Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

This study aimed to evaluate the effectiveness of intelligent quick magnetic resonance (IQMR) for accelerating brain MRI scanning and improving image quality in patients with acute ischemic stroke.

Methods

In this prospective study, 58 patients with acute ischemic stroke underwent head MRI examinations between July 2023 and January 2024, including diffusion-weighted imaging and both conventional and accelerated T1-weighted, T2-weighted, and T2 fluid-attenuated inversion recovery fat-saturated (T2-FLAIR) sequences. Accelerated sequences were processed using IQMR, producing IQMR-T1WI, IQMR-T2WI, and IQMR-T2-FLAIR images. Image quality was assessed qualitatively by two readers using a five-point Likert scale (1 = non-diagnostic to 5 = excellent). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of lesions and surrounding tissues were quantitatively measured. The Alberta Stroke Program Early CT Score (ASPECTS) was used to evaluate ischemia severity.

Results

Total scan time was reduced from 5 minutes 9 seconds to 2 minutes 40 seconds, accounting for a reduction of 48.22%. IQMR significantly improved SNR/CNR in accelerated sequences ( < .05), achieving parity with routine sequences (P > .05). Qualitative scores for lesion conspicuity and internal display improved post-IQMR ( < .05).. ASPECTS showed no significant difference between IQMR and routine images ( = 0.79; ICC = 0.91–0.93).

Discussion

IQMR addressed MRI’s slow scanning limitation without hardware modifications, enhancing diagnostic efficiency. The results have been found to align with advancements in deep learning. Limitations included the small sample size and the exclusion of functional sequences.

Conclusion

IQMR could significantly reduce brain MRI scanning time and enhance image quality in patients with acute ischemic stroke.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056418245250912095159
2025-10-10
2025-11-08
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056418245.html?itemId=/content/journals/cmir/10.2174/0115734056418245250912095159&mimeType=html&fmt=ahah

