Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
This item has no full text
side by side viewer icon HTML

Abstract

Background:

A number of studies have evaluated the effect of colour Doppler ultrasound in patients with cervical cancer.

Objective: This study aims to evaluate the efficacy of colour Doppler ultrasound and two-dimensional ultrasound of monitoring patients with cervical cancer.

Methods:

Colour Doppler ultrasound (Experimental group) and two-dimensional ultrasound (Control group) are used to monitor cervical cancer and assess the treatment effects. PFS, CI, HR, DCR, ORR, PR, SD, PD, ROD, sensitivity, and specificity, accuracy between the two groups were collected and analyzed.

Results:

A total of 50 patients are included in this study, and the results show that PFS (Experimental group (EG) 5.8±2.2 versus Control group (CG) 6.1±2.6), CI (EG 20% versus CG 16%), HR (EG0.31±0.18 versus CG 0.36±0.21), DCR (EG 80% versus CG 84%), ORR(EG 28% versus CG 36%), PR (EG 16% versus CG 20%), SD (EG 48% versus CG 56%), PD (EG 12% versus CG 16%) (EG 12% versus CG 16%), ROD(EG 44% versus CG 52%) between the two groups are >0.05, and the values of sensitivity (EG 75.6% versus CG 40.2%), specificity (EG 78.4% versus CG 43.3%), and accuracy(EG 80.5% versus CG 41.4%) between the two groups are<0.05.

Conclusion:

Both Colour Doppler ultrasound and two-dimensional ultrasound are effective methods to evaluate the efficacy of concurrent chemo-radiotherapy in patients with cervical cancer.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230908111722
2023-10-13
2025-09-11
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/e080923220824.html?itemId=/content/journals/cmir/10.2174/1573405620666230908111722&mimeType=html&fmt=ahah

