Current Molecular Pharmacology - Volume 13, Issue 3, 2020
Volume 13, Issue 3, 2020
-
-
Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections
Authors: Azam Bolhassani and Alireza MilaniSmall interfering RNAs (siRNAs) have rapidly developed into biomedical research as a novel tool for the potential treatment of various human diseases. They are based on altered gene expression. In spite of the availability of highly active antiretroviral therapy (HAART), there is a specific interest in developing siRNAs as a therapeutic agent for human immunodeficiency virus (HIV) due to several problems including toxicity and drug resistance along with long term treatment. The successful use of siRNAs for therapeutic goals needs safe and effective delivery to specific cells and tissues. Indeed, the efficiency of gene silencing depends on the potency of the carrier used for siRNA delivery. The combination of siRNA and nano-carriers is a potent method to prevent the limitations of siRNA formulation. Three steps were involved in non-viral siRNA carriers such as the complex formation of siRNA with a cationic carrier, conjugation of siRNA with small molecules, and encapsulation of siRNA within nanoparticles. In this mini-review, the designed siRNAs and their carriers are described against HIV-1 infections both in vitro and in vivo.
-
-
-
FAT10: Function and Relationship with Cancer
Authors: Senfeng Xiang, Xuejing Shao, Ji Cao, Bo Yang, Qiaojun He and Meidan YingPosttranslational protein modifications are known to be extensively involved in cancer, and a growing number of studies have revealed that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 was found to be highly upregulated in various cancer types, such as glioma, hepatocellular carcinoma, breast cancer and gastrointestinal cancer. Protein FAT10ylation and interactions with FAT10 lead to the functional change of proteins, including proteasomal degradation, subcellular delocalization and stabilization, eventually having significant effects on cancer cell proliferation, invasion, metastasis and even tumorigenesis. In this review, we summarized the current knowledge on FAT10 and discussed its biological functions in cancer, as well as potential therapeutic strategies based on the FAT10 pathway.
-
-
-
Radio-Susceptibility of Nasopharyngeal Carcinoma: Focus on Epstein-Barr Virus, MicroRNAs, Long Non-Coding RNAs and Circular RNAs
Authors: Fanghong Lei, Tongda Lei, Yun Huang, Mingxiu Yang, Mingchu Liao and Weiguo HuangNasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.
-
-
-
The Impact of Spironolactone on Markers of Myocardial Oxidative Status, Inflammation and Remodeling in Hyperthyroid Rats
Authors: Fadia A Mayyas, Ahmad I Aljohmani and Karem H AlzoubiBackground: Hyperthyroidism promotes the development and progression of cardiovascular diseases (CVD). Aldosterone, a key mediator of myocardial inflammation, oxidative stress and fibrosis, may be activated in hyperthyroidism. Objective: To assess the impact of hyperthyroidism on aldosterone levels and myocardial oxidative status, inflammatory and fibrotic markers in hyperthyroid rats, and to test if the use of spironolactone (an aldosterone antagonist) attenuates these changes. Methods: Adult Wistar rats were randomly distributed into 4 groups; controls, spironolactone treated rats (Spir, 50mg/kg/day), hyperthyroid rats (Hyper, daily intraperitoneal levothyroxine 0.3mg/kg/day), and spironolactone treated hyperthyroid rats (Hyper+Spir) for 4 weeks. Blood pressure (Bp), and levels of serum and myocardial aldosterone, oxidants/antioxidants, inflammatory and fibrotic markers were measured. Results: Levothyroxine increased serum thyroid hormones and increased Bp, heart rate and heart to bodyweight ratio. Relative to control, serum aldosterone levels were increased in Hyper and Hyper+ Spir groups. In parallel, cardiac lipid peroxides and serum endothelin-1 were increased whereas cardiac superoxide dismutase, catalase, glutathione, and matrix metalloproteinase -2 were reduced in the Hyper group. Spironolactone decreased serum thyroid hormones and improved cardiac lipid peroxides and metalloproteinase -2 levels. The use of spironolactone decreased serum nitrite levels and increased cardiac SOD and glutathione. Cardiac levels of aldosterone, endothelin-1, transforming growth factor-beta and nitrite were similar among all groups. Conclusion: Hyperthyroid status was associated with an increase in aldosterone and oxidant/ inflammatory biomarkers. The use of spironolactone enhanced antioxidant defenses. Aldosterone antagonists may serve as potential drugs to attenuate the development of cardiac disease in hyperthyroidism.
