Current Molecular Pharmacology - Volume 12, Issue 2, 2019
Volume 12, Issue 2, 2019
-
-
Does the Development of Vaccines Advance Solutions for Tuberculosis?
Authors: Manaf AlMatar, Essam A. Makky, Husam AlMandeal, Emel Eker, Begüm Kayar, Işıl Var and Fatih KöksalBackground: Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial. Objective: The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.
-
-
-
MiR-597 Targeting 14-3-3σ Enhances Cellular Invasion and EMT in Nasopharyngeal Carcinoma Cells
Authors: Lisha Xie, Tao Jiang, Ailan Cheng, Ting Zhang, Pin Huang, Pei Li, Gebo Wen, Fanghong Lei, Yun Huang, Xia Tang, Jie Gong, Yunpeng Lin, Jianke Kuai and Weiguo HuangBackground: Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. Methods: Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. Results: miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. Conclusion: Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.
-
-
-
Mephedrone Impact on Matrix Metalloproteinases Activity - Do they Influence the Memory Processes?
Background: The use of drugs of addiction, as mephedrone, is associated with functional neuronal disorders due to remodeling of the nervous tissue. Key enzymes in remodeling are extracellular matrix (ECM) proteases like matrix metalloproteases (MMPs). Recently, MMPs have been of great interest as some studies point to a fact that the alterations in structural remodeling of synaptic connections modify learning-dependent changes, which remain active even after a prolonged period of abstinence. This entails a continuous development of dependence. Objectives: The aim of the study was to determine the influence of subchronic exposure to three different doses of mephedrone on the activity of MMP-2 and 9 in hippocampus and prefrontal cortex and how this was correlated with memory processes in mice. Methods: The homogenates of hippocampus and cortex were assayed for MMP-2 and MMP-9 activity by gelatin zymography. Memory consolidation processes were evaluated in the passive avoidance (PA) test. Results: The study confirmed the dose-dependent increase in activity of MMP-2 and -9 exerted by subchronic administration of mephedrone. Moreover, the highest dose of mephedrone attenuated consolidation of memory and learning processes. Conclusions: We could hypothesize that inhibition of MMPs can be considered as a therapeutic option for the treatment of addictive behaviors associated with cognitive processes. Moreover, further studies are required to find out if elevated activities of MMPs contribute to brain damage or recovery from brain damage caused directly by mephedrone.
-
-
-
Therapeutic Potential of Morin in Ovalbumin-induced Allergic Asthma Via Modulation of SUMF2/IL-13 and BLT2/NF-kB Signaling Pathway
Authors: Amit D. Kandhare, Zihao Liu, Anwesha A. Mukherjee and Subhash L. BodhankarBackground: Allergic asthma is a chronic immune-inflammatory disorder, characterized by airway inflammation and airway hyperresponsiveness (AHR). Morin is a natural flavonoid reported to exhibit inhibitory action against IgE-mediated allergic response. Aim: To determine the efficacy of murine model of ovalbumin (OVA)-induced AHR inhibition by morin and decipher the molecular mechanism involved. Materials and Methods: Sprague-Dawley rats were sensitized and challenged with OVA to induce AHR. Rats received treatment with morin (10, 30 and 100 mg/kg, p.o.) for the next 28 days. Results: Morin (30 and 100 mg/kg) significantly and dose-dependently attenuated (p < 0.01 and p < 0.001) OVA-induced alterations in pulse oxy and lung function test, increased bronchoalveolar lavage fluid cell counts, elevated total protein and albumin levels in serum, BALF, and lungs, increased serum total and OVA-specific IgE levels and, elevated oxidative stress levels in the lung. RT-PCR analysis revealed that morin treatment (30 and 100 mg/kg) significantly (p < 0.001) up-regulated SUMF2 mRNA expression in lungs whereas mRNA expressions of BLT2, NF-ΚB, and Th2-cytokine (TNF-α, IL-1β, IL-4, IL-6, and IL-13) were down-regulated significantly and dose-dependently (p < 0.01 and p < 0.001). Also, histologic and ultrastructural studies showed that morin significantly inhibited (p < 0.001) OVAinduced perivascular and peribranchial inflammatory infiltration and interstitial fibrosis. Conclusion: Morin exhibited inhibitory effect against OVA-induced allergic asthma by activation of SUMF2 which impeded IL-13 expression and in turn attenuated Th2-cytokines, BLT2, NF-ΚB, and IgE levels to ameliorate AHR. Thus, our findings suggested that morin could be considered as a potential alternative therapeutic agent for the management of allergic asthma.
