Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

This study aimed to explore the value of a machine learning model based on spectral computed tomography (CT) for predicting the programmed death ligand-1 (PD-L1) expression in resectable non-small cell lung cancer (NSCLC).

Methods

In this retrospective study, 131 instances of NSCLC who underwent preoperative spectral CT scanning were enrolled and divided into a training cohort (n = 92) and a test cohort (n = 39). Clinical-imaging features and quantitative parameters of spectral CT were analyzed. Variable selection was performed using univariate and multivariate logistic regression, as well as LASSO regression. We used eight machine learning algorithms to construct a PD-L1 expression predictive model. We utilized sensitivity, specificity, accuracy, calibration curve, the area under the curve (AUC), F1 score and decision curve analysis (DCA) to evaluate the predictive value of the model.

Results

After variable selection, cavitation, ground-glass opacity, and CT40keV and CT70keV at venous phase were selected to develop eight machine learning models. In the test cohort, the extreme gradient boosting (XGBoost) model achieved the best diagnostic performance (AUC = 0.887, sensitivity = 0.696, specificity = 0.937, accuracy = 0.795 and F1 score = 0.800). The DCA indicated favorable clinical utility, and the calibration curve demonstrated the model’s high level of prediction accuracy.

Discussion

Our study indicated that the machine learning model based on spectral CT could effectively evaluate the PD-L1 expression in resectable NSCLC.

