Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

The American Cancer Society (ACS) reported in their Cancer Facts and Figures 2021 that prostate cancer (PCa) is the second leading cause of death among American men, with an average age of diagnosis being 66 years. This health issue predominantly affects older men and poses a significant challenge for radiologists, urologists, and oncologists when it comes to accurately diagnosing and treating it in a timely manner. Detecting PCa with precision and on time is crucial for proper treatment planning and reducing the increasing mortality rate. This paper focuses on a computer-aided diagnosis (CADx) system, which is discussed in detail with different phases specific to PCa. Each phase of CADx is comprehensively analyzed and evaluated based on recent state-of-the-art techniques in both quantitative and qualitative aspects. This study outlines significant research gaps and findings for every phase of CADx, providing valuable insights to biomedical engineers and researchers.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230522151406
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E220523217205.html?itemId=/content/journals/cmir/10.2174/1573405620666230522151406&mimeType=html&fmt=ahah

References

  1. American Cancer SocietyCancer Facts & Figures.2021Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (Accessed on 6 February 2021.)
  2. FerlayJ. ErvikM. LamF. ColombetM. MeryL. PiñerosM. ZnaorA. SoerjomataramI. BrayF. Global Cancer Observatory: Cancer TodayLyon, FranceInternational Agency for Research on Cancer2020Available from: https://gco.iarc.fr/today (Accessed on 06-07-2021).
    [Google Scholar]
  3. ZhangX SmithN WebbA. Medical imaging.Biomedical Information TechnologyElsevier B.V.200832710.1016/B978‑012373583‑6.50005‑0
    [Google Scholar]
  4. LemaîtreG. MartíR. FreixenetJ. VilanovaJ.C. WalkerP.M. MeriaudeauF. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review.Comput. Biol. Med.20156083110.1016/j.compbiomed.2015.02.00925747341
    [Google Scholar]
  5. LeeC.H. Akin-OlugbadeO. KirschenbaumA. Overview of prostate anatomy, histology, and pathology.Endocrinol. Metab. Clin. North Am.2011403565575, viii-ix10.1016/j.ecl.2011.05.01221889721
    [Google Scholar]
  6. LitjensG. Computerized detection of cancer in multi-parametric prostate MRI: PhD thesis.2015Available from: https://geertlitjens.nl/publication/litj-15-a/litj-15-a.pdf
  7. McNealJ.E. The zonal anatomy of the prostate.Prostate198121354910.1002/pros.29900201057279811
    [Google Scholar]
  8. McNealJ.E. RedwineE.A. FreihaF.S. StameyT.A. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread.Am. J. Surg. Pathol.1988121289790610.1097/00000478‑198812000‑000013202246
    [Google Scholar]
  9. UdohE.A. EssietI.U. EkwereP.D. Correlation between prostate size and age of patients evaluated for symptomatic benign prostatic hyperplasia.Ibom Med. J.2020
    [Google Scholar]
  10. De MarzoA.M. PlatzE.A. SutcliffeS. XuJ. GrönbergH. DrakeC.G. NakaiY. IsaacsW.B. NelsonW.G. Inflammation in prostate carcinogenesis.Nat. Rev. Cancer20077425626910.1038/nrc209017384581
    [Google Scholar]
  11. InformedHealth.orgCologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. How does the prostate work?2006Available from: https://www.ncbi.nlm.nih.gov/books/NBK279291/ (Accessed on 06-07-2021).
  12. KriegerJ.N. NybergL.Jr NickelJ.C. NIH consensus definition and classification of prostatitis.JAMA1999282323623710.1001/jama.282.3.23610422990
    [Google Scholar]
  13. NickelJ.C. Inflammation and benign prostatic hyperplasia.Urol. Clin. North Am.2008351109115, vii10.1016/j.ucl.2007.09.01218061029
    [Google Scholar]
  14. SteinbergG.D. CarterB.S. BeatyT.H. ChildsB. WalshP.C. Family history and the risk of prostate cancer.Prostate199017433734710.1002/pros.29901704092251225
    [Google Scholar]
  15. MartinR.M. VattenL. GunnellD. RomundstadP. Blood pressure and risk of prostate cancer: Cohort Norway (CONOR).Cancer Causes Control201021346347210.1007/s10552‑009‑9477‑x19949849
    [Google Scholar]
  16. VenkateswaranV. KlotzL.H. Diet and prostate cancer: Mechanisms of action and implications for chemoprevention.Nat. Rev. Urol.20107844245310.1038/nrurol.2010.10220647991
    [Google Scholar]
  17. AlexanderD.D. MinkP.J. CushingC.A. SceurmanB. A review and meta-analysis of prospective studies of red and processed meat intake and prostate cancer.Nutr. J.2010915010.1186/1475‑2891‑9‑5021044319
    [Google Scholar]
  18. National Institute of HealthProstate Tests.Available from: https://www.niddk.nih.gov/health-information/diagnostic-tests/prostate (Accessed on 07 March 2021.).
