Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Finding a convenient, accurate, and non-invasive method to differentiate between benign and malignant breast masses is especially important for clinical practice, and this study aimed to explore the clinical value of Nomogram model based on multimodality ultrasound image characteristics and clinical baseline data for detecting benign and malignant breast masses.

Methods

A retrospective analysis of the clinical data and ultrasound imaging characteristics of 132 patients with breast masses. Data were randomly divided into a training set (92 cases) and a validation set (40 cases) in a ratio of 7:3. Logistic regression was applied to the training set data to analyze risk factors related to malignant breast masses and to construct a Nomogram model. Clinical applicability of the model was evaluated and validated.

Results

In training set, ROC cure analysis results showed that AUC of Nomogram model constructed with CA15-3, CA125, E, E, Ratio of Elastic Moduli, Elasticity Scoring, blurry boundaries, irregular shape, penetrating vessels, and stiff rim sign was 1.00 (95%CI: 0.99-1.00), Hosmer-Lemeshow goodness-of-fit test result showed predicted curve closely aligns with ideal curve, and DCA showed that Nomogram model exhibited high net benefits across multiple thresholds. The clinical applicability of the Nomogram model was also confirmed with consistent results in the validation set.

Discussion

In this study, we constructed a Nomogram model using risk factors associated with malignant breast masses, and the model showed good clinical applicability in distinguishing benign and malignant breast masses. However, this study is a single-center study, and the sample size of the dataset is relatively small, which, to some extent, limits the breadth and depth of validation.

Conclusion

The Nomogram model built on multimodal ultrasound imaging features and clinical data demonstrates a strong discriminative ability for malignant breast masses, allowing patients to achieve a significant net benefit.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056378619250722034152
2025-08-04
2025-09-20
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056378619.html?itemId=/content/journals/cmir/10.2174/0115734056378619250722034152&mimeType=html&fmt=ahah