Conclusion

The XGBoost model, integrating spectral CT quantitative parameters and imaging features, demonstrated considerable potential in predicting PD-L1 expression.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056404160250925115913
2025-10-09
2025-11-08
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056404160.html?itemId=/content/journals/cmir/10.2174/0115734056404160250925115913&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. MezaR. MeernikC. JeonJ. CoteM.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973-2010.PLoS One2015103e012132310.1371/journal.pone.012132325822850
    [Google Scholar]
  3. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: profiles, trends, and determinants.Chin. Med. J.2022135558459010.1097/CM9.000000000000210835143424
    [Google Scholar]
  4. CataniaC. MuthusamyB. SpitaleriG. del SignoreE. PennellN.A. The new era of immune checkpoint inhibition and target therapy in early-stage non-small cell lung cancer. A review of the literature.Clin. Lung Cancer202223210811510.1016/j.cllc.2021.11.00334952792
    [Google Scholar]
  5. FordeP.M. SpicerJ. LuS. ProvencioM. MitsudomiT. AwadM.M. FelipE. BroderickS.R. BrahmerJ.R. SwansonS.J. KerrK. WangC. CiuleanuT.E. SaylorsG.B. TanakaF. ItoH. ChenK.N. LibermanM. VokesE.E. TaubeJ.M. DorangeC. CaiJ. FioreJ. JarkowskiA. BalliD. SausenM. PandyaD. CalvetC.Y. GirardN. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer.N. Engl. J. Med.2022386211973198510.1056/NEJMoa220217035403841
    [Google Scholar]
  6. AwadM.M. FordeP.M. GirardN. SpicerJ. WangC. LuS. MitsudomiT. FelipE. BroderickS.R. SwansonS.J. BrahmerJ. KerrK. SaylorsG.B. ChenK.N. GharpureV. NeelyJ. BalliD. HuN. Provencio PullaM. Neoadjuvant nivolumab plus ipilimumab versus chemotherapy in resectable lung cancer.J. Clin. Oncol.202543121453146210.1200/JCO‑24‑0223939778121
    [Google Scholar]
  7. WakeleeH. LibermanM. KatoT. TsuboiM. LeeS.H. GaoS. ChenK.N. DoomsC. MajemM. EigendorffE. MartinengoG.L. BylickiO. Rodríguez-AbreuD. ChaftJ.E. NovelloS. YangJ. KellerS.M. SamkariA. SpicerJ.D. Perioperative pembrolizumab for early-stage non–small-cell lung cancer.N. Engl. J. Med.2023389649150310.1056/NEJMoa230298337272513
    [Google Scholar]
  8. SchoenfeldA.J. RizviH. BandlamudiC. SauterJ.L. TravisW.D. RekhtmanN. PlodkowskiA.J. Perez-JohnstonR. SawanP. BerasA. EggerJ.V. LadanyiM. ArbourK.C. RudinC.M. RielyG.J. TaylorB.S. DonoghueM.T.A. HellmannM.D. Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas.Ann. Oncol.202031559960810.1016/j.annonc.2020.01.06532178965
    [Google Scholar]
  9. ZhengX.X. MaY.Q. CuiY.Q. DongS.S. ChangF.X. ZhuD.L. HuangG. Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer.Clin. Radiol.2024794e511e52310.1016/j.crad.2024.01.00638307814
    [Google Scholar]
  10. IlieM. Long-MiraE. BenceC. ButoriC. LassalleS. BouhlelL. FazzalariL. ZahafK. LalvéeS. WashetineK. MourouxJ. VénissacN. PoudenxM. OttoJ. SabourinJ.C. MarquetteC.H. HofmanV. HofmanP. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: A potential issue for anti-PD-L1 therapeutic strategies.Ann. Oncol.201627114715310.1093/annonc/mdv48926483045
    [Google Scholar]
  11. GniadekT.J. LiQ.K. TullyE. ChatterjeeS. NimmagaddaS. GabrielsonE. Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: Implications for assessment by small biopsy.Mod. Pathol.201730453053810.1038/modpathol.2016.21328059094
    [Google Scholar]
  12. LiW.X. MiaoF. XuX.Q. ZhangJ. WuZ.Y. ChenK.M. YanF.H. LinX.Z. Pancreatic neuroendocrine neoplasms: CT spectral imaging in grading.Acad. Radiol.202128220821610.1016/j.acra.2020.01.03332111466
    [Google Scholar]
  13. ZhangX. ZhangG. XuL. BaiX. LuX. YuS. SunH. JinZ. Utilisation of virtual non-contrast images and virtual mono-energetic images acquired from dual-layer spectral CT for renal cell carcinoma: Image quality and radiation dose.Insights Imaging20221311210.1186/s13244‑021‑01146‑835072807
    [Google Scholar]
  14. LinL. ChengJ. TangD. ZhangY. ZhangF. XuJ. JiangH. WuH. The associations among quantitative spectral CT parameters, Ki-67 expression levels and EGFR mutation status in NSCLC.Sci. Rep.2020101343610.1038/s41598‑020‑60445‑032103127
    [Google Scholar]