  19. SmentkowskiK.E. DasA.K. TrabulsiE.J. Transrectal Ultrasound.Practical Urological Ultrasound.ChamSpringer202118519810.1007/978‑3‑030‑52309‑1_10
    [Google Scholar]
  20. MurphyG. HaiderM. GhaiS. SreeharshaB. The expanding role of MRI in prostate cancer.AJR Am. J. Roentgenol.201320161229123810.2214/AJR.12.1017824261361
    [Google Scholar]
  21. SeraT. Computed tomography.Transparency in Biology.SingaporeSpringer2021167187
    [Google Scholar]
  22. McNealJ.E. Normal histology of the prostate.Am. J. Surg. Pathol.198812861963310.1097/00000478‑198808000‑000032456702
    [Google Scholar]
  23. WeinrebJ.C. BarentszJ.O. ChoykeP.L. CornudF. HaiderM.A. MacuraK.J. MargolisD. SchnallM.D. ShternF. TempanyC.M. ThoenyH.C. VermaS. PI-RADS prostate imaging–reporting and data system: 2015, version 2.Eur. Urol.2016691164010.1016/j.eururo.2015.08.05226427566
    [Google Scholar]
  24. HoeksC.M.A. BarentszJ.O. HambrockT. YakarD. SomfordD.M. HeijminkS.W.T.P.J. ScheenenT.W.J. VosP.C. HuismanH. van OortI.M. WitjesJ.A. HeerschapA. FüttererJ.J. Prostate cancer: Multiparametric MR imaging for detection, localization, and staging.Radiology20112611466610.1148/radiol.1109182221931141
    [Google Scholar]
  25. RedpathT.W. Signal-to-noise ratio in MRI.Br. J. Radiol.19987184770470710.1259/bjr.71.847.97713799771379
    [Google Scholar]
  26. ZhuH. LiY. IbrahimJ.G. ShiX. AnH. ChenY. GaoW. LinW. RoweD.B. PetersonB.S. Regression models for identifying noise sources in magnetic resonance images.J. Am. Stat. Assoc.200910448662363710.1198/jasa.2009.002919890478
    [Google Scholar]
  27. AndersenA.H. PatzS. On the rician distribution of noisy MRI data.Magn. Reson. Med.199636233133210.1002/mrm.1910360222
    [Google Scholar]
  28. MacovskiA. Noise in MRI.Magn. Reson. Med.199636349449710.1002/mrm.19103603278875425
    [Google Scholar]
  29. CattinD.P. Image restoration: Introduction to signal and image processing. MIAC, University of Basel.Retrieved.20131193
    [Google Scholar]
  30. PeronaP. MalikJ. Scale-space and edge detection using anisotropic diffusion.IEEE Trans. Pattern Anal. Mach. Intell.199012762963910.1109/34.56205
    [Google Scholar]
  31. HuangT. YangG. TangG. A fast two-dimensional median filtering algorithm.IEEE Trans. Acoust. Speech Signal Process.1979271131810.1109/TASSP.1979.1163188
    [Google Scholar]
  32. LimJ.S. Two-dimensional signal and image processing.Englewood Cliffs1990
    [Google Scholar]
  33. HaddadR.A. AkansuA.N. A class of fast Gaussian binomial filters for speech and image processing.IEEE Trans. Signal Process.199139372372710.1109/78.80892
    [Google Scholar]
  34. GonzalezR.C. EddinsS.L. WoodsR.E. Digital image publishing using MATLAB.Prentice Hall2004
    [Google Scholar]
  35. BurrusC.S. Introduction to wavelets and wavelet transforms: A primer.Englewood Cliffs1997
    [Google Scholar]
  36. DoM.N. VetterliM. The contourlet transform: An efficient directional multiresolution image representation.IEEE Trans. Image Process.200514122091210610.1109/TIP.2005.85937616370462
    [Google Scholar]
  37. TomasiC ManduchiR Bilateral filtering for gray and color images.Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)Bombay, India199883984610.1109/ICCV.1998.710815
    [Google Scholar]
  38. CandèsE.J. DonohoD.L. Curvelets.1999Available from: http://www-stat. stanford.edu/∼donoho/Reports/1999/Curvelets.zip (Accessed on 15 September 2016).
  39. Jean-Luc Starck CandèsE.J. DonohoD.L. The curvelet transform for image denoising.IEEE Trans. Image Process.200211667068410.1109/TIP.2002.101499818244665
    [Google Scholar]
  40. RombergJ.K. Hyeokho Choi BaraniukR.G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models.IEEE Trans. Image Process.20011071056106810.1109/83.93110018249679
    [Google Scholar]
  41. BuadesA. CollB. MorelJ.M. A non-local algorithm for image denoising.2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)20052606510.1109/CVPR.2005.38
    [Google Scholar]
  42. WeissY. FreemanW.T. What makes a good model of natural images?2007 IEEE Conference on Computer Vision and Pattern RecognitionMinneapolis, MN, USA20071810.1109/CVPR.2007.383092
    [Google Scholar]
  43. RothS. BlackM.J. Fields of experts: A framework for learning image priors.2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)2005286086710.1109/CVPR.2005.160
    [Google Scholar]
  44. Aja-FernándezS. Alberola-LópezC. WestinC.F. Noise and signal estimation in magnitude MRI and Rician distributed images: A LMMSE approach.IEEE Trans. Image Process.20081781383139810.1109/TIP.2008.92538218632347
    [Google Scholar]
  45. LuisierF. BluT. WolfeP.J. A CURE for noisy magnetic resonance images: Chi-square unbiased risk estimation.IEEE Trans. Image Process.20122183454346610.1109/TIP.2012.219156522491082
    [Google Scholar]
  46. LuisierF. BluT. UnserM. A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding.IEEE Trans. Image Process.200716359360610.1109/TIP.2007.89106417357721
    [Google Scholar]
  47. BluT. LuisierF. The SURE-LET approach to image denoising.IEEE Trans. Image Process.200716112778278610.1109/TIP.2007.90600217990754
    [Google Scholar]
