Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Purpose

The diagnosis and quantification of early-stage alcoholic liver fibrosis (ALF) are vital and the objective is to establish a noninvasive PET technique to quantify the collagenogenesis of hepatic stellate cells (HSC) in an ALF mouse model.

Methods

To establish the ALF animal model, a liquid alcohol diet (8 weeks), and CCl4 were injected intraperitoneally at 5-8 weeks. A liquid scintillation counter was used to measure [3H]proline uptake by rats HSC experiment. Collagen type 1 production was tested by ELISA in a culture medium. The expression of type 1 collagen and proline transporters in experiments was compared between ALF rats and mice. Different doses of unlabeled proline and benztropine were quantified [3H]proline in liver tissues. Tracer uptake in different organs including the liver in ALF and control mice was quantified using [18F]fluoro-proline microPET/CT.

Results

The optimal dose and time of [3H]proline uptake by HSC was 19-37MBq/L and 30-90min after culture. Higher [3H]proline uptake and type 1 collagen production in HSC were found in ALF and control rats. There was a high correlation between [3H]proline uptake and type 1 collagen in ALF rats. To cut the costs of tracer usage and imaging , the mouse-to-rat model was compared. Type 1 collagen levels of ALF mice liver tissue in were similar to ALF rats, as was proline transporter protein. Unlabeled proline of type 1 collagen and [3H]proline uptake of ALF mice was blocked by benztropine. [18F]fluoro-proline PET/CT imaging, SUVmax in the liver, normalized liver/brain and liver/thigh ratio were significantly different between ALF mice and controls and there was a strong positive correlation among these three indexes in ALF mice.

Conclusion

[18F]fluoro-proline microPET/CT is feasible to quantify collagenogenesis in HSC in early-stage ALF animal models, which may be used as a promising and reliable noninvasive diagnostic technique.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230825113455
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E250823220367.html?itemId=/content/journals/cmir/10.2174/1573405620666230825113455&mimeType=html&fmt=ahah

