Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

To evaluate the correlation between the effective cross-sectional area (eCSA) of the rotator cuff muscle measured using Dixon MRI and the outcomes of the Biodex Isokinetic Test.

Methods

The cross-sectional area (CSA) of the subscapularis (SSc), supraspinatus (SST), and infraspinatus+teres minor (ISTM) muscles of 87 patients who had undergone shoulder MRI and Biodex Isokinetic Test were measured in the oblique sagittal Y-view. The eCSA was calculated by multiplying the CSA by (1-fat fraction). Eight shoulder movements (FL60, EX60, FL180, EX180, ER60, IR60, ER180, and IR180) each assessed using four parameters (peak torque [PT], peak torque/body weight, torque at 30° [TQ30], and total work) were recorded on Biodex. Pearson correlation coefficients were calculated between eCSA and Biodex outcomes. Univariate regression analyses were conducted to identify the factors influencing the Biodex results. General linear models were applied to confirm the correlations between the eCSA and 32 Biodex parameters after adjusting for these factors.

Results

The eCSA of the SSc, SST, and ISTM exhibited significant correlations with TQ30 at IR180 (r=0.549) and FL60 (r=0.522), PT at ER60 (r=0.656) and EX60 (r=0.575), and PT at ER60 (r=0.674) and FL180 (r=0.626), respectively. Age, sex, SST, and SSc tears were identified as factors influencing the Biodex results. FL60TQ30, EX60PT, and ER60PT exhibited significant associations with the eCSA of SSc, SST, and ISTM, respectively, after adjusting for these factors.

Conclusion

eCSA may be a useful quantitative imaging marker for assessing the function of the rotator cuff muscle. FL60TQ30, EX60PT, and ER60PT are useful Biodex indices for SSc, SST, and ISTM, respectively.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056402394250921003713
2025-10-02
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056402394.html?itemId=/content/journals/cmir/10.2174/0115734056402394250921003713&mimeType=html&fmt=ahah