References

  1. SwainM. JeudyM. Breast masses in biological females.JAMA2022328329429510.1001/jama.2022.955435771591
    [Google Scholar]
  2. LiX. ZhangL. DingM. Ultrasound‐based radiomics for the differential diagnosis of breast masses: A systematic review and meta‐analysis.J. Clin. Ultrasound202452677878810.1002/jcu.2369038606802
    [Google Scholar]
  3. LiN. HouZ. WangJ. BiY. WuX. ZhanY. PengM. Value of inversion imaging to diagnosis in differentiating malignant from benign breast masses.BMC Med. Imaging202323120610.1186/s12880‑023‑01164‑638066441
    [Google Scholar]
  4. MenonG AlkabbanFM FergusonT Breast cancer.StatPearls PublishingTreasure Island (FL)2024
    [Google Scholar]
  5. HoxhaI. SadikuF. HoxhaL. NasimM. Christine ButeauM.A. GrezdaK. ChamberlinM.D. Breast cancer and lifestyle factors.Hematol. Oncol. Clin. North Am.202438113717010.1016/j.hoc.2023.07.00537635047
    [Google Scholar]
  6. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.3358833818764
    [Google Scholar]
  7. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  8. TadesseG.F. TegawE.M. AbdisaE.K. Diagnostic performance of mammography and ultrasound in breast cancer: A systematic review and meta-analysis.J. Ultrasound202326235536710.1007/s40477‑022‑00755‑336696046
    [Google Scholar]
  9. GuoR. LuG. QinB. FeiB. Ultrasound imaging technologies for breast cancer detection and management: A review.Ultrasound Med. Biol.2018441377010.1016/j.ultrasmedbio.2017.09.01229107353
    [Google Scholar]
  10. GurmessaD. JimmaW. Explainable machine learning for breast cancer diagnosis from mammography and ultrasound images: A systematic review.BMJ Health Care Inform.2024311e10095410.1136/bmjhci‑2023‑10095438307616
    [Google Scholar]
  11. ElsheikhT.M. AsaS.L. ChanJ.K.C. DeLellisR.A. HeffessC.S. LiVolsiV.A. WenigB.M. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma.Am. J. Clin. Pathol.2008130573674410.1309/AJCPKP2QUVN4RCCP18854266
    [Google Scholar]
  12. MarukatatN. ParklugP. IssaragrisilS. SumanasrethakulC. Shear wave elastography for solid breast masses evaluation: Quantitative measurement of mean elasticity value and elasticity ratio.Eur. J. Radiol. Open20241210057310.1016/j.ejro.2024.10057338855720
    [Google Scholar]
  13. KosemY. UzunH. VelidedeogluM. KocaelP. DumurS. SimsekO. Clinical significance of serum synaptophysin-like 1 protein levels in breast cancer.J. Med. Biochem.202443227328010.5937/jomb0‑4619838699696
    [Google Scholar]
  14. HaoY. RenG. YangW. ZhengW. WuY. LiW. LiX. LiY. GuoX. Combination diagnosis with elastography strain ratio and molecular markers effectively improves the diagnosis rate of small breast cancer and lymph node metastasis.Quant. Imaging Med. Surg.202010367869110.21037/qims.2020.02.1432269928
    [Google Scholar]
  15. DharJ. SamantaJ. The expanding role of endoscopic ultrasound elastography.Clin. J. Gastroenterol.202215584185810.1007/s12328‑022‑01662‑035789474
    [Google Scholar]
  16. WilkinsonL. GathaniT. Understanding breast cancer as a global health concern.Br. J. Radiol.20229511302021103310.1259/bjr.2021103334905391
    [Google Scholar]
  17. ZhengR.S. ChenR. HanB.F. WangS.M. LiL. SunK.X. ZengH.M. WeiW.W. HeJ. Cancer incidence and mortality in China, 2022.Zhonghua Zhong Liu Za Zhi202446322123138468501
    [Google Scholar]
  18. BhushanA. GonsalvesA. MenonJ.U. Current state of breast cancer diagnosis, treatment, and theranostics.Pharmaceutics202113572310.3390/pharmaceutics1305072334069059
    [Google Scholar]
  19. ZhangJ. WeiQ. DongD. RenL. The role of TPS, CA125, CA15-3 and CEA in prediction of distant metastasis of breast cancer.Clin. Chim. Acta2021523192510.1016/j.cca.2021.08.02734454906
    [Google Scholar]
  20. GongH. QianM. PanG. HuB. Ultrasound image texture feature learning-based breast cancer benign and malignant classification.Comput. Math. Methods Med.202120211810.1155/2021/626103235391913
    [Google Scholar]
  21. CaoW. GuoJ. YouX. LiuY. LiL. CuiW. CaoY. ChenX. ZhengJ. NeighborNet: Learning intra- and inter-image pixel neighbor representation for breast lesion segmentation.IEEE J. Biomed. Health Inform.20242884761477110.1109/JBHI.2024.340080238743530
    [Google Scholar]
  22. GeorgievaM. PrantlL. UtpatelK. WiesingerI. StroszczynskiC. JungF. JungE.M. Diagnostic performance of ultrasound strain elastography for differentiation of malignant breast lesions.Clin. Hemorheol. Microcirc.201971223724710.3233/CH‑18941530584133