References

  1. YounossiZ. HenryL. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality.Gastroenterology201615081778178510.1053/j.gastro.2016.03.00526980624
    [Google Scholar]
  2. SingalA.K. BatallerR. AhnJ. KamathP.S. ShahV.H. ACG clinical guideline: Alcoholic liver disease.Am. J. Gastroenterol.2018113217519410.1038/ajg.2017.46929336434
    [Google Scholar]
  3. LiS. SunX. ChenM. YingZ. WanY. PiL. RenB. CaoQ. Liver fibrosis conventional and molecular imaging diagnosis update.J. Liver20198123631341723
    [Google Scholar]
  4. WongT. DangK. LadhaniS. SingalA.K. WongR.J. Prevalence of alcoholic fatty liver disease among adults in the United States, 2001-2016.JAMA2019321171723172510.1001/jama.2019.227631063562
    [Google Scholar]
  5. DatN.Q. ThuyL.T.T. HieuV.N. HaiH. HoangD.V. Thi Thanh HaiN. ThuyT.T.V. KomiyaT. RomboutsK. DongM.P. HanhN.V. HoangT.H. Sato-MatsubaraM. DaikokuA. KadonoC. OikawaD. YoshizatoK. TokunagaF. PinzaniM. KawadaN. Hexa histidine–tagged recombinant human cytoglobin deactivates hepatic stellate cells and inhibits liver fibrosis by scavenging reactive oxygen species.Hepatology20217362527254510.1002/hep.3175233576020
    [Google Scholar]
  6. SchuppanD. Ashfaq-KhanM. YangA.T. KimY.O. Liver fibrosis: Direct antifibrotic agents and targeted therapies.Matrix Biol.201868-6943545110.1016/j.matbio.2018.04.00629656147
    [Google Scholar]
  7. Kartasheva-EbertzD. GastonJ. Lair-MehiriL. MassaultP.P. ScattonO. VaillantJ.C. MorozovV.A. PolS. LagayeS. Adult human liver slice cultures: Modelling of liver fibrosis and evaluation of new anti-fibrotic drugs.World J. Hepatol.202113218721710.4254/wjh.v13.i2.18733708350
    [Google Scholar]
  8. AttaH.M. Reversibility and heritability of liver fibrosis: Implications for research and therapy.World J. Gastroenterol.201521175138514810.3748/wjg.v21.i17.513825954087
    [Google Scholar]
  9. GinèsP. KragA. AbraldesJ.G. SolàE. FabrellasN. KamathP.S. Liver cirrhosis.Lancet2021398103081359137610.1016/S0140‑6736(21)01374‑X34543610
    [Google Scholar]
  10. MatsudaM. SekiE. Hepatic stellate cell–macrophage crosstalk in liver fibrosis and carcinogenesis.Semin. Liver Dis.202040330732010.1055/s‑0040‑170887632242330
    [Google Scholar]
  11. JiangY. XiangC. ZhongF. ZhangY. WangL. ZhaoY. WangJ. DingC. JinL. HeF. WangH. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis.Theranostics202111136137810.7150/thno.4636033391480
    [Google Scholar]
  12. ParolaM. PinzaniM. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues.Mol. Aspects Med.201965375510.1016/j.mam.2018.09.00230213667
    [Google Scholar]
  13. KarinD. KoyamaY. BrennerD. KisselevaT. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis.Differentiation2016923849210.1016/j.diff.2016.07.00127591095
    [Google Scholar]
  14. GargM. KaurS. BanikA. KumarV. RastogiA. SarinS.K. MukhopadhyayA. TrehanpatiN. Bone marrow endothelial progenitor cells activate hepatic stellate cells and aggravate carbon tetrachloride induced liver fibrosis in mice via paracrine factors.Cell Prolif.2017504e1235510.1111/cpr.1235528682508
    [Google Scholar]
  15. ZhangC.Y. YuanW.G. HeP. LeiJ.H. WangC.X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets.World J. Gastroenterol.20162248105121052210.3748/wjg.v22.i48.1051228082803
    [Google Scholar]
  16. ArroyoN. VillamayorL. DíazI. CarmonaR. Ramos-RodríguezM. Muñoz-ChápuliR. PasqualiL. ToscanoM.G. MartínF. CanoD.A. RojasA. GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells.JCI Insight2021623e15005910.1172/jci.insight.15005934699385
    [Google Scholar]
  17. LiP. WuG. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth.Amino Acids2018501293810.1007/s00726‑017‑2490‑628929384
    [Google Scholar]
  18. LangenK.J. BörnerA.R. Müller-MattheisV. HamacherK. HerzogH. AckermannR. CoenenH.H. Uptake of cis-4-[18F]fluoro-L-proline in urologic tumors.J. Nucl. Med.200142575275411337571
    [Google Scholar]
  19. WallaceW.E. GuptaN.C. HubbsA.F. MazzaS.M. BishopH.A. KeaneM.J. BattelliL.A. MaJ. SchleiffP. Cis-4-[(18)F]fluoro-L-proline PET imaging of pulmonary fibrosis in a rabbit model.J. Nucl. Med.200243341342011884503
    [Google Scholar]
  20. LangenK.J. JaroschM. HamacherK. MühlensiepenH. WeberF. FloethF. PauleitD. HerzogH. CoenenH.H. Imaging of gliomas with Cis-4-[18F]fluoro-L-proline.Nucl. Med. Biol.2004311677510.1016/S0969‑8051(03)00121‑514741571
    [Google Scholar]
  21. CaoQ. LuX. AzadB.B. cis-4-[18F]fluoro-L-proline molecular imaging experimental liver fibrosis.Front Mol Biosci202079010.3389/fmolb.2020.00090
    [Google Scholar]
  22. SuY. GuH. WengD. ZhouY. LiQ. ZhangF. ZhangY. ShenL. HuY. LiH. Association of serum levels of laminin, type IV collagen, procollagen III N-terminal peptide, and hyaluronic acid with the progression of interstitial lung disease.Medicine20179618e661710.1097/MD.000000000000661728471958