  48. BarbuA. Training an active random field for real-time image denoising.IEEE Trans. Image Process.200918112451246210.1109/TIP.2009.202825419635701
    [Google Scholar]
  49. SudeepP.V. PalanisamyP. KesavadasC. RajanJ. Nonlocal linear minimum mean square error methods for denoising MRI.Biomed. Signal Process. Control20152012513410.1016/j.bspc.2015.04.015
    [Google Scholar]
  50. IsaI.S. SulaimanS.N. MustaphaM. DarusS. Evaluating denoising performances of fundamental filters for T2-weighted MRI images.Procedia Comput. Sci.20156076076810.1016/j.procs.2015.08.231
    [Google Scholar]
  51. ManjónJ.V. CoupéP. BuadesA. MRI noise estimation and denoising using non-local PCA.Med. Image Anal.2015221354710.1016/j.media.2015.01.00425725303
    [Google Scholar]
  52. SeethaJ. RajaS.S. Denoising of MRI images using filtering methods.2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)201676576910.1109/WiSPNET.2016.7566236
    [Google Scholar]
  53. HuJ. ZhouJ. WuX. Non-local MRI denoising using random sampling.Magn. Reson. Imaging201634799099910.1016/j.mri.2016.04.00827114338
    [Google Scholar]
  54. BiswasR. PurkayasthaD. RoyS. Denoising of MRI Images Using Curvelet Transform.Advances in Systems, Control and Automation.SingaporeSpringer2018575583
    [Google Scholar]
  55. KlosowskiJ. FrahmJ. Image denoising for real-time MRI.Magn. Reson. Med.20177731340135210.1002/mrm.2620527079944
    [Google Scholar]
  56. YuanJ. An improved variational model for denoising magnetic resonance images.Comput. Math. Appl.20187692212222210.1016/j.camwa.2018.05.044
    [Google Scholar]
  57. AliH.M. MRI medical image denoising by fundamental filters.High-Resol. Neuroimag.Basic. Phys. Princ.Clin. Appl.20181411112410.5772/intechopen.72427
    [Google Scholar]
  58. LiuL. YangH. FanJ. LiuR.W. DuanY. Rician noise and intensity nonuniformity correction (NNC) model for MRI data.Biomed. Signal Process. Control20194950651910.1016/j.bspc.2018.11.008
    [Google Scholar]
  59. SharmaK.K. GurjarD. JyotyanaM. KumariV. Denoising of brain MRI images using a hybrid filter method of Sylvester-Lyapunov equation and non local means.Smart innovations in communication and computational sciences.SingaporeSpringer2019495505
    [Google Scholar]
  60. LiS. ZhouJ. LiangD. LiuQ. MRI denoising using progressively distribution-based neural network.Magn. Reson. Imaging202071556810.1016/j.mri.2020.04.00632353531
    [Google Scholar]
  61. DasP. PalC. ChakrabartiA. AcharyyaA. BasuS. Adaptive denoising of 3D volumetric MR images using local variance based estimator.Biomed. Signal Process. Control20205910190110.1016/j.bspc.2020.101901
    [Google Scholar]
  62. ThanhD.N.H. HienN.N. KalavathiP. PrasathV.B.S. Adaptive switching weight mean filter for salt and pepper image denoising.Procedia Comput. Sci.202017129230110.1016/j.procs.2020.04.031
    [Google Scholar]
  63. ZhuY. PanX. LvT. LiuY. LiL. DESN: An unsupervised MR image denoising network with deep image prior.Theor. Comput. Sci.20218809711010.1016/j.tcs.2021.06.005
    [Google Scholar]
  64. ChenZ. FuY. XiangY. ZhuY. A novel MR image denoising via LRMA and NLSS.Signal Processing202118510810910.1016/j.sigpro.2021.108109
    [Google Scholar]
  65. SinghD. KaurA. Fuzzy based fast non local mean filter to denoise Rician noise.Mater. Today Proc.2021466445645210.1016/j.matpr.2021.03.494
    [Google Scholar]
  66. RawatS. RanaK.P.S. KumarV. A novel complex-valued convolutional neural network for medical image denoising.Biomed. Signal Process. Control20216910285910.1016/j.bspc.2021.102859
    [Google Scholar]
  67. UpadhyayP. UpadhyayS.K. ShuklaK.K. Magnetic resonance images denoising using a wavelet solution to laplace equation associated with a new variational model.Appl. Math. Comput.202140012608310.1016/j.amc.2021.126083
    [Google Scholar]
  68. PankajD. GovindD. NarayanankuttyK.A. A novel method for removing Rician noise from MRI based on variational mode decomposition.Biomed. Signal Process. Control20216910273710.1016/j.bspc.2021.102737
    [Google Scholar]
  69. MohanJ. KrishnaveniV. GuoY. A survey on the magnetic resonance image denoising methods.Biomed. Signal Process. Control20149566910.1016/j.bspc.2013.10.007
    [Google Scholar]
  70. OzaS.D. JoshiK.R. Performance analysis of Denoising filters for MR images.Advances in computing applications.SingaporeSpringer20168796
    [Google Scholar]
  71. ManjónJ.V. MRI preprocessing.Imaging Biomarkers.ChamSpringer2017536310.1007/978‑3‑319‑43504‑6_5
    [Google Scholar]
  72. LitjensG.J. VosP.C. BarentszJ.O. KarssemeijerN. HuismanH.J. Automatic computer aided detection of abnormalities in multi-parametric prostate MRI.Proc. SPIE 7963, Medical Imaging 2011: Computer-Aided Diagnosis201179630T10.1117/12.877844
    [Google Scholar]
  73. LopesR. AyacheA. MakniN. PuechP. VillersA. MordonS. BetrouniN. Prostate cancer characterization on MR images using fractal features.Med. Phys.2010381839510.1118/1.352147021361178
    [Google Scholar]
  74. RundoL. MilitelloC. RussoG. GarufiA. VitabileS. GilardiM. MauriG. Automated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imaging.Information2017824910.3390/info8020049
    [Google Scholar]