    [Google Scholar]
  23. DiaoX. ZhanJ. ChenL. ChenY. CaoH. Role of superb microvascular imaging in differentiating between malignant and benign solid breast masses.Clin. Breast Cancer2020206e786e79310.1016/j.clbc.2020.06.00932863154
    [Google Scholar]
  24. QiuZ.W. ZhongY.T. LuZ.M. YanN. KongR.J. HuangJ.Q. LiZ.F. NieJ.M. LiR. ChengH. Breaking physical barrier of fibrotic breast cancer for photodynamic immunotherapy by remodeling tumor extracellular matrix and reprogramming cancer-associated fibroblasts.ACS Nano202418139713973510.1021/acsnano.4c0149938507590
    [Google Scholar]
  25. FujiokaT. KatsutaL. KubotaK. MoriM. KikuchiY. KatoA. OdaG. NakagawaT. kitazumeY. TateishiU. Classification of breast masses on ultrasound shear wave elastography using convolutional neural networks.Ultrason. Imaging2020424-521322010.1177/016173462093260932501152
    [Google Scholar]
  26. WengL. YuM. Diagnosis of benign and malignant BI-RADS 4 breast masses by contrastenhanced ultrasound combined with shear wave elastography.Curr. Med. Imaging Rev.202320e1573405625719510.2174/011573405625719523102507282137921152
    [Google Scholar]
  27. WangB. ChenY.Y. YangS. ChenZ.W. LuoJ. CuiX.W. DietrichC.F. YiA. Combined use of shear wave elastography, microvascular doppler ultrasound technique, and BI-RADS for the differentiation of benign and malignant breast masses.Front. Oncol.20221290650110.3389/fonc.2022.90650135686093
    [Google Scholar]
  28. KaritaR. SuzukiH. OnozatoY. KaihoT. InageT. ItoT. TanakaK. SakairiY. YoshinoI. A simple nomogram for predicting occult lymph node metastasis of non-small cell lung cancer from preoperative computed tomography findings, including the volume-doubling time.Surg. Today2024541314010.1007/s00595‑023‑02695‑937129682
    [Google Scholar]
  29. JiaL. DengY. XuY. WuX. LiuD. LiM. HuangS. ZhangY. DuA. LiuH. TianY. Development and validation of a nomogram for oral mucosal membrane pressure injuries in ICU patients: A prospective cohort study.J. Clin. Nurs.202433104112412310.1111/jocn.1729638797947
    [Google Scholar]
  30. SiY. SongN. JiY. Construction of a nomogram model for predicting the outcome of debulking surgery for ovarian cancer on the basis of clinical indicators.Front. Oncol.202414142124710.3389/fonc.2024.142124739050577
    [Google Scholar]
  31. MalinvernoL. BarrosV. GhisoniF. VisonàG. KernR. NickelP.J. VenturaB.E. ŠimićI. StryeckS. ManniF. FerriC. Jean-QuartierC. GengaL. SchweikertG. LovrićM. Rosen-ZviM. A historical perspective of biomedical explainable AI research.Patterns20234910083010.1016/j.patter.2023.10083037720333
    [Google Scholar]
  32. Ciobanu-CarausO. AicherA. KernbachJ.M. RegliL. SerraC. StaartjesV.E. A critical moment in machine learning in medicine: On reproducible and interpretable learning.Acta Neurochir.202416611410.1007/s00701‑024‑05892‑838227273
    [Google Scholar]
  33. AlZoubiA. EskandariA. YuH. DuH. Explainable DCNN decision framework for breast lesion classification from ultrasound images based on cancer characteristics.Bioengineering202411545310.3390/bioengineering1105045338790320
    [Google Scholar]
  34. LedzińskiŁ. GrześkG. Artificial intelligence technologies in cardiology.J. Cardiovasc. Dev. Dis.202310520210.3390/jcdd1005020237233169
    [Google Scholar]
  35. MetschJ.M. SarantiA. AngerschmidA. PfeiferB. KlemtV. HolzingerA. HauschildA.C. CLARUS: An interactive explainable AI platform for manual counterfactuals in graph neural networks.J. Biomed. Inform.202415010460010.1016/j.jbi.2024.10460038301750
    [Google Scholar]
  36. SubramanianH.V. CanfieldC. ShankD.B. Designing explainable AI to improve human-AI team performance: A medical stakeholder-driven scoping review.Artif. Intell. Med.202414910278010.1016/j.artmed.2024.10278038462282
    [Google Scholar]
  37. YanM. PengC. HeD. XuD. YangC. A Nomogram for enhancing the diagnostic effectiveness of solid breast BI-RADS 3-5 masses to determine malignancy based on imaging aspects of conventional ultrasonography and contrast-enhanced ultrasound.Clin. Breast Cancer202323769370310.1016/j.clbc.2023.06.00237394416
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056378619250722034152
Loading
/content/journals/cmir/10.2174/0115734056378619250722034152
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test