may contribute to a successful pregnancy through modulation of immune responses. Therefore, VitD3 deficiency may have a role in the immunopathogenesis of unexplained recurrent spontaneous abortion (URSA). However, the mechanisms of immunomodulatory actions of VitD3 in decreasing the risk of recurrent spontaneous abortion have not been understood well. Objective: The purpose of this research was to investigate the influence of 1,25VitD3 on regulatory T cells /Th17 axis, the gene expressions and concentrations of related cytokines including, TGF-β, IL-10, IL-6, IL-23, and IL-17A in peripheral blood mononuclear cells (PBMCs) of healthy women as a control group and women with URSA. Methods: Isolation of PBMCs was performed from peripheral blood of the subjects of the studied groups (20 women with URSA as a case group, and 20 control women). The effects of 1,25VitD3 (50 nM, for 24 hours) on the studied parameters were evaluated and were compared to the positive and negative controls in vitro. Flow cytometry analysis was used to determine the percentages of regulatory T cells and Th17 cells. For gene expression measurement and cytokines assay, Realtime PCR and ELISA were carried out. Results: The proportion of regulatory T cells was markedly lower, while the proportion of Th17 cells in women with URSA was considerably higher than in the control group (P=0.01, P=0.01). The ratio of the frequency of Tregs to the baseline (1,25VitD3/Untreated) increased, while the ratio of the frequency of Th17 cells to the baseline decreased in women with URSA relative to the controls (P= 0.01, P=0.04). 1,25VitD3 increased IL-10 expressions at both the protein and mRNA levels in PBMCs in women with URSA relative to the control group (P=0.0001, P=0.04). TGF-β levels in the cultured supernatants decreased significantly in the case group in the presence of 1,25Vit- D3 relative to the controls (P=0.03). 1,25VitD3 treatment also significantly decreased gene expressions of IL-6, IL-17A, and IL-23 in PBMCs of women with URSA (P=0.01, P=0.001, P=0.0005), as well as the levels of those cytokines in cell culture supernatants (P=0.03, P=0.02, P=0.01, respectively) in women with URSA relative to the controls. Conclusion: According to the findings of this research, modulation of immune responses by 1,25VitD3 is accomplished by strengthening Tregs function and inhibiting inflammatory responses of Th17 cells, which may have a positive impact on pregnancy outcome. Thus, as an immunomodulating agent, VitD3 may be effective in reducing the risk of URSA.
-
-
-
A Proteomics Study of the Subacute Toxicity of Rat Brain after Long- Term Exposure of Gelsemium elegans
Authors: Meng-Ting Zuo, Si-Juan Huang, Yong Wu, Mo-Huan Tang, Hui Yu, Xue-Jia Qi and Zhao-Ying LiuBackground: Gelsemium elegans (G. elegans) has been shown to have strong pharmacological and pharmacodynamic effects in relevant studies both in China and USA. G. elegans has been used as a traditional medicine to treat a variety of diseases and even has the potential to be an alternative to laboratory synthesized drugs. However, its toxicity severely limited its application and development. At present, there is little attention paid to protein changes in toxicity. Aim: This study investigated the toxicity effects after long-term exposure of G. elegans of the rat brain through proteomic. Methods: : 11 differential abundance proteins were detected, among which 8 proteins were higher in the G. elegans- exposure group than in the control group, including Ig-like domain-containing protein (N/A), receptor-type tyrosine-protein phosphatase C (Ptprc), disheveled segment polarity protein 3 (Dvl3), trafficking protein particle complex 12 (Trappc12), seizure-related 6 homologlike (Sez6l), transmembrane 9 superfamily member 4 (Tm9sf4), DENN domain-containing protein 5A (Dennd5a) and Tle4, whereas the other 3 proteins do the opposite including Golgi to ER traffic protein 4 (Get4), vacuolar protein sorting 4 homolog B (Vps4b) and cadherin-related 23 (CDH23). Furthermore, we performed validation of WB analysis on the key protein CDH23. Results: Finally, only fewer proteins and related metabolic pathways were affected, indicating that there was no accumulative toxicity of G. elegans. G. elegans has the potential to develop and utilize of its pharmacological activity. CHD23, however, is a protein associated with hearing. Conclusion: Whether the hearing impairment is a sequela after G. elegans exposure remains to be further studied.
-
Most Read This Month
