Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

The global incidence of lung cancer highlights the need for improved assessment of nodule characteristics to enhance early detection of lung adenocarcinoma presenting as ground-glass nodules (GGNs). This study investigated the applicability of radiomics features of vascular structures within GGNs for predicting invasiveness of GGNs.

Methods

In total, 165 pathologically confirmed pulmonary GGNs were retrospectively analyzed. The nodules were classified into preinvasive and invasive groups and randomly categorized into training and validation sets in a 7:3 ratio. Four models were constructed and evaluated: radiomics-GGN, radiomics-vascular, clinical-radiomics-GGN, and clinical-radiomics-vascular. The predictive performance of these models was assessed using receiver operating characteristic curves, decision curve analysis, calibration curves, and DeLong’s test.

Results

Significant differences and density were observed between the preinvasive and invasive groups in terms of age, nodule length, average diameter, morphology, lobulation sign ( = 0.006, 0.038, 0.046, 0.049, 0.002 and0.008 respectively). In the radiomics-GGN model, the support vector machine (SVM) approach outperformed logistic regression (LR), achieving an area under the curve (AUC) of 0.958 in the training set and 0.763 in the validation set. Similarly, in the radiomics-vascular model, the SVM approach outperformed LR. Furthermore, the clinical-radiomics-vascular model demonstrated superior predictive performance compared with the clinical-radiomics-GGN model, with an AUC of 0.918 in the training set and 0.864 in the validation set. DeLong’s test indicated significant differences in predicting the invasiveness of pulmonary nodules between the clinical-radiomics-vascular model and the clinical-radiomics-GGN model, both in the training and validation sets ( < 0.01).

