Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

To evaluate the effectiveness of spectral-CT in assessing the severity of liver diseases in patients with chronic liver disease (CLD).

Methods

A total of 148 CLD patients who underwent spectral-CT were retrospectively recruited, including 40 non-advanced CLD (non-ACLD), 74 compensated ACLD (cACLD), and 34 decompensated ACLD (dACLD). Iodine concentrations in the liver and spleen were assessed on iodine (water) images during the equilibrium phase, which allowed for the calculation of liver and splenic extracellular volume fractions (ECV). We determined the total liver volume, liver segmental volume ratio, and splenic volume from portal phase images. Moreover, established non-invasive tests were also collected. Areas under receiver operating characteristic curve (AUCs) were employed to evaluate the diagnostic performance of CT parameters and non-invasive tests in predicting CLD severity. Additionally, we analyzed the correlations between CT parameters and non-invasive tests.

Results

The spleen volume demonstrated the highest AUC (0.815, P<0.001) for distinguishing between non-ACLD and cALCD. Child-Pugh score exhibited the highest AUC (0.948, P<0.001) for distinguishing cALCD and dACLD. Splenic ECV exhibited the highest AUC (0.853, P<0.001) for distinguishing non-ALCD and ACLD. In contrast, the liver ECV showed strong correlations with the Fibrosis-4 Index (r=0.653, p<0.001) and the Aminotransferase-to-Platelet Ratio Index (r=0.607, p<0.001), while spleen ECV correlated more strongly with the Child-Pugh score (r=0.719, p<0.001) and the Albumin-Bilirubin Index (r=0.742, p<0.001).

Discussion

Liver and splenic ECV can effectively reflect the dynamic progression of CLD and correlate well with non-invasive tests in these patients.

Conclusion

Spectral-CT liver and splenic ECV could serve as non-invasive imaging biomarkers for severity stratification.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056396041250728133515
2025-08-04
2025-09-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056396041.html?itemId=/content/journals/cmir/10.2174/0115734056396041250728133515&mimeType=html&fmt=ahah

