Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Electrical Impedance Tomography (EIT) is widely used for bedside ventilation monitoring but is limited in reconstructing cardiac-related signals due to the dominance of lung impedance changes. This study aims to reconstruct heart-related impedance imaging from lung EIT using a novel semi-Siamese U-Net architecture.

Methods

A deep learning model was developed with a shared encoder and two decoders designed to segment lung and heart regions independently. The model was trained and validated on FEM-based EIT simulations and tested on real human EIT data. A weighted binary cross-entropy loss was applied to emphasize cardiac-related learning.

Results

The model achieved a Dice coefficient >0.99 and MAE <0.1% on simulation data. It successfully separated lung and heart regions on human EIT frames without additional fine-tuning, demonstrating strong generalization capacity.

Discussion

These findings reveal that the semi-Siamese U-Net can overcome signal dominance and improve cardiac-related EIT reconstruction. However, promising results are currently limited to qualitative evaluation of real data and simulation-based training.

Conclusion

The proposed method offers a potential pathway for simultaneous lung-heart monitoring in ICU settings. Future work will focus on clinical validation and real-time implementation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056408077250610070821
2025-07-02
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056408077.html?itemId=/content/journals/cmir/10.2174/0115734056408077250610070821&mimeType=html&fmt=ahah

References

  1. FrerichsI. HinzJ. HerrmannP. WeisserG. HahnG. DudykevychT. QuintelM. HelligeG. Detection of local lung air content by electrical impedance tomography compared with electron beam CT.J. Appl. Physiol.200293266066610.1152/japplphysiol.00081.200212133877
    [Google Scholar]
  2. CanetJ. GallartL. The dark side of the lung: unveiling regional lung ventilation with electrical impedance tomography.Anesthesiology201211661186810.1097/ALN.0b013e318256ef0a22546963
    [Google Scholar]
  3. McArdleF.J. SuggettA.J. BrownB.H. BarberD.C. An assessment of dynamic images by applied potential tomography for monitoring pulmonary perfusion.Clin. Phys. Physiol. Meas.198894ASuppl. A879110.1088/0143‑0815/9/4A/0153240656
    [Google Scholar]
  4. EyübogluB.M. BrownB.H. Methods of cardiac gating applied potential tomography.Clin. Phys. Physiol. Meas.198894ASuppl. A434810.1088/0143‑0815/9/4A/0083240648
    [Google Scholar]
  5. PikkemaatR. LeonhardtS. Separation of ventilation and perfusion related signals within EIT-data streams.J. Phys. Conf. Ser.201022401202810.1088/1742‑6596/224/1/012028
    [Google Scholar]
  6. DeibeleJ.M. LuepschenH. LeonhardtS. Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography.Physiol. Meas.2008296S1S1410.1088/0967‑3334/29/6/S0118544813
    [Google Scholar]
  7. RahmanT. HasanM.M. FarooqA. UddinM.Z. Extraction of cardiac and respiration signals in electrical impedance tomography based on independent component analysis.J. Electr. Bioimpedance201341384410.5617/jeb.553
    [Google Scholar]
  8. SmitH.J. Vonk-NoordegraafA. BoonstraA. de VriesP.M. PostmusP.E. Assessment of the pulmonary volume pulse in idiopathic pulmonary arterial hypertension by means of electrical impedance tomography.Respiration200673559760210.1159/00008869416205046
    [Google Scholar]
  9. Nait-AliA. Advanced biosignal processing.Springer Berlin,Heidelberg2009378
    [Google Scholar]
  10. WuM.C. Phase statistics approach to physiological and financial time series.AAPPS Bulletin20071721
    [Google Scholar]
  11. HuangN.E. ShenS.S.P. Hilbert-Huang transform and its applications.World Scientific PublishingSingapore2005324
    [Google Scholar]
  12. YaoW. ZengZ. LianC. TangH. Pixel-wise regression using U-Net and its application on pansharpening.Neurocomputing201831236437110.1016/j.neucom.2018.05.103
    [Google Scholar]
  13. GrafM. RiedelT. Electrical impedance tomography: Amplitudes of cardiac related impedance changes in the lung are highly position dependent.PLoS One20171211018831310.1371/journal.pone.018831329145478
    [Google Scholar]
  14. FagerbergA. StenqvistO. ÅnemanA. Electrical impedance tomography applied to assess matching of pulmonary ventilation and perfusion in a porcine experimental model.Crit. Care2009132R3410.1186/cc774119265527
    [Google Scholar]
  15. FagerbergA. StenqvistO. ÅnemanA. Monitoring pulmonary perfusion by electrical impedance tomography: An evaluation in a pig model.Acta Anaesthesiol. Scand.200953215215810.1111/j.1399‑6576.2008.01847.x19175575
    [Google Scholar]
  16. Vonk NoordegraafA. KunstP.W.A. JanseA. MarcusJ.T. PostmusP.E. FaesT.J.C. de VriesP.M.J.M. Pulmonary perfusion measured by means of electrical impedance tomography.Physiol. Meas.199819226327310.1088/0967‑3334/19/2/0139626690
    [Google Scholar]
  17. FrerichsI. PulletzS. ElkeG. ReifferscheidF. SchädlerD. ScholzJ. WeilerN. Assessment of changes in distribution of lung perfusion by electrical impedance tomography.Respiration200977328229110.1159/00019399419147986