Conclusion

The radiomics models based on internal vascular structures of GGNs outperformed those based on GGNs alone, suggesting that incorporating vascular radiomics analysis can improve the noninvasive assessment of GGN invasiveness, thereby aiding in clinical decision-making and guiding biopsy selection and treatment planning.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056385352250410053810
2025-01-01
2025-10-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056385352.html?itemId=/content/journals/cmir/10.2174/0115734056385352250410053810&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. WangY.H. ChenC.F. LinY.K. ChiangC. TzaoC. YenY. Predicting malignancy: Subsolid nodules detected on LDCT in a surgical cohort of East Asian patients.J. Thorac. Dis.20201284315432610.21037/jtd‑20‑65932944344
    [Google Scholar]
  3. FanL. WangY. ZhouY. LiQ. YangW. WangS. ShanF. ZhangX. ShiJ. ChenW. LiuS.Y. Lung cancer screening with low-dose CT: Baseline screening results in Shanghai.Acad. Radiol.201926101283129110.1016/j.acra.2018.12.00230554839
    [Google Scholar]
  4. MiglioreM. FornitoM. PalazzoloM. CriscioneA. GangemiM. BorrataF. VigneriP. NardiniM. DunningJ. Ground glass opacities management in the lung cancer screening era.Ann. Transl. Med.2018659010.21037/atm.2017.07.2829666813
    [Google Scholar]
  5. ZhangY. JheonS. LiH. ZhangH. XieY. QianB. LinK. WangS. FuC. HuH. ZhengY. LiY. ChenH. Results of low-dose computed tomography as a regular health examination among Chinese hospital employees.J. Thorac. Cardiovasc. Surg.20201603824831.e410.1016/j.jtcvs.2019.10.14531987625
    [Google Scholar]
  6. NicholsonA.G. TsaoM.S. BeasleyM.B. BorczukA.C. BrambillaE. CooperW.A. DacicS. JainD. KerrK.M. LantuejoulS. NoguchiM. PapottiM. RekhtmanN. ScagliottiG. SchilV.P. ShollL. YatabeY. YoshidaA. TravisW.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015.J. Thorac. Oncol.202217336238710.1016/j.jtho.2021.11.00334808341
    [Google Scholar]
  7. YoshizawaA. MotoiN. RielyG.J. SimaC.S. GeraldW.L. KrisM.G. ParkB.J. RuschV.W. TravisW.D. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: Prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases.Mod. Pathol.201124565366410.1038/modpathol.2010.23221252858
    [Google Scholar]
  8. YeT. DengL. XiangJ. ZhangY. HuH. SunY. LiY. ShenL. WangS. XieL. ChenH. Predictors of pathologic tumor invasion and prognosis for ground glass opacity featured lung adenocarcinoma.Ann. Thorac. Surg.201810661682169010.1016/j.athoracsur.2018.06.05830096292
    [Google Scholar]
  9. ZhuE. DaiC. XieH. SuH. HuX. LiM. FanJ. LiuJ. ZhuQ. ZhangL. KeH. ChenC. Lepidic component identifies a subgroup of lung adenocarcinoma with a distinctive prognosis: A multicenter propensity-matched analysis.Ther. Adv. Med. Oncol.202012175883592098284510.1177/175883592098284533488781
    [Google Scholar]
  10. WangZ. ZhuW. LuZ. LiW. ShiJ. Invasive adenocarcinoma manifesting as pure ground glass nodule with different size: Radiological characteristics differ while prognosis remains the same.Transl. Cancer Res.20211062755276610.21037/tcr‑21‑7835116586
    [Google Scholar]
  11. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. StiphoutV.R.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  12. WengQ. ZhouL. WangH. HuiJ. ChenM. PangP. ZhengL. XuM. WangZ. JiJ. A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules.Clin. Radiol.2019741293394310.1016/j.crad.2019.07.02631521324
    [Google Scholar]
  13. LvY. YeJ. YinY.L. LingJ. PanX.P. A comparative study for the evaluation of CT-based conventional, radiomic, combined conventional and radiomic, and delta-radiomic features, and the prediction of the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules.Clin. Radiol.20227710e741e74810.1016/j.crad.2022.06.00435840455
    [Google Scholar]
  14. GaoF. LiM. GeX. ZhengX. RenQ. ChenY. LvF. HuaY. Multi-detector spiral CT study of the relationships between pulmonary ground-glass nodules and blood vessels.Eur. Radiol.201323123271327710.1007/s00330‑013‑2954‑323832317
    [Google Scholar]
  15. ZhangY. FuF. ChenH. Management of ground-glass opacities in the lung cancer spectrum.Ann. Thorac. Surg.202011061796180410.1016/j.athoracsur.2020.04.09432525031
    [Google Scholar]
  16. MacMahonH. NaidichD.P. GooJ.M. LeeK.S. LeungA.N.C. MayoJ.R. MehtaA.C. OhnoY. PowellC.A. ProkopM. RubinG.D. Schaefer-ProkopC.M. TravisW.D. SchilV.P.E. BankierA.A. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017.Radiology2017284122824310.1148/radiol.201716165928240562
    [Google Scholar]
  17. IchinoseJ. KawaguchiY. NakaoM. MatsuuraY. OkumuraS. NinomiyaH. OikadoK. NishioM. MunM. Utility of maximum CT value in predicting the invasiveness of pure ground-glass nodules.Clin. Lung Cancer202021328128710.1016/j.cllc.2020.01.01532089477
    [Google Scholar]