References

  1. BastatiN. BeerL. Ba-SsalamahA. Poetter-LangS. AmbrosR. KristicA. LauberD. PomejK. BinterT. SimbrunnerB. SemmlerG. BalcarL. BicanY. HodgeJ.C. WrbaT. TraunerM. ReibergerT. MandorferM. Gadoxetic acid-enhanced MRI-derived functional liver imaging score (FLIS) and spleen diameter predict outcomes in ACLD.J. Hepatol.20227741005101310.1016/j.jhep.2022.04.03235525337
    [Google Scholar]
  2. de FranchisR. BoschJ. Garcia-TsaoG. ReibergerT. RipollC. AbraldesJ.G. AlbillosA. BaigesA. BajajJ. BañaresR. BarrufetM. BenajibaL. BerzigottiA. BureauC. CalvarusoV. CardenasA. D’AmicoG. De GottardiA. Dell’EraA. EscorsellA. FallowfieldJ. FerralH. FrancqueS. GabaR. Garcia-PagànJ.C. GenescàJ. RodriguesS.G. Gracia-SanchoJ. HanG. Hernandez-GeaV. JiaJ. KiladjianJ.J. KragA. LalemanW. La MuraV. LensS. LuoX. MandorferM. MuradS.D. ParadisV. PatchD. PianoS. PinzaniM. PlessierA. PrimignaniM. ProcopetB. RautouP.E. RudlerM. SarinS.K. SchepisF. SenzoloM. ShahV. ShuklaA. TandonP. TellezL. ThabutD. ThieleM. TrebickaJ. TripathiD. TsochatzisE. TurcoL. TuronF. VallaD. VillanuevaC. WanlessI. YoshijiH. Baveno VII Faculty Baveno VII – Renewing consensus in portal hypertension.J. Hepatol.202276495997410.1016/j.jhep.2021.12.02235120736
    [Google Scholar]
  3. KutaibaN. ChungW. GoodwinM. TestroA. EganG. LimR. The impact of hepatic and splenic volumetric assessment in imaging for chronic liver disease: A narrative review.Insights Imaging202415114610.1186/s13244‑024‑01727‑338886297
    [Google Scholar]
  4. dos SantosD.M. PenteadoJ.O. NaderM.M. BassoR.P. da SilvaN.M.O. QuicheL.C.P. BorgesM.P. GehresL.F.S. HoffmannT. RodriguesL.F. da Silva JúniorF.M.R. Analysis of noninvasive methods in chronic hepatitis/human immunodeficiency virus mono- and co-infected patients with advanced fibrosis.Eur. J. Gastroenterol. Hepatol.202537563864310.1097/MEG.000000000000293639976004
    [Google Scholar]
  5. ZhangJ. ZhaoL. ZhouY. DingJ. ZhangQ. JingX. The comparison between albumin-bilirubin grade and Child-Pugh grade for assessing the prognosis of hepatocellular carcinoma after thermal ablation: A propensity score-matched analysis.Transl. Cancer Res.20221182523253510.21037/tcr‑22‑24436093547
    [Google Scholar]
  6. NagayamaY. HokamuraM. TaguchiN. YokotaY. OsakiT. OgasawaraK. ShiraishiS. YoshidaR. HaraiR. KidohM. OdaS. NakauraT. HiraiT. Liver function estimation using multiphase hepatic CT: Diagnostic performance of iodine-uptake and volumetric parameters.Eur. Radiol.202510.1007/s00330‑025‑11497‑140080190
    [Google Scholar]
  7. SackJ. NitschJ. MeineH. KikinisR. HalleM. RutherfordA. Quantitative analysis of liver disease using MRI-based radiomic features of the liver and spleen.J. Imaging202281027710.3390/jimaging810027736286371
    [Google Scholar]
  8. ZhengT. QuY. ChenJ. YangJ. YanH. JiangH. SongB. Noninvasive diagnosis of liver cirrhosis: Qualitative and quantitative imaging biomarkers.Abdom. Radiol. (N.Y.)20244962098211510.1007/s00261‑024‑04225‑838372765
    [Google Scholar]
  9. ZbindenL. CatucciD. SuterY. HulbertL. BerzigottiA. BrönnimannM. EbnerL. ChristeA. ObmannV.C. SznitmanR. HuberA.T. Automated liver segmental volume ratio quantification on non-contrast T1–Vibe Dixon liver MRI using deep learning.Eur. J. Radiol.202316711104710.1016/j.ejrad.2023.11104737690351
    [Google Scholar]
  10. FengL.M. LeiS.J. ZengX. WangP.Q. ChenR.T. WangJ. ShengX. ShiP.M. YuanZ.L. XieW.F. The evaluation of non-invasive multi-slice spiral computed tomography-based indices for the diagnosis and prognosis prediction of liver cirrhosis.J. Dig. Dis.201718847247910.1111/1751‑2980.1250628671764
    [Google Scholar]
  11. TagoK. TsukadaJ. SudoN. ShibutaniK. OkadaM. AbeH. IbukuroK. HigakiT. TakayamaT. Comparison between CT volumetry and extracellular volume fraction using liver dynamic CT for the predictive ability of liver fibrosis in patients with hepatocellular carcinoma.Eur. Radiol.202232117555756510.1007/s00330‑022‑08852‑x35593960
    [Google Scholar]
  12. PengY. ShenH. TangH. HuangY. LanX. LuoX. ZhangX. ZhangJ. Nomogram based on CT–derived extracellular volume for the prediction of post-hepatectomy liver failure in patients with resectable hepatocellular carcinoma.Eur. Radiol.202232128529853910.1007/s00330‑022‑08917‑x35678856
    [Google Scholar]
  13. WadaN. FujitaN. IshimatsuK. TakaoS. YoshizumiT. MiyazakiY. OdaY. NishieA. IshigamiK. UshijimaY. A novel fast kilovoltage switching dual-energy computed tomography technique with deep learning: Utility for non-invasive assessments of liver fibrosis.Eur. J. Radiol.202215511046110.1016/j.ejrad.2022.11046135970119
    [Google Scholar]
  14. JiangC. JiangR. ZhangW. MaZ. DongH. WangZ. FengQ. Segmental analysis of liver cirrhosis with different etiologies: A study based on iodine mixed imaging in port-venous phase.Acta Radiol.202364112858286710.1177/0284185123119553537792500