    [Google Scholar]
  23. KwoP.Y. CohenS.M. LimJ.K. ACG Clinical Guideline: Evaluation of abnormal liver chemistries.Am. J. Gastroenterol.20171121183510.1038/ajg.2016.51727995906
    [Google Scholar]
  24. van de BovenkampM. GroothuisG.M.M. DraaismaA.L. MeremaM.T. BezuijenJ.I. van GilsM.J. MeijerD.K.F. FriedmanS.L. OlingaP. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu.Toxicol. Sci.200585163263810.1093/toxsci/kfi12715728706
    [Google Scholar]
  25. HamarnehS.R. KimB.M. KaliannanK. MorrisonS.A. TantilloT.J. TaoQ. MohamedM.M.R. RamirezJ.M. KarasA. LiuW. HuD. TeshagerA. GulS.S. EconomopoulosK.P. BhanA.K. MaloM.S. ChoiM.Y. HodinR.A. Intestinal alkaline phosphatase attenuates alcohol-induced hepatosteatosis in mice.Dig. Dis. Sci.20176282021203410.1007/s10620‑017‑4576‑028424943
    [Google Scholar]
  26. MazzaS.M. Stereospecific, semi-automated, N.C.A. syntheses ofcis-4-[18F]fluoro-L-proline andtrans-4-[18F]fluoro-L-proline.J. Labelled Comp. Radiopharm.200043101047105810.1002/1099‑1344(200009)43:10<1047::AID‑JLCR391>3.0.CO;2‑L
    [Google Scholar]
  27. PenningtonH.L. HallP.D.L.M. WilceP.A. WorrallS. Ethanol feeding enhances inflammatory cytokine expression in lipopolysaccharide-induced hepatitis.J. Gastroenterol. Hepatol.199712430531310.1111/j.1440‑1746.1997.tb00426.x9195371
    [Google Scholar]
  28. CaoQ. MakK.M. LieberC.S. Dilinoleoylphosphatidylcholine decreases acetaldehyde-induced TNF-α generation in Kupffer cells of ethanol-fed rats.Biochem. Biophys. Res. Commun.2002299345946410.1016/S0006‑291X(02)02672‑412445823
    [Google Scholar]
  29. GeislerS. ErmertJ. StoffelsG. WilluweitA. GalldiksN. FilssC. ShahN. CoenenH. LangenK.J. Isomers of 4-[18F]fluoro-proline: radiosynthesis, biological evaluation and results in humans using PET.Curr. Radiopharm.20147212313210.2174/187447100766614090215291625183212
    [Google Scholar]
  30. LuoN. LiJ. WeiY. LuJ. DongR. Hepatic stellate cell: A Double-Edged Sword in the Liver.Physiol. Res.202170682182910.33549/physiolres.93475534717063
    [Google Scholar]
  31. JungY.K. YimH.J. Reversal of liver cirrhosis: Current evidence and expectations.Korean J. Intern. Med.201732221322810.3904/kjim.2016.26828171717
    [Google Scholar]
  32. YangW. HeH. WangT. SuN. ZhangF. JiangK. ZhuJ. ZhangC. NiuK. WangL. YuanX. LiuN. LiL. WeiW. HuJ. Single‐cell transcriptomic analysis reveals a hepatic stellate cell–activation roadmap and myofibroblast origin during liver fibrosis in mice.Hepatology20217452774279010.1002/hep.3198734089528
    [Google Scholar]
  33. ImW.H. SongJ.S. JangW. Noninvasive staging of liver fibrosis: Review of current quantitative CT and MRI-based techniques.Abdom. Radiol.20214793051306710.1007/s00261‑021‑03181‑x34228199
    [Google Scholar]
  34. LoombaR. AdamsL.A. Advances in non-invasive assessment of hepatic fibrosis.Gut20206971343135210.1136/gutjnl‑2018‑31759332066623
    [Google Scholar]
  35. LuY. WangQ. ZhangT. LiJ. LiuH. YaoD. HouL. TuB. WangD. Staging liver fibrosis: Comparison of Native T1 Mapping, T2 Mapping, and T1ρ: An experimental study in rats with bile duct ligation and carbon tetrachloride at 11. 7 T MRI.J. Magn. Reson. Imaging202255250751710.1002/jmri.2782234254388
    [Google Scholar]
  36. TsaiY.W. ZhouZ. GongC.S.A. TaiD.I. CristeaA. LinY.C. TangY.C. TsuiP.H. Ultrasound detection of liver fibrosis in individuals with hepatic steatosis using the homodyned k distribution.Ultrasound Med. Biol.2021471849410.1016/j.ultrasmedbio.2020.09.02133109381
    [Google Scholar]
  37. TartisM.S. KruseD.E. ZhengH. ZhangH. KheirolomoomA. MarikJ. FerraraK.W. Dynamic microPET imaging of ultrasound contrast agents and lipid delivery.J. Control. Release2008131316016610.1016/j.jconrel.2008.07.03018718854
    [Google Scholar]
  38. BörnerA.R. LangenK.J. HerzogH. HamacherK. Müller-MattheisV. SchmitzT. AckermannR. CoenenH.H. Whole-body kinetics and dosimetry of cis-4-[18F]fluoro-l-proline.Nucl. Med. Biol.2001r28328729210.1016/S0969‑8051(00)00198‑011323239
    [Google Scholar]
  39. ArteelG.E. Liver-lung axes in alcohol-related liver disease.Clin. Mol. Hepatol.202026467067610.3350/cmh.2020.017433053938
    [Google Scholar]
  40. HirthM. GöltlP. WeissC. EbertM.P. SchneiderA. Association between pancreatic burnout and liver cirrhosis in alcoholic chronic pancreatitis.Digestion2021102688789410.1159/00051648234461618
    [Google Scholar]
  41. SmithP. JeffersL.A. KovalM. Effects of different routes of endotoxin injury on barrier function in alcoholic lung syndrome.Alcohol201980818910.1016/j.alcohol.2018.08.00731278041
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230825113455
Loading
/content/journals/cmir/10.2174/1573405620666230825113455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test