    [Google Scholar]
  18. GrantC.A. PhamT. HoughJ. RiedelT. StockerC. SchiblerA. Measurement of ventilation and cardiac related impedance changes with electrical impedance tomography.Crit. Care2011151R3710.1186/cc998521266025
    [Google Scholar]
  19. KerroucheN. McLeodC.N. LionheartW.R.B. Time series of EIT chest images using singular value decomposition and Fourier transform.Physiol. Meas.200122114715710.1088/0967‑3334/22/1/31811236875
    [Google Scholar]
  20. KoY.F. ChengK.S. Semi-Siamese U-Net for separation of lung and heart bioimpedance images: A simulation study of thorax EIT.PLoS One2021162024607110.1371/journal.pone.024607133529234
    [Google Scholar]
  21. KoY.F. ChengK.S. U-Net-based approach for automatic lung segmentation in electrical impedance tomography.Physiol. Meas.202142202500210.1088/1361‑6579/abe02133498021
    [Google Scholar]
  22. RonnebergerO. FischerP. BroxT. U-Net: Convolutional networks for biomedical image segmentation.Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015.Springer, Cham, 2015, vol. 9351, pp. 234-241.10.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  23. ZhouZ. SiddiqueeM.M.R. UNet++: A nested U-Net architecture for medical image segmentation.Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA ML-CDS 2018Springer, Cham, 2018, vol. 11045, pp. 128–142.10.1007/978‑3‑030‑00889‑5_1
    [Google Scholar]
  24. IbtehazN. RahmanM.S. MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation.Neural Netw.2020121748710.1016/j.neunet.2019.08.02531536901
    [Google Scholar]
  25. LiuL. MouL. ZhuX.X. MandalM. Skin lesion segmentation based on improved U-net.2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)Edmonton, AB, Canada, 05-08 May 2019, pp. 1-4.10.1109/CCECE.2019.8861848
    [Google Scholar]
  26. MerkowJ. MarsdenA. KriegmanD. TuZ. Dense volume-to-volume vascular boundary detection.Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016.Springer, Cham, 2016, vol. 9902, pp. 371-379.10.1007/978‑3‑319‑46726‑9_43
    [Google Scholar]
  27. TangS. YangM. BaiJ. Detection of pulmonary nodules based on a multiscale feature 3D U-Net convolutional neural network of transfer learning.PLoS One2020158023567210.1371/journal.pone.023567232845877
    [Google Scholar]
  28. ShelhamerE. LongJ. DarrellT. Fully convolutional networks for semantic segmentation.IEEE Trans. Pattern Anal. Mach. Intell.201739464065110.1109/TPAMI.2016.257268327244717
    [Google Scholar]
  29. MulliqiN. YildirimS. MohammedA. AhmediL. WangH. ElezajO. HovdeO. The importance of skip connections in encoder-decoder architectures for colorectal polyp detection.2020 IEEE International Conference on Image Processing (ICIP)Abu Dhabi, United Arab Emirates, 25-28 October 2020, pp. 380-38410.1109/ICIP40778.2020.9191310
    [Google Scholar]
  30. AlomM.Z. HasanM. YakopcicC. TahaT.M. AsariV.K. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation.arXiv2018arXiv:1802.06955
    [Google Scholar]
  31. AdlerA. LionheartW.R.B. Uses and abuses of EIDORS: An extensible software base for EIT.Physiol. Meas.2006275S25S4210.1088/0967‑3334/27/5/S0316636416
    [Google Scholar]
  32. AdlerA. ArnoldJ.H. BayfordR. BorsicA. BrownB. DixonP. FaesT.J.C. FrerichsI. GagnonH. GärberY. GrychtolB. HahnG. LionheartW.R.B. MalikA. PattersonR.P. StocksJ. TizzardA. WeilerN. WolfG.K. GREIT: A unified approach to 2D linear EIT reconstruction of lung images.Physiol. Meas.2009306S35S5510.1088/0967‑3334/30/6/S0319491438
    [Google Scholar]
  33. GrimnesS. MartinsenO.G. Bioimpedance and bioelectricity basics.Academic PressAmsterdam3rd ed2014584
    [Google Scholar]
  34. ThürkF. BoehmeS. MudrakD. KampuschS. WielandnerA. ProschH. BraunC. ToemboelF.P.R. HofmanningerJ. KaniusasE. Effects of individualized electrical impedance tomography and image reconstruction settings upon the assessment of regional ventilation distribution: Comparison to 4-dimensional computed tomography in a porcine model.PLoS One2017128018221510.1371/journal.pone.018221528763474
    [Google Scholar]
  35. KhanA.A. MadendranR.K. ThirunavukkarasuU. FaheemM. D 2 PAM : Epileptic seizures prediction using adversarial deep dual patch attention mechanism.CAAI Trans. Intell. Technol.20238375576910.1049/cit2.12261
    [Google Scholar]
  36. AlhussenA. Anul HaqM. Ahmad KhanA. MahendranR.K. KadryS. MahendranR.K. KadryS. XAI-RACapsNet: Relevance aware capsule network-based breast cancer detection using mammography images via explainability O-net ROI segmentation.Expert Syst. Appl.202526112546110.1016/j.eswa.2024.125461
    [Google Scholar]
  37. KhanA.A. MahendranR.K. PerumalK. FaheemM. Dual-3DM 3 AD: Mixed transformer based semantic segmentation and triplet pre-processing for early multi-class Alzheimer’s diagnosis.IEEE Trans. Neural Syst. Rehabil. Eng.20243269670710.1109/TNSRE.2024.335772338261494
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056408077250610070821
Loading
/content/journals/cmir/10.2174/0115734056408077250610070821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test