  75. NiafE. RouvièreO. LartizienC. Computer-aided diagnosis for prostate cancer detection in the peripheral zone via multisequence MRI.Proceedings of the SPIE2011796379633P10.1117/12.877231
    [Google Scholar]
  76. KassM. WitkinA. TerzopoulosD. Snakes: Active contour models.Int. J. Comput. Vis.19881432133110.1007/BF00133570
    [Google Scholar]
  77. CootesT.F. TaylorC.J. CooperD.H. GrahamJ. Active shape models-their training and application.Comput. Vis. Image Underst.1995611385910.1006/cviu.1995.1004
    [Google Scholar]
  78. SethianJA Level Set Methods and Fast Marching Methods; Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials ScienceCambridge university press1999
    [Google Scholar]
  79. BoykovY. VekslerO. ZabihR. Fast approximate energy minimization via graph cuts.IEEE Trans. Pattern Anal. Mach. Intell.200123111222123910.1109/34.969114
    [Google Scholar]
  80. RohlfingT. BrandtR. MenzelR. RussakoffD.B. MaurerC.R. Quo vadis, atlas-based segmentation?Handbook of biomedical image analysis.Boston, MASpringer2005435486
    [Google Scholar]
  81. MazzettiS. De LucaM. BraccoC. VignatiA. GianniniV. StasiM. RussoF. ArmandoE. AgliozzoS. ReggeD. A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI.Medical Imaging 2011: Computer-Aided Diagnosis2011796379633Q10.1117/12.877549
    [Google Scholar]
  82. SungY.S. KwonH.J. ParkB.W. ChoG. LeeC.K. ChoK.S. KimJ.K. Prostate cancer detection on dynamic contrast-enhanced MRI: Computer-aided diagnosis versus single perfusion parameter maps.AJR Am. J. Roentgenol.201119751122112910.2214/AJR.10.606222021504
    [Google Scholar]
  83. ViswanathS. BlochB.N. ChappelowJ. PatelP. RofskyN. LenkinskiR. GenegaE. MadabhushiA. Enhanced multi-protocol analysis via intelligent supervised embedding (EMPrAvISE): Detecting prostate cancer on multi-parametric MRI.Medical Imaging 2011: Computer-Aided Diagnosis2011796379630U
    [Google Scholar]
  84. LitjensG.J. BarentszJ.O. KarssemeijerN. HuismanH.J. Automated computer-aided detection of prostate cancer in MR images: From a whole-organ to a zone-based approach.Proceedings of the SPIE20128315
    [Google Scholar]
  85. NiafE. RouvièreO. Mège-LechevallierF. BratanF. LartizienC. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI.Phys. Med. Biol.201257123833385110.1088/0031‑9155/57/12/383322640958
    [Google Scholar]
  86. ParfaitS. WalkerP.M. CréhangeG. TizonX. MitéranJ. Classification of prostate magnetic resonance spectra using support vector machine.Biomed. Signal Process. Control20127549950810.1016/j.bspc.2011.09.003
    [Google Scholar]
  87. TiwariP. ViswanathS. KurhanewiczJ. SridharA. MadabhushiA. Multimodal wavelet embedding representation for data combination (MaWERiC): Integrating magnetic resonance imaging and spectroscopy for prostate cancer detection.NMR Biomed.201225460761910.1002/nbm.177721960175
    [Google Scholar]
  88. ViswanathS.E. BlochN.B. ChappelowJ.C. TothR. RofskyN.M. GenegaE.M. LenkinskiR.E. MadabhushiA. Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2-weighted MR imagery.J. Magn. Reson. Imaging201236121322410.1002/jmri.2361822337003
    [Google Scholar]
  89. VosP.C. BarentszJ.O. KarssemeijerN. HuismanH.J. Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis.Phys. Med. Biol.20125761527154210.1088/0031‑9155/57/6/152722391091
    [Google Scholar]
  90. PengY. JiangY. AnticT. GigerM.L. EggenerS. OtoA. A study of T 2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer.Medical Imaging 2013: Computer-Aided Diagnosis2013867086701H
    [Google Scholar]
  91. ChanI. WellsW.III MulkernR.V. HakerS. ZhangJ. ZouK.H. MaierS.E. TempanyC.M.C. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; A multichannel statistical classifier.Med. Phys.20033092390239810.1118/1.159363314528961
    [Google Scholar]
  92. GianniniV. VignatiA. MazzettiS. De LucaM. BraccoC. StasiM. RussoF. ArmandoE. ReggeD. A prostate CAD system based on multiparametric analysis of DCE T1-w, and DW automatically registered images.Medical Imaging 2013: Computer-Aided Diagnosis2013867086703E10.1117/12.2006336
    [Google Scholar]
  93. LiuP. WangS. TurkbeyB. GrantK. PintoP. ChoykeP. WoodB.J. SummersR.M. A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels.Medical Imaging 2013: Computer-Aided Diagnosis2013867086701G10.1117/12.2007927
    [Google Scholar]
  94. MatulewiczL. JansenJ.F.A. BokachevaL. VargasH.A. AkinO. FineS.W. Shukla-DaveA. EasthamJ.A. HricakH. KoutcherJ.A. ZakianK.L. Anatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1 H magnetic resonance spectroscopic imaging.J. Magn. Reson. Imaging20144061414142110.1002/jmri.2448724243554
    [Google Scholar]
  95. PengY. JiangY. YangC. BrownJ.B. AnticT. SethiI. Schmid-TannwaldC. GigerM.L. EggenerS.E. OtoA. Quantitative analysis of multiparametric prostate MR images: Differentiation between prostate cancer and normal tissue and correlation with Gleason score : A computer-aided diagnosis development study.Radiology2013267378779610.1148/radiol.1312145423392430
    [Google Scholar]
  96. TiwariP. KurhanewiczJ. MadabhushiA. Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS.Med. Image Anal.201317221923510.1016/j.media.2012.10.00423294985
    [Google Scholar]