References

  1. SmallW.Jr BaconM.A. BajajA. ChuangL.T. FisherB.J. HarkenriderM.M. JhingranA. KitchenerH.C. MileshkinL.R. ViswanathanA.N. GaffneyD.K. Cervical cancer: A global health crisis.Cancer2017123132404241210.1002/cncr.3066728464289
    [Google Scholar]
  2. JohnsonC.A. JamesD. MarzanA. ArmaosM. Cervical cancer: An overview of pathophysiology and management.Semin. Oncol. Nurs.201935216617410.1016/j.soncn.2019.02.00330878194
    [Google Scholar]
  3. RevathideviS. MuruganA.K. NakaokaH. InoueI. MunirajanA.K. APOBEC: A molecular driver in cervical cancer pathogenesis.Cancer Lett.202149610411610.1016/j.canlet.2020.10.00433038491
    [Google Scholar]
  4. ZhouP. ZhangY. LuoS. ZhangS. Pelvic bone marrow sparing radiotherapy for cervical cancer: A systematic review and meta-analysis.Radiother. Oncol.202116510311810.1016/j.radonc.2021.10.01534718055
    [Google Scholar]
  5. SasidharanB. RamadassB. ViswanathanP.N. SamuelP. GowriM. PugazhendhiS. RamakrishnaB. A phase 2 randomized controlled trial of oral resistant starch supplements in the prevention of acute radiation proctitis in patients treated for cervical cancer.J. Cancer Res. Ther.20191561383139110.4103/jcrt.JCRT_152_1931898677
    [Google Scholar]
  6. BachSP STAR-TREC CollaborativeCan we Save the rectum by watchful waiting or TransAnal surgery following (chemo)Radiotherapy versus Total mesorectal excision for early REctal Cancer (STAR-TREC)? Protocol for the international, multicentre, rolling phase II/III partially randomized patient preference trial evaluating long-course concurrent chemoradiotherapy versus short-course radiotherapy organ preservation approaches.Colorectal Dis2022245639651
    [Google Scholar]
  7. ChungH.C. RosW. DelordJ.P. PeretsR. ItalianoA. Shapira-FrommerR. ManzukL. Piha-PaulS.A. XuL. ZeigenfussS. PruittS.K. LearyA. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study.J. Clin. Oncol.201937171470147810.1200/JCO.18.0126530943124
    [Google Scholar]
  8. SantinA.D. DengW. FrumovitzM. BuzaN. BelloneS. HuhW. KhleifS. LankesH.A. RatnerE.S. O’CearbhaillR.E. JazaeriA.A. BirrerM. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002).Gynecol. Oncol.2020157116116610.1016/j.ygyno.2019.12.03431924334
    [Google Scholar]
  9. LiX. ZhouX. ZengM. ZhouY. ZhangY. LiouY.L. ZhuH. Methylation of PAX1 gene promoter in the prediction of concurrent chemo-radiotherapy efficacy in cervical cancer.J. Cancer202112175136514310.7150/jca.5746034335930
    [Google Scholar]
  10. LiM. ZhaoC. ZhaoY. LiJ. WangJ. LuoH. TangZ. GuoY. WeiL. The role of PAX1 methylation in predicting the pathological upgrade of cervical intraepithelial neoplasia before cold knife conization.Front. Oncol.202312106472210.3389/fonc.2022.106472236713512
    [Google Scholar]
  11. XuY ZhuL RuT Three-dimensional power Doppler ultrasound in the early assessment of response to concurrent chemo-radiotherapy for advanced cervical cancer.Acta radiologica201758911471154
    [Google Scholar]
  12. ChaseD HuangH Q MonkB J Patient-reported outcomes at discontinuation of anti-angiogenesis therapy in the randomized trial of chemotherapy with bevacizumab for advanced cervical cancer: An NRG Oncology Group study.Int. J. Gynecol. Cancer2020305596601
    [Google Scholar]
  13. HuX. LiuH. YeM. ZhuX. Prognostic value of microvessel density in cervical cancer.Cancer Cell Int.201818115210.1186/s12935‑018‑0647‑330305802
    [Google Scholar]
  14. WongA. ChenS.Q. HalvorsonB.D. FrisbeeJ.C. Microvessel density: Integrating sex-based differences and elevated cardiovascular risks in metabolic syndrome.J. Vasc. Res.202259111510.1159/00051878734535606
    [Google Scholar]
  15. BattistellaA. PartelliS. AndreasiV. MarinoniI. PalumboD. TacelliM. LenaM.S. MuffattiF. MushtaqJ. CapursoG. ArcidiaconoP.G. De CobelliF. DoglioniC. PerrenA. FalconiM. Preoperative assessment of microvessel density in nonfunctioning pancreatic neuroendocrine tumors (NF-PanNETs).Surgery202217241236124410.1016/j.surg.2022.06.01735953308
    [Google Scholar]
  16. BelitsosP. PapoutsisD. RodolakisA. MesogitisS. AntsaklisA. Three-dimensional power Doppler ultrasound for the study of cervical cancer and precancerous lesions.Ultrasound Obstet. Gynecol.201240557658110.1002/uog.1113422323111
    [Google Scholar]
  17. LiX. LinT. LiuB. WeiW. Diagnosis of cervical cancer with parametrial invasion on whole-tumor dynamic contrast-enhanced magnetic resonance imaging combined with whole-lesion texture analysis based on T2- weighted images.Front. Bioeng. Biotechnol.2020859010.3389/fbioe.2020.0059032596230
    [Google Scholar]
