Skip to content
2000
Volume 19, Issue 5
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

The accurate assessment or diagnosis of breast cancer depends on image acquisition and image analysis and interpretation. The expert radiologist makes image interpretation, and this process has been greatly benefited by computer technology. For image acquisition, various imaging modalities have been developed and used over the years. This research examines several imaging modalities and their associated benefits and drawbacks. Commonly used parameters such as sensitivity and specificity are also offered to evaluate the usefulness of different imaging modalities. The main focus of the research is on mammograms. Despite the availability of breast cancer datasets of imaging modalities such as MRI, ultrasounds, and thermograms, mammogram datasets are used mainly by the domain researcher. They are considered an international gold standard for the early detection of breast cancer. We discussed and analyzed widely used and publicly available mammogram repositories. We further discussed some common key constraints related to mammogram datasets to develop the deep learningbased computer-aided diagnosis (CADx) systems for breast cancer. The ideas for their improvements have also been presented.

Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405618666220621123156
2023-04-01
2025-10-08
Loading full text...

Full text loading...

/content/journals/cmir/10.2174/1573405618666220621123156
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test