  97. DudaD. KretowskiM. MathieuR. de CrevoisierR. Bezy-WendlingJ. Multi-image texture analysis in classification of prostatic tissues from MRI: Preliminary results.Information Technologies in Biomedicine.ChamSpringer20143139150
    [Google Scholar]
  98. LitjensG.J. ElliottR. ShihN. FeldmanM. BarentszJ.O. Hulsbergen-van de KaaC.A. KovacsI. HuismanH.J. MadabhushiA. Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI.Medical Imaging 2014: Computer-Aided Diagnosis20149035903512
    [Google Scholar]
  99. CameronA. ModhafarA. KhalvatiF. LuiD. ShafieeM.J. WongA. HaiderM. Multiparametric MRI prostate cancer analysis via a hybrid morphological-textural model.Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE20143357336010.1109/EMBC.2014.6944342
    [Google Scholar]
  100. FirjaniA. KhalifaF. ElnakibA. Gimel’farbG. El-GharM.A. ElmaghrabyA. El-BazA. A novel image-based approach for early detection of prostate cancer using DCE-MRI.Computational intelligence in biomedical imaging.New York, NYSpringer20145582
    [Google Scholar]
  101. LemaitreG. MassichJ. MartíR. FreixenetJ. VilanovaJ.C. WalkerP.M. SidibéD. MériaudeauF. A boosting approach for prostate cancer detection using multi-parametric MRI.InTwelfth International Conference on Quality Control by Artificial Vision2015953495340A
    [Google Scholar]
  102. AndersonD. GoldenB. WasilE. ZhangH. Predicting prostate cancer risk using magnetic resonance imaging data.Inf. Syst. E-Bus. Manag.201513459960810.1007/s10257‑014‑0239‑2
    [Google Scholar]
  103. KhalvatiF. WongA. HaiderM.A. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models.BMC Med. Imaging20151512710.1186/s12880‑015‑0069‑926242589
    [Google Scholar]
  104. ChungA.G. KhalvatiF. ShafieeM.J. HaiderM.A. WongA. Prostate cancer detection via a quantitative radiomics-driven conditional random field framework.IEEE Access201532531254110.1109/ACCESS.2015.2502220
    [Google Scholar]
  105. CameronA. KhalvatiF. HaiderM.A. WongA. MAPS: A quantitative radiomics approach for prostate cancer detection.IEEE Trans. Biomed. Eng.20166361145115610.1109/TBME.2015.248577926441442
    [Google Scholar]
  106. KhalvatiF. ZhangJ. WongA. HaiderM.A. Bag of Bags: Nested multi instance classification for prostate cancer detection.InMachine Learning and Applications (ICMLA), 2016 15th IEEE International Conference on 20162016146151
    [Google Scholar]
  107. FilsonC.P. NatarajanS. MargolisD.J.A. HuangJ. LieuP. DoreyF.J. ReiterR.E. MarksL.S. Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: The role of systematic and targeted biopsies.Cancer2016122688489210.1002/cncr.2987426749141
    [Google Scholar]
  108. LemaitreG. Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance imagingDoctoral dissertation, Ph. D. dissertation, Universitat de Girona and Université de Bourgogne
    [Google Scholar]
  109. ParraN.A. PollackA. ChineaF.M. AbramowitzM.C. MarplesB. MuneraF. CastilloR. KryvenkoO.N. PunnenS. StoyanovaR. automatic detection and quantitative Dce-Mri scoring of prostate cancer aggressiveness.Front. Oncol.2017725910.3389/fonc.2017.0025929177134
    [Google Scholar]
  110. GinsburgS.B. AlgoharyA. PahwaS. GulaniV. PonskyL. AronenH.J. BoströmP.J. BöhmM. HaynesA.M. BrennerP. DelpradoW. ThompsonJ. PulbrockM. TaimenP. VillaniR. StrickerP. RastinehadA.R. JamborI. MadabhushiA. Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi‐institutional study.J. Magn. Reson. Imaging201746118419310.1002/jmri.2556227990722
    [Google Scholar]
  111. ClarkT. ZhangJ. BaigS. WongA. HaiderM.A. KhalvatiF. Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks.J. Med. Imaging201744110.1117/1.JMI.4.4.04130729057288
    [Google Scholar]
  112. YangX. LiuC. WangZ. YangJ. MinH.L. WangL. ChengK.T.T. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.Med. Image Anal.20174221222710.1016/j.media.2017.08.00628850876
    [Google Scholar]
  113. LeM.H. ChenJ. WangL. WangZ. LiuW. ChengK.T.T. YangX. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks.Phys. Med. Biol.201762166497651410.1088/1361‑6560/aa773128582269
    [Google Scholar]
  114. KhalvatiF. ZhangJ. ChungA.G. ShafieeM.J. WongA. HaiderM.A. MPCaD: A multi-scale radiomics-driven framework for automated prostate cancer localization and detection.BMC Med. Imaging20181811610.1186/s12880‑018‑0258‑429769042
    [Google Scholar]
  115. AlkadiR. TaherF. El-bazA. WerghiN. A deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance images.J. Digit. Imaging201932579380710.1007/s10278‑018‑0160‑130506124
    [Google Scholar]
  116. LiuZ JiangW LeeKH LoYL NgYL DouQ VardhanabhutiV KwokKW A two-stage approach for automated prostate lesion detection and classification with mask r-cnn and weakly supervised deep neural network.Workshop on Artificial Intelligence in Radiation TherapySpringerCham2019435110.1007/978‑3‑030‑32486‑5_6
    [Google Scholar]
  117. RundoL. HanC. ZhangJ. HatayaR. NaganoY. MilitelloC. FerrettiC. NobileM.S. TangherloniA. GilardiM.C. VitabileS. CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study.Neural Approaches to Dynamics of Signal Exchanges.SingaporeSpringer2020269280
    [Google Scholar]