    [Google Scholar]
  15. BottariA. SilipigniS. CarerjM.L. CattafiA. MaimoneS. MarinoM.A. MazziottiS. PitroneA. SquadritoG. AscentiG. Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis.Radiol. Med. (Torino)2020125171410.1007/s11547‑019‑01089‑731587181
    [Google Scholar]
  16. KokuboR. SaitoK. YamadaT. TanakaT. TajimaY. SuzukiK. Comparison of liver fibrosis and function indices with extracellular volume using dual-energy CT: A retrospective study.Curr. Med. Imaging Rev.202218111180118510.2174/157340561866622040710023735392787
    [Google Scholar]
  17. CundariG. GaleaN. MergenV. AlkadhiH. EberhardM. Myocardial extracellular volume quantification with computed tomography—current status and future outlook.Insights Imaging202314115610.1186/s13244‑023‑01506‑637749293
    [Google Scholar]
  18. MizunoM. TagoK. OkadaM. NakazawaY. ArakaneT. YoshikawaH. AbeH. MatsumotoN. HigakiT. OkamuraY. TakayamaT. Extracellular volume by dual-energy CT, hepatic reserve capacity scoring, CT volumetry, and transient elastography for estimating liver fibrosis.Sci. Rep.20231312203810.1038/s41598‑023‑49362‑038086990
    [Google Scholar]
  19. PeltecA. SporeaI. Multiparametric ultrasound as a new concept of assessment of liver tissue damage.World J. Gastroenterol.202430121663166910.3748/wjg.v30.i12.166338617743
    [Google Scholar]
  20. DongJ. HeF. WangL. YueZ. WenT. WangR. LiuF. Iodine density changes in hepatic and splenic parenchyma in liver cirrhosis with dual energy CT (DECT): A preliminary study.Acad. Radiol.201926787287710.1016/j.acra.2018.08.01830262328
    [Google Scholar]
  21. DuL. DengH. WuX. LiuF. YinT. ZhengJ. Relationship between spleen pathologic changes and spleen stiffness in portal hypertension rat model.Ultrasound Med. Biol.202450221622310.1016/j.ultrasmedbio.2023.10.00137919143
    [Google Scholar]
  22. MoritaK. NishieA. UshijimaY. TakayamaY. FujitaN. KuboY. IshimatsuK. YoshizumiT. MaeharaJ. IshigamiK. Noninvasive assessment of liver fibrosis by dual-layer spectral detector CT.Eur. J. Radiol.202113610957510.1016/j.ejrad.2021.10957533548853
    [Google Scholar]
  23. PatelM. TannM. LiangpunsakulS. CT-scan based liver and spleen volume measurement as a prognostic indicator for patients with cirrhosis.Am. J. Med. Sci.2021362325225910.1016/j.amjms.2020.10.03133947583
    [Google Scholar]
  24. LiX. LiuS. LiJ. LiuN. LiH. GeA. WangL. DongX. WangH. LiuJ. ZhangL. ZhangH.D. GouW. Analysis of factors influencing prognosis and assessment of 60 cases of decompensated cirrhotic patients with portal hypertension.Int. J. Gen. Med.2024171493149810.2147/IJGM.S45310738655006
    [Google Scholar]
  25. HeoS. LeeS.S. ChoiS.H. KimD.W. ParkH.J. KimS.Y. LeeS.J. KimK.M. ShinY.M. CT rule-in and rule-out criteria for clinically significant portal hypertension in chronic liver disease.Radiology20233091e23120810.1148/radiol.23120837906011
    [Google Scholar]
  26. Romero-CristóbalM. Clemente-SánchezA. PeligrosM.I. RamónE. MatillaA.M. ColónA. AlonsoS. CatalinaM.V. Fernández-YunqueraA. CaballeroA. GarcíaR. López-BaenaJ.Á. SalcedoM.M. BañaresR. RincónD. Liver and spleen volumes are associated with prognosis of compensated and decompensated cirrhosis and parallel its natural history.United European Gastroenterol. J.202210880581610.1002/ueg2.1230136065767
    [Google Scholar]
  27. CatucciD. ObmannV.C. BerzigottiA. GräniC. GuenschD.P. FischerK. EbnerL. HeverhagenJ.T. ChristeA. HuberA.T. Noninvasive assessment of clinically significant portal hypertension using ΔT1 of the liver and spleen and ECV of the spleen on routine Gd-EOB-DTPA liver MRI.Eur. J. Radiol.202114410995810.1016/j.ejrad.2021.10995834571458
    [Google Scholar]
  28. PengY. TangH. HuangY. YuanX. WangX. RanZ. DengW. LiuR. LanX. ShenH. ZhangJ. CT-derived extracellular volume and liver volumetry can predict posthepatectomy liver failure in hepatocellular carcinoma.Insights Imaging202314114510.1186/s13244‑023‑01496‑537697217
    [Google Scholar]
  29. CongL. DengY. CaiS. WangG. ZhaoX. HeJ. ZhaoS. WangL. The value of periportal hyperintensity sign from gadobenate dimeglumine-enhanced hepatobiliary phase MRI for predicting clinical outcomes in patients with decompensated cirrhosis.Insights Imaging20241516410.1186/s13244‑024‑01629‑438411746
    [Google Scholar]
  30. KumarS. ShahS. SinghB. PradhanA. Comparison between creatinine-modified pugh score and child-pugh score for prognostication in decompensated cirrhosis.Cureus2024166e6231110.7759/cureus.6231139006578
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056396041250728133515
Loading
/content/journals/cmir/10.2174/0115734056396041250728133515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test