-
-
-
Activation of GLP-1 and Glucagon Receptors Regulates Bile Homeostasis Independent of Thyroid Hormone
Background: Balanced coagonists of glucagon-like peptide-1 (GLP-1) and glucagon receptors are emerging therapies for the treatment of obesity and diabetes. Such coagonists also regulate lipid metabolism, independent of their body weight lowering effects. Many actions of the coagonists are partly mediated by fibroblast growth factor 21 (FGF21) signaling, with the major exception of bile homeostasis. Since thyroid hormone is an important regulator of bile homeostasis, we studied the involvement of thyroid hormone in coagonist-induced changes in lipid and bile metabolism. Methods: We evaluated the effect of a single dose of coagonist Aib2 C24 chimera2 at 150 to 10000 μg/kg on tetraiodothyronine (T4) and triiodothyronine (T3) in high-fat diet-induced obese (DIO) mice and chow-fed mice. Repeated dose treatment of coagonist (150 μg/kg, subcutaneously) was assessed in four mice models namely, on lipid and bile homeostasis in DIO mice, propylthiouracil (PTU)-treated DIO mice, methimazole (MTM)-treated DIO mice and choline-deficient, L-amino acid-defined, highfat diet (CDAHFD)-induced nonalcoholic steatohepatitis (NASH). Results: Single dose treatment of coagonist did not alter serum T3 and T4 in chow-fed mice and DIO mice. Coagonist treatment improved lipid metabolism and biliary cholesterol excretion. Chronic treatment of GLP-1 and glucagon coagonist did not alter serum T3 in hypothyroid DIO mice and CDAHFDinduced NASH. Coagonist increased serum T4 in DIO mice after 4 and 40 weeks of treatment, though no change in T4 levels was observed in hypothyroid mice or mice with NASH. Conclusion: Our data demonstrate that coagonist of GLP-1 and glucagon receptors does not modulate bile homeostasis via thyroid signaling.
-
-
-
Alterations of RNA Metabolism by Proteomic Analysis of Breast Cancer Cells Exposed to Marycin: A New Optically Active Porphyrin
Objective: Marycin is a porphyrin-type compound synthetically modified to spontaneously release fluorescence. This study is aimed at understanding possible mechanisms that could account for the antiproliferative effects observed in marycin. A proteomic approach was used to identify molecular effects. The proteome of proliferating MDA-MB-231 breast cancer cells was compared with that of marycin-treated cells. Methods: Label-free proteomic analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to reveal changes in protein expression and fluorescence microscopy and flow cytometry were used to detect subcellular organelle dysfunctions. Results: The bioinformatic analysis indicated an enhancement of the expression of proteins remodeling RNA splicing and more in general, of RNA metabolism. Marycin did not localize into the mitochondria and did not produce a dramatic increase of ROS levels in MDA-MB-231 cells. Marycin stained organelles probably peroxisomes. Conclusions: The results could support the possibility that the peroxisomes are involved in cell response to marycin.
-
-
-
Assessment of Genotoxicity of Levosimendan in Human Cultured Lymphocytes
Authors: Abeer M. Rababa'h, Omar F. Khabour, Karem H. Alzoubi, Dua'a Al-momani and Mera AbabnehBackground and Objective: Levosimendan is a positive inotropic and a vasodilator agent with pleotropic characteristics that include antioxidation, anti-inflammation and smooth muscle vasodilation. Methods: In this study, the effects of levosimendan (0, 0.1, 1, 10, and 20 μg/ml) on oxidative DNA damage and sister-chromatid exchanges (SCEs) were evaluated in human cultured lymphocytes. Results: The results showed that levosimendan increased the frequency of SCEs in all examined concentrations (P<0.01) except for 0.1 μg/ml. On the other hand, levosimendan did not induce oxidative DNA damage as measured by the 8-OHdG biomarker (P > 0.05). In addition, neither mitotic arrest nor proliferation index was affected by levosimendan at all examined doses (P > 0.05). Conclusion: In conclusion, levosimendan might be associated with increases in sister-chromatid exchanges in cultured human lymphocytes. In vivo studies are required to confirm the present findings.
-
Most Read This Month