  118. SunoqrotM.R.S. SelnæsK.M. SandsmarkE. NketiahG.A. Zavala-RomeroO. StoyanovaR. BathenT.F. ElschotM. A quality control system for automated prostate segmentation on T2-weighted MRI.Diagnostics202010971410.3390/diagnostics1009071432961895
    [Google Scholar]
  119. SanyalJ. BanerjeeI. HahnL. RubinD. An automated two-step pipeline for aggressive prostate lesion detection from multi-parametric mr sequence.AMIA Jt. Summits Transl. Sci. Proc.2020202055256032477677
    [Google Scholar]
  120. SeetharamanA. BhattacharyaI. ChenL.C. KunderC.A. ShaoW. SoerensenS.J.C. WangJ.B. TeslovichN.C. FanR.E. GhanouniP. BrooksJ.D. TooK.J. SonnG.A. RusuM. Automated detection of aggressive and indolent prostate cancer on magnetic resonance imaging.Med. Phys.20214862960297210.1002/mp.1485533760269
    [Google Scholar]
  121. CasellesV KimmelR SapiroG. Geodesic active contours.InProceedings of IEEE international conference on computer vision199569469910.1109/ICCV.1995.466871
    [Google Scholar]
  122. CasellesV. KimmelR. SapiroG. Geodesic active contours.Int. J. Comput. Vis.1997221617910.1023/A:1007979827043
    [Google Scholar]
  123. Chenyang Xu PrinceJ.L. Snakes, shapes, and gradient vector flow.IEEE Trans. Image Process.19987335936910.1109/83.66118618276256
    [Google Scholar]
  124. ParagiosN. DericheR. Geodesic active contours and level sets for the detection and tracking of moving objects.IEEE Trans. Pattern Anal. Mach. Intell.200022326628010.1109/34.841758
    [Google Scholar]
  125. ParagiosN. DericheR. Geodesic active regions and level set methods for supervised texture segmentation.Int. J. Comput. Vis.200246322324710.1023/A:1014080923068
    [Google Scholar]
  126. ChanT.F. VeseL.A. Active contours without edges.IEEE Trans. Image Process.200110226627710.1109/83.90229118249617
    [Google Scholar]
  127. VeseL.A. ChanT.F. A multiphase level set framework for image segmentation using the Mumford and Shah model.Int. J. Comput. Vis.200250327129310.1023/A:1020874308076
    [Google Scholar]
  128. ChanT.F. EsedogluS. NikolovaM. Algorithms for finding global minimizers of image segmentation and denoising models.SIAM J. Appl. Math.20066651632164810.1137/040615286
    [Google Scholar]
  129. CremersD. OsherS.J. SoattoS. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation.Int. J. Comput. Vis.200669333535110.1007/s11263‑006‑7533‑5
    [Google Scholar]
  130. CremersD. Nonlinear dynamical shape priors for level set segmentation.J. Sci. Comput.2008352-313214310.1007/s10915‑008‑9220‑x
    [Google Scholar]
  131. Chunming Li Chiu-Yen Kao GoreJ.C. Zhaohua Ding Minimization of region-scalable fitting energy for image segmentation.IEEE Trans. Image Process.200817101940194910.1109/TIP.2008.200230418784040
    [Google Scholar]
  132. ZhangK. SongH. ZhangL. Active contours driven by local image fitting energy.Pattern Recognit.20104341199120610.1016/j.patcog.2009.10.010
    [Google Scholar]
  133. LiuS. PengY. A local region-based Chan–Vese model for image segmentation.Pattern Recognit.20124572769277910.1016/j.patcog.2011.11.019
    [Google Scholar]
  134. WangL. YuZ. PanC. A unified level set framework utilizing parameter priors for medical image segmentation.Sci. China Inf. Sci.2013561111410.1007/s11432‑012‑4683‑7
    [Google Scholar]
  135. WangL. WuH. PanC. Region-based image segmentation with local signed difference energy.Pattern Recognit. Lett.201334663764510.1016/j.patrec.2012.12.022
    [Google Scholar]
  136. FehrD. VeeraraghavanH. WibmerA. GondoT. MatsumotoK. VargasH.A. SalaE. HricakH. DeasyJ.O. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images.Proc. Natl. Acad. Sci.201511246E6265E627310.1073/pnas.150593511226578786
    [Google Scholar]
  137. AlgoharyA. ViswanathS. ShiradkarR. GhoseS. PahwaS. MosesD. JamborI. ShnierR. BöhmM. HaynesA.M. BrennerP. DelpradoW. ThompsonJ. PulbrockM. PuryskoA.S. VermaS. PonskyL. StrickerP. MadabhushiA. Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings.J. Magn. Reson. Imaging201848381882810.1002/jmri.2598329469937
    [Google Scholar]
  138. TurkbeyB. ChoykeP.L. Multiparametric MRI and prostate cancer diagnosis and risk stratification.Curr. Opin. Urol.201222431031510.1097/MOU.0b013e32835481c222617060
    [Google Scholar]
  139. SteigerP. ThoenyH.C. Prostate MRI based on PI-RADS version 2: How we review and report.Cancer Imaging2016161910.1186/s40644‑016‑0068‑227067275
    [Google Scholar]
  140. ChakrabortyR. SushilR. GargM.L. An improved PSO-based multilevel image segmentation technique using minimum cross-entropy thresholding.Arab. J. Sci. Eng.20194443005302010.1007/s13369‑018‑3400‑2
    [Google Scholar]
  141. ZhaoF. ChenY. LiuH. FanJ. Alternate PSO-based adaptive interval type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentation.IEEE Access20197640286403910.1109/ACCESS.2019.2916894
    [Google Scholar]
  142. KateV. ShuklaP. Image Segmentation of Breast Cancer Histopathology Images Using PSO-Based Clustering Technique.Social Networking and Computational Intelligence.SingaporeSpringer2020207216
    [Google Scholar]
  143. RamuduK. BabuT.R. Segmentation of tissues from MRI biomedical images using kernel fuzzy PSO clustering based level set approach.Curr. Med. Imaging Rev.201814338940010.2174/1573405613666170123124652