References

  1. EdouardP. CodineP. SamozinoP. BernardP.L. HérissonC. GremeauxV. Reliability of shoulder rotators isokinetic strength imbalance measured using the biodex dynamometer.J. Sci. Med. Sport201316216216510.1016/j.jsams.2012.01.00722749937
    [Google Scholar]
  2. KimD.W. SungJ.H. JungJ.E. KoM.S. Correlation between korean shoulder scoring system and isokinetic muscle strength test.J Korean Orthop Sports Med201092104108
    [Google Scholar]
  3. OhJ.H. YoonJ.P. KimJ.Y. OhC.H. Isokinetic muscle performance test can predict the status of rotator cuff muscle.Clin. Orthop. Relat. Res.201046861506151310.1007/s11999‑009‑1169‑z19936859
    [Google Scholar]
  4. TudiniF.T. Isokinetic testing of the shoulder rotator muscles of older individuals with shoulder pathology: An integrative review.Isokinet. Exerc. Sci.202028331732410.3233/IES‑201149
    [Google Scholar]
  5. LaronD SamaghSP LiuX KimHT FeeleyBT Muscle degeneration in rotator cuff tears.J Shoulder Elbow Surg201221216417410.1016/j.jse.2011.09.02722244059
    [Google Scholar]
  6. NozakiT. TasakiA. HoriuchiS. OsakabeC. OhdeS. SaidaY. YoshiokaH. Quantification of fatty degeneration within the supraspinatus muscle by using a 2-point Dixon method on 3-T MRI.AJR Am. J. Roentgenol.2015205111612210.2214/AJR.14.1351826102389
    [Google Scholar]
  7. GoutallierD. PostelJ.M. BernageauJ. LavauL. VoisinM.C. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan.Clin. Orthop. Relat. Res.199430478838020238
    [Google Scholar]
  8. NasrA.J. HarrisJ. WangJ. KhazzamM. JainN.B. TzenY-T. LinY-S. The use of Dixon magnetic resonance imaging methods for the quantification of rotator cuff fatty infiltration: A systematic review.Muscles20243213315210.3390/muscles3020013
    [Google Scholar]
  9. YooJ.C. RheeY.G. ShinS.J. ParkY.B. McGarryM.H. JunB.J. LeeT.Q. Subscapularis tendon tear classification based on 3-dimensional anatomic footprint: A cadaveric and prospective clinical observational study.Arthroscopy2015311192810.1016/j.arthro.2014.08.01525442662
    [Google Scholar]
  10. AhnT.R. YoonY.C. YooJ.C. KimH.S. LeeJ.H. Diagnostic performance of conventional magnetic resonance imaging for detection and grading of subscapularis tendon tear according to Yoo and Rhee classification system in patients underwent arthroscopic rotator cuff surgery.Skeletal Radiol.202251365966810.1007/s00256‑021‑03958‑734825259
    [Google Scholar]
  11. AkogluH. User’s guide to correlation coefficients.Turk. J. Emerg. Med.2018183919310.1016/j.tjem.2018.08.00130191186
    [Google Scholar]
  12. PiepersI. BoudtP. Van TongelA. De WildeL. Evaluation of the muscle volumes of the transverse rotator cuff force couple in nonpathologic shoulders.J. Shoulder Elbow Surg.2014237e158e16210.1016/j.jse.2013.09.02724342371
    [Google Scholar]
  13. TerrierA. LarreaX. Malfroy CamineV. PiolettiD.P. FarronA. Importance of the subscapularis muscle after total shoulder arthroplasty.Clin. Biomech.201328214615010.1016/j.clinbiomech.2012.11.01023333178
    [Google Scholar]
  14. ForbushSW BandyWD Validity of using cross-sectional area for strength assessment of the supraspinatus muscle during diagonal horizontal adduction testing with measured isometric resistance applied through dynamometry.J Musculoskelet Disord Treat20217209410.23937/2572‑3243.1510094
    [Google Scholar]
  15. KatayoseM. MageeD.J. The cross-sectional area of supraspinatus as measured by diagnostic ultrasound.J. Bone Joint Surg. Br.200183-B456556810.1302/0301‑620X.83B4.083056511380133
    [Google Scholar]
  16. TaşS. ÜnlüerN.Ö. ÇetinA. Thickness, cross-sectional area, and stiffness of intrinsic foot muscles affect performance in single-leg stance balance tests in healthy sedentary young females.J. Biomech.20209910953010.1016/j.jbiomech.2019.10953031785820
    [Google Scholar]
  17. LeeH.J. LimW.H. ParkJ.W. KwonB.S. RyuK.H. LeeJ.H. ParkY.G. The relationship between cross sectional area and strength of back muscles in patients with chronic low back pain.Ann. Rehabil. Med.201236217318110.5535/arm.2012.36.2.17322639740
    [Google Scholar]
  18. SheikhA.M. RudolfK. WittingN. VissingJ. Quantitative muscle MRI as outcome measure in patients with Becker muscular dystrophy-A 1-year follow-up study.Front. Neurol.20211161348910.3389/fneur.2020.61348933469442
    [Google Scholar]