-
-
-
Characterization of a New Positive Allosteric Modulator of AMPA Receptors - PAM-43: Specific Binding of the Ligand and its Ability to Potentiate AMPAR Currents
Background: Currently, the most dynamic areas in the glutamate receptor system neurobiology are the identification and development of positive allosteric modulators (PAMs) of glutamate ionotropic receptors. PAM-based drugs are of great interest as promising candidates for the treatment of neurological diseases, such as epilepsy, Alzheimer's disease, schizophrenia, etc. Understanding the molecular mechanisms underlying the biological action of natural and synthetic PAMs is a key point for modifying the original chemical compounds as well as for new drug design. Objective: We are trying to elaborate a system of molecular functional screening of ionotropic glutamate receptor probable PAMs. Methods: The system will be based on the radioligand - receptor method of analysis and will allow rapid quantification of new AMPAR probable PAMs molecular activity. We plan to use a tritiumlabeled analogue of recently elaborated ionotropic GluR probable PAM ([3H]PAM-43) as the main radioligand. Results: Here, we characterized the specific binding of the ligand and its ability to potentiate ionotropic GluR currents. The existence of at least two different sites of [3H]PAM-43 specific binding has been shown. One of the above sites is glutamate-dependent and is characterized by higher affinity. “Patchclamp” technique showed the ability of PAM-43 to potentiate ionotropic GluR currents in rat cerebellar Purkinje neurons in a concentration-dependent manner. Conclusion: The possibility of using PAM-43 as a model compound to study different allosteric effects of potential regulatory drugs (AMPAR allosteric regulators) was shown. [3H]PAM-43 based screening system will allow rapid selection of new AMPAR probable PAM structures and quantification of their molecular activity.
-
-
-
MiR-143 Inhibits Osteoclastogenesis by Targeting RANK and NF-ΚB and MAPK Signaling Pathways
Authors: Xianfeng He, Limei Zhu, Lin An and Jingwei ZhangObjective: To explore the effect of miRNA-143 on osteoclast formation and provide new ideas for the treatment of osteoporosis. Methods: Mice macrophage lines RAW264.7 cells after transfection were divided into four groups: control group, RANKL group, RANKL combined with miR-143 mimics group and RANKL combined with miR-NC group. TARCP staining was used to observe the effect of miR-143 on osteoclast formation. The expression of RANK, TRAF6 and NFATc-1 in the upstream of RANKL pathway was detected by real-time quantitative PCR (RT qPCR) and Western blotting (WB). The binding of miR-143 to TNFRSF11A was detected by double Luciferase Reporter Analysis. The effect of miR-143 on the expression of NF-ΚB (p65, I-ΚB-α) signal pathway in osteoclasts was detected. The effects of I-BET151 on the expression of osteoclast-specific genes TRACP, MMP 9, CtsK and c-Src were detected. Results: The positive level of osteoclasts in RANKL group and RANKL combined with miR-NC group was significantly higher than that of RANKL combined with miR-143 mimics group and control group (P < 0.05). The expression levels of RANK, TRAF6, NFATc-1, TRACP, MMP-9, CtsK and c-Src in RANKL group and RANKL combined with miR-NC group were significantly higher than those of RANKL combined with miR-143 mimics group and control group (P < 0.05). The expression levels of I-ΚB-α were significantly lower than that of RANKL combined with miR-143 mimics group and control group (P<0.05). Conclusion: MiR-143 can inhibit the expression of RANK, TRAF6 and downstream NFATc-1 in the RANKL pathway, thereby inhibiting the RANK/RANKL pathway. MiR-143 can inhibit the signal pathway of NF-ΚB (p65, I-ΚB-α). MiR-143 inhibits the expression of osteoclast-specific genes TRACP, MMP 9, CtsK and c-Src. That is to say, miR-143 inhibits osteoclast formation by targeting RANK, NF- ΚB and MAPK signaling pathways.