    [Google Scholar]
  144. SongX. LiH. Segmentation based on pchapter swarm optimization.International Conference on Applications and Techniques in Cyber Security and IntelligenceSpringerCham2020731736
    [Google Scholar]
  145. SharifM. AminJ. RazaM. YasminM. SatapathyS.C. An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor.Pattern Recognit. Lett.202012915015710.1016/j.patrec.2019.11.017
    [Google Scholar]
  146. ZhangL. LimC.P. Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models.Appl. Soft Comput.20209210632810.1016/j.asoc.2020.106328
    [Google Scholar]
  147. ThamaraichelviB. PSO optimized pulse coupled neural network for segmenting MR brain image.2020 International Conference on Communication and Signal Processing (ICCSP)Chennai, India20200731073310.1109/ICCSP48568.2020.9182093
    [Google Scholar]
  148. ZhaoJ. WangX. LiM. A Novel neutrosophic image segmentation based on improved fuzzy c -means algorithm (NIS-IFCM).Int. J. Pattern Recognit. Artif. Intell.2020345205501110.1142/S0218001420550113
    [Google Scholar]
  149. Chunming Li Chenyang Xu Changfeng Gui FoxM.D. Distance regularized level set evolution and its application to image segmentation.IEEE Trans. Image Process.201019123243325410.1109/TIP.2010.206969020801742
    [Google Scholar]
  150. LanktonS. TannenbaumA. Localizing region-based active contours.IEEE Trans. Image Process.200817112029203910.1109/TIP.2008.200461118854247
    [Google Scholar]
  151. MohammedZ.F. AbdullaA.A. Thresholding-based white blood cells segmentation from microscopic blood images.UHD J. Sci. Technol.20204191710.21928/uhdjst.v4n1y2020.pp9‑17
    [Google Scholar]
  152. PrewittJM Object enhancement and extraction.Picture Processing and Psychopictorics LipkinB. RosenfeldA. New YorkAcademic Press197075149
    [Google Scholar]
  153. SobelI.E. Camera models and machine perceptionStanford University1970
    [Google Scholar]
  154. GaborD. Theory of communication. Part 1: The analysis of information.J. Inst. Electr. Eng., 3 Radio Commun. Eng.1946932642944110.1049/ji‑3‑2.1946.0074
    [Google Scholar]
  155. KirschR.A. Computer determination of the constituent structure of biological images.Comput. Biomed. Res.19714331532810.1016/0010‑4809(71)90034‑65562571
    [Google Scholar]
  156. HaralickR.M. ShanmugamK. DinsteinI.H. Textural features for image classification.IEEE Trans. Syst. Man Cybern.1973SMC-3661062110.1109/TSMC.1973.4309314
    [Google Scholar]
  157. BenassiA. CohenS. IstasJ. Identifying the multifractional function of a Gaussian process.Stat. Probab. Lett.199839433734510.1016/S0167‑7152(98)00078‑9
    [Google Scholar]
  158. AhmedN. NatarajanT. RaoK.R. Discrete cosine transform.IEEE Trans. Comput.1974C-231909310.1109/T‑C.1974.223784
    [Google Scholar]
  159. LeungT. MalikJ. Representing and recognizing the visual appearance of materials using three-dimensional textons.Int. J. Comput. Vis.2001431294410.1023/A:1011126920638
    [Google Scholar]
  160. NyúlL.G. UdupaJ.K. Xuan Zhang New variants of a method of MRI scale standardization.IEEE Trans. Med. Imaging200019214315010.1109/42.83637310784285
    [Google Scholar]
  161. DalalN TriggsB Histograms of oriented gradients for human detection.In2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05)2005188689310.1109/CVPR.2005.177
    [Google Scholar]
  162. BelongieS. MalikJ. PuzichaJ. Shape matching and object recognition using shape contexts.IEEE Trans. Pattern Anal. Mach. Intell.200224450952210.1109/34.993558
    [Google Scholar]
  163. OjalaT. PietikäinenM. HarwoodD. A comparative study of texture measures with classification based on featured distributions.Pattern Recognit.1996291515910.1016/0031‑3203(95)00067‑4
    [Google Scholar]
  164. LvD. GuoX. WangX. ZhangJ. FangJ. Computerized characterization of prostate cancer by fractal analysis in MR images.J. Magn. Reson. Imaging200930116116810.1002/jmri.2181919557732
    [Google Scholar]
  165. PuechP. BetrouniN. MakniN. DewalleA.S. VillersA. LemaitreL. Computer-assisted diagnosis of prostate cancer using DCE-MRI data: Design, implementation and preliminary results.Int. J. CARS20094111010.1007/s11548‑008‑0261‑220033597
    [Google Scholar]
  166. TiwariP. MadabhushiA. RosenM. A hierarchical unsupervised spectral clustering scheme for detection of prostate cancer from magnetic resonance spectroscopy (MRS).International Conference on Medical Image Computing and Computer-Assisted InterventionSpringerBerlin, Heidelberg2007278286
    [Google Scholar]
  167. TiwariP. RosenM. MadabhushiA. A hierarchical spectral clustering and nonlinear dimensionality reduction scheme for detection of prostate cancer from magnetic resonance spectroscopy (MRS).Med. Phys.2009369Part13927393910.1118/1.318095519810465
    [Google Scholar]
  168. FriedmanJ.H. Regularized discriminant analysis.J. Am. Stat. Assoc.19898440516517510.1080/01621459.1989.10478752
    [Google Scholar]
  169. LitjensG. DebatsO. BarentszJ. KarssemeijerN. HuismanH. Computer-aided detection of prostate cancer in MRI.IEEE Trans. Med. Imaging20143351083109210.1109/TMI.2014.230382124770913
    [Google Scholar]