  19. OhJ.H. RheeS.M. ParkJ.H. LeeK.J. YoonJ.Y. JeonY.D. KimH.S. Quantitative magnetic resonance imaging assessment of the infraspinatus and teres minor in massive rotator cuff tear and its significance in clinical outcome after rotator cuff repair.J. Shoulder Elbow Surg.2022311566210.1016/j.jse.2021.06.00134273536
    [Google Scholar]
  20. RouleauD.M. LaflammeG.Y. MutchJ. Fractures of the greater tuberosity of the humerus: A study of associated rotator cuff injury and atrophy.Shoulder Elbow20168424224910.1177/175857321664789627660656
    [Google Scholar]
  21. BiltzN.K. CollinsK.H. ShenK.C. SchwartzK. HarrisC.A. MeyerG.A. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction.J. Physiol.2020598132669268310.1113/JP27959532358797
    [Google Scholar]
  22. RahemiH NigamN WakelingJM The effect of intramuscular fat on skeletal muscle mechanics: Implications for the elderly and obese.J R Soc Interface2015121092015036510.1098/rsif.2015.036526156300
    [Google Scholar]
  23. WangZ. TaniguchiM. SaekiJ. YagiM. MurotaN. NakazatoK. NiiyaN. IchihashiN. Intramuscular fat infiltration influences mechanical properties during muscle contraction in older women.Appl. Physiol. Nutr. Metab.20244991175118310.1139/apnm‑2023‑055738718426
    [Google Scholar]
  24. Valovich-mcLeodT.C. ShultzS.J. GansnederB.M. PerrinD.H. DrouinJ.M. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements.Eur. J. Appl. Physiol.2004911222910.1007/s00421‑003‑0933‑014508689
    [Google Scholar]
  25. ItoiE. MinagawaH. SatoT. SatoK. TabataS. Isokinetic strength after tears of the supraspinatus tendon.J. Bone Joint Surg. Br.199779-B1778210.1302/0301‑620X.79B1.07900779020450
    [Google Scholar]
  26. OtisJ.C. JiangC.C. WickiewiczT.L. PetersonM.G. WarrenR.F. SantnerT.J. Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation.J. Bone Joint Surg. Am.199476566767610.2106/00004623‑199405000‑000078175814
    [Google Scholar]
  27. KuechleD.K. Shoulder muscle moment arm during horizontal flexion, rotation, and elevation.Rochester, MNMayo Graduate School of Medicine1994
    [Google Scholar]
  28. HurleyB.F. Age, gender, and muscular strength.J. Gerontol. A Biol. Sci. Med. Sci.199550Spec No414410.1093/gerona/50a.special_issue.417493216
    [Google Scholar]
  29. SkrzekA. IgnasiakZ. KoziełS. SławińskaT. RożekK. Differences in muscle strength depend on age, gender and muscle functions.Isokinet. Exerc. Sci.201220322923510.3233/IES‑2012‑0464
    [Google Scholar]
  30. HarboT. BrincksJ. AndersenH. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects.Eur. J. Appl. Physiol.2012112126727510.1007/s00421‑011‑1975‑321537927
    [Google Scholar]
  31. MillerR.M. FreitasE.D.S. HeishmanA.D. PeakK.M. BuchananS.R. KellawanJ.M. PereiraH.M. BembenD.A. BembenM.G. Muscle performance changes with age in active women.Int. J. Environ. Res. Public Health2021189447710.3390/ijerph1809447733922474
    [Google Scholar]
  32. HorobeanuC. PullingerS.A. PaulusJ. SavoiaC. WongF.Y. SeurotA. CroisierJ.L. ForthommeB. Sex differences in shoulder performance fatiguability are affected by arm position, dominance and muscle group.BMC Musculoskelet. Disord.202223129910.1186/s12891‑022‑05232‑w35351091
    [Google Scholar]
  33. JunA.Y. ChoiE.H. YooY.S. KangS.W. JangK.U. SeoC.H. Comparison of peak torque according to size of the rotator cuff tear patients.J Korean Acad Rehabil Med2009335619626
    [Google Scholar]
  34. ChellamuthuG. SundarS. RajanD.V. Current concepts review in the management of subscapularis tears.J. Clin. Orthop. Trauma20222810186710.1016/j.jcot.2022.10186735494488
    [Google Scholar]
  35. KurokawaD. SanoH. NagamotoH. OmiR. ShinozakiN. WatanukiS. KishimotoK.N. YamamotoN. HiraokaK. TashiroM. ItoiE. Muscle activity pattern of the shoulder external rotators differs in adduction and abduction: An analysis using positron emission tomography.J. Shoulder Elbow Surg.201423565866410.1016/j.jse.2013.12.02124613183
    [Google Scholar]
  36. LeeS.W. ParkS.E. ParkM.G. JiJ.H. Arthroscopic treatment of isolated teres minor tendon tear: A case report.Clin. Shoulder Elbow201518315916110.5397/cise.2015.18.3.159
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056402394250921003713
Loading
/content/journals/cmir/10.2174/0115734056402394250921003713
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test