References

  1. GeorgeM.G. Risk factors for ischemic stroke in younger adults.Stroke202051372973510.1161/STROKEAHA.119.02415632078487
    [Google Scholar]
  2. ElgendyI.Y. GadM.M. MahmoudA.N. KeeleyE.C. PepineC.J. Acute stroke during pregnancy and puerperium.J. Am. Coll. Cardiol.202075218019010.1016/j.jacc.2019.10.05631948647
    [Google Scholar]
  3. MorelloA. CasseriT. AcampaM. GalluzziP. CeraseA. MontiL. Stroke in pregnancy and review of current literature: Arterial spin-labeling MRI can identify the presence and intensity of collateral circle.J. Stroke Cerebrovasc. Dis.201827123575357710.1016/j.jstrokecerebrovasdis.2018.08.02730228010
    [Google Scholar]
  4. LeeC.C. SuY.C. HoH.C. HungS.K. LeeM.S. ChiouW.Y. ChouP. HuangY.S. Increased risk of ischemic stroke in young nasopharyngeal carcinoma patients.Int. J. Radiat. Oncol. Biol. Phys.2011815e833e83810.1016/j.ijrobp.2010.11.03621570205
    [Google Scholar]
  5. Di StefanoA.L. BerzeroG. DucrayF. EoliM. PichiecchioA. FarinaL.M. CuccariniV. BrunelliM.C. DiamantiL. Condette AuliacS. SalmaggiA. SilvaniA. GiomettoB. PaceA. VidiriA. BourdainF. BastianelloS. CeroniM. MarchioniE. Stroke-like events after brain radiotherapy: A large series with long-term follow-up.Eur. J. Neurol.201926463965010.1111/ene.1387030471162
    [Google Scholar]
  6. ChalelaJ.A. KidwellC.S. NentwichL.M. LubyM. ButmanJ.A. DemchukA.M. HillM.D. PatronasN. LatourL. WarachS. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: A prospective comparison.Lancet2007369955829329810.1016/S0140‑6736(07)60151‑217258669
    [Google Scholar]
  7. KimS.J. Moving from CT to MRI paradigm in acute ischemic stroke: Experience of a tertiary stroke center.Front. Neurol.202314110455510.3389/fneur.2023.1104555
    [Google Scholar]
  8. RapilloC.M. DunetV. PistocchiS. SalernoA. DarioliV. BartoliniB. HajduS.D. MichelP. StramboD. Moving from CT to MRI paradigm in acute ischemic stroke: Feasibility, effects on stroke diagnosis and long-term outcomes.Stroke20245551329133810.1161/STROKEAHA.123.04515438488367
    [Google Scholar]
  9. ThomallaG. GerloffC. Acute imaging for evidence-based treatment of ischemic stroke.Curr. Opin. Neurol.201932452152910.1097/WCO.000000000000071631116116
    [Google Scholar]
  10. ThomallaG. SimonsenC.Z. BoutitieF. AndersenG. BerthezeneY. ChengB. CheripelliB. ChoT.H. FazekasF. FiehlerJ. FordI. GalinovicI. GellissenS. GolsariA. GregoriJ. GüntherM. GuibernauJ. HäuslerK.G. HennericiM. KemmlingA. MarstrandJ. ModrauB. NeebL. Perez de la OssaN. PuigJ. RinglebP. RoyP. ScheelE. SchonewilleW. SerenaJ. SunaertS. VillringerK. WoutersA. ThijsV. EbingerM. EndresM. FiebachJ.B. LemmensR. MuirK.W. NighoghossianN. PedrazaS. GerloffC. MRI-guided thrombolysis for stroke with unknown time of onset.N. Engl. J. Med.2018379761162210.1056/NEJMoa180435529766770
    [Google Scholar]
  11. KakkarP. KakkarT. PatankarT. SahaS. Current approaches and advances in the imaging of stroke.Dis. Model. Mech.20211412dmm04878510.1242/dmm.04878534874055
    [Google Scholar]
  12. HamiltonJ. FransonD. SeiberlichN. Recent advances in parallel imaging for MRI.Prog. Nucl. Magn. Reson. Spectrosc.2017101719510.1016/j.pnmrs.2017.04.00228844222
    [Google Scholar]
  13. KimS. ParkC. KimK.S. JeongH.S. LeeS.M. Clinical feasibility of simultaneous multislice acceleration in knee MRI.Clin. Imaging20228221622310.1016/j.clinimag.2021.11.03134896934
    [Google Scholar]
  14. BentatouZ. TroalenT. BernardM. GuyeM. PiniL. BartoliA. JacquierA. KoberF. RapacchiS. Simultaneous multi-slice T1 mapping using MOLLI with blipped CAIPIRINHA bSSFP.Magn. Reson. Imaging2023959010210.1016/j.mri.2020.03.00632304799
    [Google Scholar]
  15. TianY. CuiS.X. LimY. LeeN.G. ZhaoZ. NayakK.S. Contrast-optimal simultaneous multi-slice bSSFP cine cardiac imaging at 0.55 T.Magn. Reson. Med.202389274675510.1002/mrm.2947236198043
    [Google Scholar]
  16. YoonJ.H. NickelM.D. PeetersJ.M. LeeJ.M. Rapid imaging: Recent advances in abdominal MRI for reducing acquisition time and its clinical applications.Korean J. Radiol.201920121597161510.3348/kjr.2018.093131854148
    [Google Scholar]
  17. DelattreB.M.A. BoudabbousS. HansenC. NeroladakiA. HachullaA.L. VargasM.I. Compressed sensing MRI of different organs: Ready for clinical daily practice?Eur. Radiol.202030130831910.1007/s00330‑019‑06319‑031264014
    [Google Scholar]