  170. AnticT PengY JiangY GigerML EggenerS OtoA A study of T2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer.Proceedings of SPIE2013
    [Google Scholar]
  171. KelmB.M. MenzeB.H. ZechmannC.M. BaudendistelK.T. HamprechtF.A. Automated estimation of tumor probability in prostate magnetic resonance spectroscopic imaging: Pattern recognition vs quantification.Magn. Reson. Med.200757115015910.1002/mrm.2111217191229
    [Google Scholar]
  172. RishI. An empirical study of the naive Bayes classifier.InIJCAI 2001 workshop on empirical methods in artificial intelligence20013224146
    [Google Scholar]
  173. FreundY. SchapireR.E. A decision-theoretic generalization of on-line learning and an application to boosting.J. Comput. Syst. Sci.199755111913910.1006/jcss.1997.1504
    [Google Scholar]
  174. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  175. TuZ. Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering.InTenth IEEE International Conference on Computer Vision (ICCV'05)2005115891596
    [Google Scholar]
  176. TippingM.E. Sparse bayesian learning and the relevance vector machine.J. Mach. Learn. Res.20011Jun211244
    [Google Scholar]
  177. JensenC. CarlJ. BoesenL. LangkildeN.C. ØstergaardL.R. Assessment of prostate cancer prognostic Gleason grade group using zonal-specific features extracted from biparametric MRI using a KNN classifier.J. Appl. Clin. Med. Phys.201920214615310.1002/acm2.1254230712281
    [Google Scholar]
  178. AldojN. LukasS. DeweyM. PenzkoferT. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.Eur. Radiol.20203021243125310.1007/s00330‑019‑06417‑z31468158
    [Google Scholar]
  179. WoźnickiP. WesthoffN. HuberT. RiffelP. FroelichM.F. GresserE. von HardenbergJ. MühlbergA. MichelM.S. SchoenbergS.O. NörenbergD. Multiparametric MRI for prostate cancer characterization: Combined use of radiomics model with PI-RADS and clinical parameters.Cancers2020127176710.3390/cancers1207176732630787
    [Google Scholar]
  180. SinghD. KumarV. DasC.J. SinghA. MehndirattaA. Characterisation of prostate cancer using texture analysis for diagnostic and prognostic monitoring.NMR Biomed.2021346e449510.1002/nbm.449533638244
    [Google Scholar]
  181. GargG. JunejaM. Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI.Multimedia Tools Appl.20218020305573058010.1007/s11042‑021‑11133‑2
    [Google Scholar]
  182. LabusS. AltmannM.M. HuismanH. TongA. PenzkoferT. ChoiM.H. ShabuninI. WinkelD.J. XingP. SzolarD.H. SheaS.M. GrimmR. von BuschH. KamenA. HeroldT. BaumannC. A concurrent, deep learning–based computer-aided detection system for prostate multiparametric MRI: A performance study involving experienced and less-experienced radiologists.Eur. Radiol.2022331647610.1007/s00330‑022‑08978‑y35900376
    [Google Scholar]
  183. VittoriG. BacchianiM. GrossoA.A. RaspolliniM.R. GiovannozziN. RighiL. Di MaidaF. AgostiniS. De NiscoF. MariA. MinerviniA. Computer-aided diagnosis in prostate cancer: A retrospective evaluation of the Watson Elementary® system for preoperative tumor characterization in patients treated with robot-assisted radical prostatectomy.World J. Urol.202341243544110.1007/s00345‑022‑04275‑x36595077
    [Google Scholar]
  184. LiZ. FangJ. QiuR. GongH. ZhangW. LiL. JiangJ. CDA-Net: A contrastive deep adversarial model for prostate cancer segmentation in MRI images.Biomed. Signal Process. Control20238310462210.1016/j.bspc.2023.104622
    [Google Scholar]
  185. KannaG.P. KumarS.J.K.J. ParthasarathiP. KumarY. A review on prediction and prognosis of the prostate cancer and gleason grading of prostatic carcinoma using deep transfer learning based approaches.Arch. Comput. Methods Eng.20233053113313210.1007/s11831‑023‑09896‑y
    [Google Scholar]
  186. AbdelmaksoudIR ShalabyA GhazalM ElmogyM AbouElfetouhA MahmoudA El-BazAS An accurate deep learning-based computer-aided diagnosis system for early diagnosis of prostate cancer.State of the Art in Neural Networks and Their ApplicationsAcademic Press20238310410.1016/B978‑0‑12‑819872‑8.00011‑2
    [Google Scholar]
  187. SongE. LongJ. MaG. LiuH. HungC.C. JinR. WangP. WangW. Prostate lesion segmentation based on a 3D end-to-end convolution neural network with deep multi-scale attention.Magn. Reson. Imaging2023999810910.1016/j.mri.2023.01.01536681311
    [Google Scholar]
  188. RagabM KatebF El-SawyEK BinyaminSS Al-RabiaMW Archimedes optimization algorithm with deep learning-based prostate cancer classification on magnetic resonance imaging.InHealthcare2023114590
    [Google Scholar]
  189. KoundalD. Texture-based image segmentation using neutrosophic clustering.IET Image Process.201711864064510.1049/iet‑ipr.2017.0046
    [Google Scholar]
  190. ShambhuS. KoundalD. DasP. SharmaC. Binary classification of covid-19 ct images using cnn: Covid diagnosis using ct.Int. J. E-Health Med. Commun.202113211310.4018/IJEHMC.20220701.oa4
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230522151406
Loading
/content/journals/cmir/10.2174/1573405620666230522151406
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ACS; CADx; Classification; MRI; Prostate cancer; Segmentation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test