-
-
-
The Molecular and Enzyme Kinetic Basis for Altered Activity of Three Cytochrome P450 2C19 Variants Found in the Chinese Population
Authors: Amelia N. Dong, Nafees Ahemad, Yan Pan, Uma Devi Palanisamy, Beow Chin Yiap and Chin Eng OngBackground: There is a large inter-individual variation in cytochrome P450 2C19 (CYP2C19) activity. The variability can be caused by the genetic polymorphism of CYP2C19 gene. This study aimed to investigate the molecular and kinetics basis for activity changes in three alleles including CYP2C19*23, CYP2C19*24 and CYP2C19*25found in the Chinese population. Methods: The three variants expressed by bacteria were investigated using substrate (omeprazole and 3- cyano-7-ethoxycoumarin[CEC]) and inhibitor (ketoconazole, fluoxetine, sertraline and loratadine) probes in enzyme assays along with molecular docking. Results: All alleles exhibited very low enzyme activity and affinity towards omeprazole and CEC (6.1% or less in intrinsic clearance). The inhibition studies with the four inhibitors, however, suggested that mutations in different variants have a tendency to cause enhanced binding (reduced IC50 values). The enhanced binding could partially be explained by the lower polar solvent accessible surface area of the inhibitors relative to the substrates. Molecular docking indicated that G91R, R335Q and F448L, the unique mutations in the alleles, have caused slight alteration in the substrate access channel morphology and a more compact active site cavity hence affecting ligand access and binding. It is likely that these structural alterations in CYP2C19 proteins have caused ligand-specific alteration in catalytic and inhibitory specificities as observed in the in vitro assays. Conclusion: This study indicates that CYP2C19 variant selectivity for ligands was not solely governed by mutation-induced modifications in the active site architecture, but the intrinsic properties of the probe compounds also played a vital role.
-
-
-
Evaluation of the Anti-Tumor Activity of Niclosamide Nanoliposomes Against Colon Carcinoma
Background and Aims: Niclosamide is an established anti-helminthic drug, which has recently been shown to inhibit the growth of various cancer cells. To exploit the potential anti-tumor activity of this drug for systemic use, the problem of low aqueous solubility should be addressed. The present study tested the in vivo anti-tumor effects of a recently developed nanoliposomal preparation of niclosamide in an experimental model of colon carcinoma. Methods: The cytotoxicity of nanoliposomal niclosamide on CT26 colon carcinoma cells was evaluated using the MTT test. Inhibition of tumor growth was investigated in BALB/c mice bearing CT26 colon carcinoma cells. The animals were randomly divided into 4 groups including: 1) untreated control, 2) liposomal doxorubicin (15 mg/kg; single intravenous dose), 3) liposomal niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks), and 4) free niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks). To study therapeutic efficacy, tumor size and survival were monitored in 2-day intervals for 40 days. Results: In vitro results indicated that nanoliposomal and free niclosamide could exert cytotoxic effects with IC50 values of 4.5 and 2.5 μM, respectively. According to in vivo studies, nanoliposomal niclosamide showed a higher growth inhibitory activity against CT26 colon carcinoma cells compared with free niclosamide as revealed by delayed tumor growth and prolongation of survival. Conclusion: Nnaoliposomal encapsulation enhanced anti-tumor properties of niclosamide in an experimental model of colon carcinoma.
-
-
-
Role of Lacosamide in Preventing Pentylenetetrazole Kindling-Induced Alterations in the Expression of the Gamma-2 Subunit of the GABAA Receptor in Rats
Background: Epilepsy remains challenging to treat still no etiologic treatment has been identified, however, some antiepileptic drugs (AEDs) are able to modify the pathogenesis of the disease. Lacosamide (LCM) has been shown to possess complex anticonvulsant and neuroprotective actions, being an enhancer of the slow inactivation of voltage-gated sodium channels, and it has the potential to prevent epileptogenesis. Recent evidence has shown that LCM indirectly improves the function of GABAA receptors. Receptors at most GABAergic synapses involve the gamma-2 subunit, which contributes to both phasic and tonic inhibition, and its presence assures benzodiazepine sensitivity. Moreover, mutant gamma-2 subunits were associated with generalized epilepsy syndromes. In animal models, the expression of the gamma-2 subunit of the gamma-aminobutyric acid A receptor (GABAAg2) was shown to be increased in pentylenetetrazole (PTZ)-induced chemical kindling in Wistar rats. Objective: This study hypothesized that LCM might affect the kindling process by influencing the expression of GABAA receptors in the hippocampus. Methods: The gene and protein expression levels of the GABAAg2 were studied using RT-qPCR and immunofluorescent staining. Results: It was found that LCM treatment (10 mg/kg i.p. daily for 57 days) reduced the maximal intensity of the PTZ-induced seizures but did not prevent kindling. On the other hand, LCM treatment reverted the increase of mRNA expression of GABAAg2 in the hippocampus and prevented the decrease of GABAAg2 protein in the hippocampal CA1 region. Conclusion: LCM could exhibit modulatory effects on the GABAergic system of the hippocampus that may be independent of the anticonvulsant action.
-
Most Read This Month