  18. JaspanO.N. FleysherR. LiptonM.L. Compressed sensing MRI: A review of the clinical literature.Br. J. Radiol.20158810562015048710.1259/bjr.2015048726402216
    [Google Scholar]
  19. SunZ. AngelisG. MeikleS. CalamanteF. MRI tractography-guided PET image reconstruction regularisation using connectome-based nonlocal means filtering.Phys. Med. Biol.2023681313501610.1088/1361‑6560/acdc7f37285850
    [Google Scholar]
  20. WeiR. LiuY. ChenX. ZhuJ. YangB. MenK. DaiJ. A projection-domain correction method in CBCT reconstruction for head and neck radiotherapy using cycle-GAN and nonlocal means filter.Med. Phys.20235085045506010.1002/mp.1632237006163
    [Google Scholar]
  21. KasaiR. OtsukaH. Noise reduction using singular value decomposition with jensen–shannon divergence for coronary computed tomography angiography.Diagnostics2023136111110.3390/diagnostics1306111136980419
    [Google Scholar]
  22. FuY. ZhaoX. LiangY. ZhaoT. WangC. ZhangD. Change detection based on unsupervised sparse representation for fundus image pair.Sci. Rep.2022121982010.1038/s41598‑022‑13754‑535701500
    [Google Scholar]
  23. PadoleA. SinghS. AckmanJ.B. WuC. DoS. PourjabbarS. KhawajaR.D.A. OtrakjiA. DigumarthyS. ShepardJ.A. KalraM. Submillisievert chest CT with filtered back projection and iterative reconstruction techniques.AJR Am. J. Roentgenol.2014203477278110.2214/AJR.13.1231225247943
    [Google Scholar]
  24. PadoleA. DigumarthyS. FloresE. MadanR. MishraS. SharmaA. KalraM.K. Assessment of chest CT at CTDI vol less than 1 mGy with iterative reconstruction techniques.Br. J. Radiol.20179010712016062510.1259/bjr.2016062528055250
    [Google Scholar]
  25. KanemaruN. TakaoH. AmemiyaS. AbeO. The effect of a post-scan processing denoising system on image quality and morphometric analysis.J. Neuroradiol.202249220521210.1016/j.neurad.2021.11.00734863809
    [Google Scholar]
  26. BarberP.A. DemchukA.M. ZhangJ. BuchanA.M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy.Lancet200035592161670167410.1016/S0140‑6736(00)02237‑610905241
    [Google Scholar]
  27. FederauC. ChristensenS. MlynashM. TsaiJ. KimS. ZaharchukG. InoueM. StrakaM. MishraN.K. KempS. LansbergM.G. AlbersG.W. Comparison of stroke volume evolution on diffusion-weighted imaging and fluid-attenuated inversion recovery following endovascular thrombectomy.Int. J. Stroke201712551051810.1177/174749301667798527811306
    [Google Scholar]
  28. PowersW.J. RabinsteinA.A. AckersonT. AdeoyeO.M. BambakidisN.C. BeckerK. BillerJ. BrownM. DemaerschalkB.M. HohB. JauchE.C. KidwellC.S. Leslie-MazwiT.M. OvbiageleB. ScottP.A. ShethK.N. SoutherlandA.M. SummersD.V. TirschwellD.L. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association.Stroke20195012e344e41810.1161/STR.000000000000021131662037
    [Google Scholar]
  29. GorelickP.B. The global burden of stroke: Persistent and disabling.Lancet Neurol.201918541741810.1016/S1474‑4422(19)30030‑430871943
    [Google Scholar]
  30. WardlawJ.M. MielkeO. Early signs of brain infarction at CT: Observer reliability and outcome after thrombolytic treatment--systematic review.Radiology2005235244445310.1148/radiol.235204026215858087
    [Google Scholar]
  31. ZuckerE.J. SandinoC.M. KinoA. LaiP. VasanawalaS.S. Free-breathing accelerated cardiac MRi using deep learning: Validation in children and young adults.Radiology2021300353954810.1148/radiol.202120262434128724
    [Google Scholar]
  32. MaennlinS. WesslingD. HerrmannJ. AlmansourH. NickelD. KannengiesserS. AfatS. GassenmaierS. Application of deep learning-based super-resolution to T1-weighted postcontrast gradient echo imaging of the chest.Radiol. Med.2023128218419010.1007/s11547‑022‑01587‑136609662
    [Google Scholar]
  33. KaniewskaM. Deininger-CzermakE. GetzmannJ.M. WangX. LohezicM. GuggenbergerR. Application of deep learning–based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time.Eur. Radiol.20223331513152510.1007/s00330‑022‑09151‑136166084
    [Google Scholar]
  34. BischoffL.M. PeetersJ.M. WeinholdL. KrausewitzP. EllingerJ. KatemannC. IsaakA. WeberO.M. KuettingD. AttenbergerU. PieperC.C. SprinkartA.M. LuetkensJ.A. Deep learning super-resolution reconstruction for fast and motion-robust T2-weighted prostate MRI.Radiology20233083e23042710.1148/radiol.23042737750774
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056418245250912095159
Loading
/content/journals/cmir/10.2174/0115734056418245250912095159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test