  18. SunK. ZhuH. ChaiW. ZhanY. NickelD. GrimmR. FuC. YanF. Whole-lesion histogram and texture analyses of breast lesions on inline quantitative DCE mapping with CAIPIRINHA-Dixon-TWIST-VIBE.Eur. Radiol.2020301576510.1007/s00330‑019‑06365‑831372782
    [Google Scholar]
  19. YamasatoK. ZaludI. Three dimensional power Doppler of the placenta and its clinical applications.J. Perinat. Med.201745669370010.1515/jpm‑2016‑036628306539
    [Google Scholar]
  20. Porriño-BustamanteM.L. Fernández-PugnaireM.A. Castellote-CaballeroL. Colour Doppler ultrasound study in patients with frontal fibrosing alopecia.ISSI2021275709714
    [Google Scholar]
  21. BigliardiE DentiL De CesarisV Colour doppler ultrasound imaging of blood flows variations in neoplastic and non-neoplastic testicular lesions in dogs.Reprod. Domest. Anim.20195416371
    [Google Scholar]
  22. WatthanasathitnukunW. PranpanusS. PetpichetchianC. Two-dimensional ultrasound signs as predictive markers of massive peri-operative blood loss in placenta previa suspicious for placenta accreta spectrum (PAS) disorder.PLoS One20221710e027615310.1371/journal.pone.027615336240191
    [Google Scholar]
  23. HataT. TanakaH. NoguchiJ. HataK. Three-dimensional ultrasound evaluation of the placenta.Placenta201132210511510.1016/j.placenta.2010.11.00121115197
    [Google Scholar]
  24. RobbinsC.B. ThompsonA.C. BhullarP.K. KooH.Y. AgrawalR. SoundararajanS. YoonS.P. PolascikB.W. ScottB.L. GrewalD.S. FekratS. Characterization of retinal microvascular and choroidal structural changes in parkinson disease.JAMA Ophthalmol.2021139218218810.1001/jamaophthalmol.2020.573033355613
    [Google Scholar]
  25. RasuloF.A. BertuettiR. Transcranial doppler and optic nerve sonography.J. Cardiothorac. Vasc. Anesth.201933Suppl. 1S38S5210.1053/j.jvca.2019.03.04031279352
    [Google Scholar]
  26. ChiaroniP.M. ChapronT. PurcellY. ZuberK. SavatovskyJ. CaputoG. GillardP. ElmalehM. BergèsO. LeclerA. Diagnostic accuracy of Quantitative Colour Doppler Flow imaging in distinguishing Persistent Fetal Vasculature from Retinal Detachment.Acta Ophthalmol.2022100219620210.1111/aos.1479333629492
    [Google Scholar]
  27. CohenP.A. JhingranA. OakninA. DennyL. Cervical cancer.Lancet20193931016716918210.1016/S0140‑6736(18)32470‑X30638582
    [Google Scholar]
  28. BedellS.L. GoldsteinL.S. GoldsteinA.R. GoldsteinA.T. Cervical cancer screening: Past, present, and future.Sex. Med. Rev.202081283710.1016/j.sxmr.2019.09.00531791846
    [Google Scholar]
  29. BelfattoA. Vidal UrbinatiA.M. CiardoD. FranchiD. CattaniF. LazzariR. Jereczek-FossaB.A. OrecchiaR. BaroniG. CerveriP. Comparison between model-predicted tumor oxygenation dynamics and vascular-/flow-related Doppler indices.Med. Phys.20174452011201910.1002/mp.1219228273332
    [Google Scholar]
  30. WangR. PanW. JinL. HuangW. LiY. WuD. GaoC. MaD. LiaoS. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge.Cancer Lett.20204718810210.1016/j.canlet.2019.11.03931812696
    [Google Scholar]
  31. Martínez-RodríguezF. Limones-GonzálezJ.E. Mendoza-AlmanzaB. Esparza-IbarraE.L. Gallegos-FloresP.I. Ayala-LujánJ.L. Godina-GonzálezS. SalinasE. Mendoza-AlmanzaG. Understanding cervical cancer through proteomics.Cells2021108185410.3390/cells1008185434440623
    [Google Scholar]
  32. MarquinaG. ManzanoA. CasadoA. Targeted agents in cervical cancer: Beyond bevacizumab.Curr. Oncol. Rep.20182054010.1007/s11912‑018‑0680‑329611060
    [Google Scholar]
  33. MatsuoK PurushothamS JiangB Survival outcome prediction in cervical cancer: Cox models vs deep-learning model.Am J Obstet Gynecol20192204381.e1381.e14
    [Google Scholar]
  34. MengJ ZhuL ZhuL Histogram analysis of apparent diffusion coefficient for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo-radiotherapy.Acta radiologica2017581114001408
    [Google Scholar]
  35. LiuD YangM WuQ Application of ultrasonography in the diagnosis and treatment of cesarean scar pregnancy.Clinica Chimica Acta2018486291297
    [Google Scholar]
  36. ThéodoreC. LevaillantJ.M. CapmasP. ChabiN. SkalliD. Vienet-LeguéL. HaddadB. FernandezH. TouboulC. MRI and ultrasound fusion imaging for cervical cancer.Anticancer Res.20173795079508528870937
    [Google Scholar]
  37. PareekV. BarthwalM. GiridharP. PatilP.A. UpadhyayA.D. MallickS. A phase III randomised trial of trans-abdominal ultrasound in improving application quality and dosimetry of intra-cavitary brachytherapy in locally advanced cervical cancer.Gynecol. Oncol.2021160237537810.1016/j.ygyno.2020.11.03233293047
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230908111722
Loading
/content/journals/cmir/10.2174/1573405620666230908111722
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test