  15. LiM. ZhangL. TangW. MaP.Q. ZhouL.N. JinY.J. QiL.L. WuN. Quantitative features of dual-energy spectral computed tomography for solid lung adenocarcinoma with EGFR and KRAS mutations, and ALK rearrangement: A preliminary study.Transl. Lung Cancer Res.20198440141210.21037/tlcr.2019.08.1331555515
    [Google Scholar]
  16. LiF. QiL. ChengS. LiuJ. ChenJ. CuiS. DongS. WangJ. Predicting epidermal growth factor receptor mutations in non-small cell lung cancer through dual-layer spectral CT: A prospective study.Insights Imaging202415110910.1186/s13244‑024‑01678‑938679659
    [Google Scholar]
  17. WuY.L. ZhangL. FanY. ZhouJ. ZhangL. ZhouQ. LiW. HuC. ChenG. ZhangX. ZhouC. DangT. SadowskiS. KushD.A. ZhouY. LiB. MokT. Randomized clinical trial of pembrolizumab vs chemotherapy for previously untreated Chinese patients with PD-L1-positive locally advanced or metastatic non–small-cell lung cancer: KEYNOTE-042 China Study.Int. J. Cancer202114892313232010.1002/ijc.3339933231285
    [Google Scholar]
  18. ChenM.L. ShiA.H. LiX. WeiY.Y. QiL.P. SunY.S. Is there any correlation between spectral CT imaging parameters and PD-L1 expression of lung adenocarcinoma?Thorac. Cancer202011236236810.1111/1759‑7714.1327331808285
    [Google Scholar]
  19. WangT. FanZ. YueY. LuX. DengX. HouY. Predictive value of spectral dual-detector computed tomography for PD-L1 expression in stage I lung adenocarcinoma: development and validation of a novel nomogram.Quant. Imaging Med. Surg.20241485983600110.21037/qims‑24‑1539144026
    [Google Scholar]
  20. YuJ. WangX. TengF. KongL. PD-L1 expression in human cancers and its association with clinical outcomes.OncoTargets Ther.201695023503910.2147/OTT.S10586227574444
    [Google Scholar]
  21. RicciutiB. WangX. AlessiJ.V. RizviH. MahadevanN.R. LiY.Y. PolioA. LindsayJ. UmetonR. SinhaR. VokesN.I. RecondoG. LambertiG. LawrenceM. VazV.R. LeonardiG.C. PlodkowskiA.J. GuptaH. CherniackA.D. TolstorukovM.Y. SharmaB. FeltK.D. GainorJ.F. RaviA. GetzG. SchalperK.A. HenickB. FordeP. AnagnostouV. JänneP.A. Van AllenE.M. NishinoM. ShollL.M. ChristianiD.C. LinX. RodigS.J. HellmannM.D. AwadM.M. Association of high tumor mutation burden in non–small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels.JAMA Oncol.2022881160116810.1001/jamaoncol.2022.198135708671
    [Google Scholar]
  22. ZhangZ. ZouH. YuanA. JiangF. ZhaoB. LiuY. ChenJ. ZuoM. GongL. A single enhanced dual-energy CT scan may distinguish lung squamous cell carcinoma from adenocarcinoma during the venous phase.Acad. Radiol.202027562462910.1016/j.acra.2019.07.01831447258
    [Google Scholar]
  23. ToyokawaG. TakadaK. OkamotoT. ShimokawaM. KozumaY. MatsubaraT. HaratakeN. TakamoriS. AkamineT. KatsuraM. ShojiF. OdaY. MaeharaY. Computed tomography features of lung adenocarcinomas with programmed death ligand 1 expression.Clin. Lung Cancer2017186e375e38310.1016/j.cllc.2017.03.00828385373
    [Google Scholar]
  24. WuT. ZhouF. Soodeen-LallooA.K. YangX. ShenY. DingX. ShiJ. DaiJ. ShiJ. The association between imaging features of TSCT and the expression of PD-L1 in patients with surgical resection of lung adenocarcinoma.Clin. Lung Cancer2019202e195e20710.1016/j.cllc.2018.10.01230514666
    [Google Scholar]
  25. MatsunagaT. SuzukiK. TakamochiK. OhS. What is the radiological definition of part-solid tumour in lung cancer?†.Eur. J. Cardiothorac. Surg.2017512242710.1093/ejcts/ezw34428119328
    [Google Scholar]
  26. LiuP.M. FengB. ShiJ.F. FengH.J. HuZ.J. ChenY.H. ZhangJ.P. A deep-learning model using enhanced chest CT images to predict PD-L1 expression in non-small-cell lung cancer patients.Clin. Radiol.20237810e689e69710.1016/j.crad.2023.05.01037460338
    [Google Scholar]
  27. LiuL. YuY. FeiZ. LiM. WuF.X. LiH.D. PanY. WangJ. An interpretable boosting model to predict side effects of analgesics for osteoarthritis.BMC Syst. Biol.201812S610510.1186/s12918‑018‑0624‑430463545
    [Google Scholar]
  28. ChenM. LiX. WeiY. QiL. SunY.S. Spectral CT imaging parameters and Ki-67 labeling index in lung adenocarcinoma.Chin. J. Cancer Res.20203219610410.21147/j.issn.1000‑9604.2020.01.1132194309
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056404160250925115913
Loading
/content/journals/cmir/10.2174/0115734056404160250925115913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test