  18. LiuL.H. LiuM. WeiR. JinE.H. LiuY.H. XuL. LiW.W. HuangY. CT findings of persistent pure ground glass opacity: Can we predict the invasiveness?Asian Pac. J. Cancer Prev.20151651925192810.7314/APJCP.2015.16.5.192525773846
    [Google Scholar]
  19. ZhouQ.J. ZhengZ.C. ZhuY.Q. LuP.J. HuangJ. YeJ.D. ZhangJ. LuS. LuoQ.Q. Tumor invasiveness defined by IASLC/ATS/ERS classification of ground-glass nodules can be predicted by quantitative CT parameters.J. Thorac. Dis.2017951190120010.21037/jtd.2017.03.17028616268
    [Google Scholar]
  20. LiQ. FanX. HuoJ. LuoT. HuangX. GongJ. Differential diagnosis of localized pneumonic-type lung adenocarcinoma and pulmonary inflammatory lesion.Insights Imaging20221314910.1186/s13244‑022‑01200‑z35316418
    [Google Scholar]
  21. ChaddadA. KucharczykM.J. DanielP. SabriS. Jean-ClaudeB.J. NiaziT. AbdulkarimB. Radiomics in glioblastoma: Current status and challenges facing clinical implementation.Front. Oncol.2019937410.3389/fonc.2019.0037431165039
    [Google Scholar]
  22. KoçakB. DurmazE.S. AteşE. KılıçkesmezO. Radiomics with artificial intelligence: A practical guide for beginners.Diagn. Interv. Radiol.201925648549510.5152/dir.2019.1932131650960
    [Google Scholar]
  23. MengY. SunJ. QuN. ZhangG. YuT. PiaoH. Application of radiomics for personalized treatment of cancer patients.Cancer Manag. Res.201911108511085810.2147/CMAR.S23247331920394
    [Google Scholar]
  24. RomeoV. CuocoloR. RicciardiC. UggaL. CocozzaS. VerdeF. StanzioneA. NapolitanoV. RussoD. ImprotaG. ElefanteA. StaibanoS. BrunettiA. Prediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approach.Anticancer Res.202040127128010.21873/anticanres.1394931892576
    [Google Scholar]
  25. ShenY. XuF. ZhuW. HuH. ChenT. LiQ. Multiclassifier fusion based on radiomics features for the prediction of benign and malignant primary pulmonary solid nodules.Ann. Transl. Med.20208517110.21037/atm.2020.01.13532309318
    [Google Scholar]
  26. KaoT.N. HsiehM.S. ChenL.W. YangC.F.J. ChuangC.C. ChiangX.H. ChenY.C. LeeY.H. HsuH.H. ChenC.M. LinM.W. ChenJ.S. CT-based radiomic analysis for preoperative prediction of tumor invasiveness in lung adenocarcinoma presenting as pure ground-glass nodule.Cancers20221423588810.3390/cancers1423588836497379
    [Google Scholar]
  27. ZhaoF. FanH. ShanK. ZhouL. PangZ. FuC. YangZ. WuM. SunJ. YangX. HuangZ. Predictive efficacy of a radiomics random forest model for identifying pathological subtypes of lung adenocarcinoma presenting as ground-glass nodules.Front. Oncol.20221287250310.3389/fonc.2022.87250335646675
    [Google Scholar]
  28. ZhuY. LiuC. MoY. DongH. HuangC. DuanY. TangL. ChuY. QinJ. Radiomics for differentiating minimally invasive adenocarcinoma from precursor lesions in pure ground-glass opacities on chest computed tomography.Br. J. Radiol.20229511342021076810.1259/bjr.2021076835262392
    [Google Scholar]
  29. JiangY. XiongZ. ZhaoW. ZhangJ. GuoY. LiG. LiZ. Computed tomography radiomics-based distinction of invasive adenocarcinoma from minimally invasive adenocarcinoma manifesting as pure ground-glass nodules with bubble-like signs.Gen. Thorac. Cardiovasc. Surg.2022701088089010.1007/s11748‑022‑01801‑x35301662
    [Google Scholar]
  30. JiangY. CheS. MaS. LiuX. GuoY. LiuA. LiG. LiZ. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact.Cancer Imaging2021211110.1186/s40644‑020‑00376‑133407884
    [Google Scholar]
  31. WuL. GaoC. YeJ. TaoJ. WangN. PangP. XiangP. XuM. The value of various peritumoral radiomic features in differentiating the invasiveness of adenocarcinoma manifesting as ground-glass nodules.Eur. Radiol.202131129030903710.1007/s00330‑021‑07948‑034037830
    [Google Scholar]
  32. LiangJ. XuX-Q. XuH. YuanM. ZhangW. ShiZ-F. YuT-F. Using the CT features to differentiate invasive pulmonary adenocarcinoma from pre-invasive lesion appearing as pure or mixed ground-glass nodules.Br. J. Radiol.20158810532014081110.1259/bjr.2014081126090823
    [Google Scholar]
  33. DangY. WangR. QianK. LuJ. ZhangY. Clinical and radiomic factors for predicting invasiveness in pulmonary ground‑glass opacity.Exp. Ther. Med.202224568510.3892/etm.2022.1162136277144
    [Google Scholar]
  34. FengH. ShiG. XuQ. RenJ. WangL. CaiX. Radiomics-based analysis of CT imaging for the preoperative prediction of invasiveness in pure ground-glass nodule lung adenocarcinomas.Insights Imaging20231412410.1186/s13244‑022‑01363‑936735104
    [Google Scholar]
  35. SunY. LiC. JinL. GaoP. ZhaoW. MaW. TanM. WuW. DuanS. ShanY. LiM. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: Invasive prediction.Eur. Radiol.20203073650365910.1007/s00330‑020‑06776‑y32162003
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056385352250410053810
Loading
/content/journals/cmir/10.2174/0115734056385352250410053810
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test